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Methods, systems, and computer readable media for physi-
ology parameter-invariant meal detection are disclosed.
According to one system, the system includes at least one
processor and a meal detection module implemented using
the at least one processor. The meal detection module is
configured to receive insulin intake information and blood
glucose level information for a user, to detect a meal event
using a physiology parameter-invariant meal detection algo-
rithm, and after detecting the meal event, to perform at least
one control action associated with insulin management.
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METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR PHYSIOLOGY
PARAMETER-INVARIANT MEAL
DETECTION

PRIORITY CLAIM

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 62/322,003, filed Apr. 13,
2016; the disclosure of which is incorporated herein by
reference in its entirety.

GOVERNMENT INTEREST

[0002] This invention was made with government support
under Grant Nos. CNS-1035715 and U.S. Pat. No. 1,231,
680 awarded by the National Science Foundation. The
government has certain rights in the invention.

TECHNICAL FIELD

[0003] The subject matter described herein relates to insu-
lin management. More specifically, the subject matter relates
to methods, systems, and computer readable media for
physiology parameter-invariant meal detection.

BACKGROUND

[0004] Blood glucose management systems are an impor-
tant class of medical systems that provide vital everyday
decision support service to diabetics. An artificial pancreas,
which integrates a continuous glucose monitor, a wearable
insulin pump, and control algorithms running on embedded
computing devices, can significantly improve the quality of
life for millions of Type 1 diabetics. A primary problem in
the development of an artificial pancreas is the accurate
detection and estimation of meal carbohydrates, which cause
significant glucose system disturbances. Meal carbohydrate
detection is challenging since post-meal glucose responses
greatly depend on patient-specific physiology and meal
composition.

[0005] Accordingly, there exists a need for methods, sys-
tems, and computer readable media for physiology param-
eter-invariant meal detection.

SUMMARY

[0006] Methods, systems, and computer readable media
for physiology parameter-invariant meal detection are dis-
closed. According to one system, the system includes at least
one processor and a meal detection module implemented
using the at least one processor. The meal detection module
is configured to receive insulin intake information and blood
glucose level information for a user, to detect a meal event
using a physiology parameter-invariant meal detection algo-
rithm, and after detecting the meal event, to perform at least
one control action associated with insulin management.
[0007] A method for physiology parameter-invariant meal
detection is also disclosed. The method includes receiving
insulin intake information and blood glucose level informa-
tion for a user. The method also includes detecting a meal
event using a physiology parameter-invariant meal detection
algorithm. The method further includes after detecting the
meal event, performing at least one control action associated
with insulin management.

[0008] The subject matter described herein can be imple-
mented in software in combination with hardware and/or
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firmware. For example, the subject matter described herein
can be implemented in software executed by a processor. In
one exemplary implementation, the subject matter described
herein may be implemented using a computer readable
medium having stored thereon computer executable instruc-
tions that when executed by the processor of a computer
control the computer to perform steps. Exemplary computer
readable media suitable for implementing the subject matter
described herein include non-transitory devices, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the
subject matter described herein may be located on a single
device or computing platform or may be distributed across
multiple devices or computing platforms.

[0009] As used herein, the term “node” refers to a physical
computing platform or device including one or more pro-
cessors and memory.

[0010] As used herein, the terms “function” and “module”
refer to software in combination with hardware and/or
firmware for implementing features described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Embodiments of the subject matter described
herein will now be explained with reference to the accom-
panying drawing, wherein like reference numerals represent
like parts, of which:

[0012] FIG. 1 is a diagram illustrating decision points and
related data associated with meal detections;

[0013] FIG. 2 is a diagram illustrating receiver operating
characteristic (ROC) curves of four meal detectors;

[0014] FIG. 3 is a diagram illustrating cumulative detec-
tion rates of four meal detectors from the onsets of meals;
[0015] FIG. 4 is a diagram illustrating the per-subject
misses of four meal detectors;

[0016] FIG. 5 is a diagram illustrating cumulative detec-
tion rate curves of four meal detectors running at operating
points identified in the in silico trial;

[0017] FIG. 6 is a diagram illustrating a system for per-
forming meal detection; and

[0018] FIG. 7is a diagram illustrating an example process
for performing meal detection.

DETAILED DESCRIPTION

[0019] The subject matter described herein relates to
methods, systems, and computer readable media for physi-
ology parameter-invariant meal detection. Type 1 diabetes
(T1D) affects approximately 1.25 million people in the
United States and 5 million Americans are expected to have
T1D by 2050 [11]. T1D patients depend on daily insulin
therapy to control glucose levels in order to avoid numerous
long-term complications associated with hyperglycemia
[19]. Meal carbohydrates cause significant disturbance to
one’s glucose level and for T1D patients, it is critical to
cautiously plan insulin injections around meal times to avoid
postprandial hyperglycemia and subsequent post-correction
hypoglycemia. Artificial Pancreas (AP) systems [2, 7, 25]
aim to regulate the glucose level by automatically delivering
insulin and free T1D patients from the cognitive burden of
frequent glucose monitoring, carb counting, and insulin
dosing decision making.

[0020] A significant challenge of meal-time glycemic con-
trol is the sensing and action delays: the glucose level starts
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to rise a certain time after the onset of a meal and there is a
delay between the injection of insulin and the action of
insulin to dispose of glucose. To cope with this challenge,
the AP systems need meal information either by announce-
ment [24] or meal detection [3, 5, 6, 9, 16, 23, 31]. The
subject matter described herein relates to accurate and
timely meal detection—i.e., detecting if carbohydrates have
been ingested in the recent past. Accurate meal detection not
only serves as the first step towards meal estimation (i.e.,
estimating the amount of carbohydrates ingested), but can
also be employed by meal estimation algorithms as a safety
back-up, especially in situations where user input is errone-
ous [9]. The problems of carbohydrate estimation and insu-
lin bolus calculation [31] are not considered herein and left
as future work.

[0021] A meal detector aims to identify, in real-time,
carbohydrate ingestion based on continuous glucose monitor
(CGM) readings. Several meal detection strategies already
exist in the literature. Dassau et al. propose a voting-based
meal detector that tracks the glucose rate-of-changes (RoCs)
estimated by different methods including Kalman Filtering
and announces a meal when three out of the four RoC
estimates cross pre-specified thresholds [9]. Using similar
Kalman Filtering techniques, Lee and Bequette develop a
meal detector that announces a meal based on RoCs crossing
thresholds and estimates the meal size by feeding the filtered
glucose RoCs into a finite response filter [22]. Harvey et al.
recently proposed a meal detection algorithm that announces
meals based on a two-stage CGM filtering process and RoC
criteria [16]. Cameron et al. develop a meal detection
algorithm that uses a simple glucose model to match the
RoC of the CGM readings to temporal trajectories assuming
both no-meal and meal scenarios [3]. All the aforementioned
meal detectors require identifying patient-specific param-
eters (e.g., insulin sensitivity, insulin diffusion rate, etc.),
most of which vary with time. Due to the inherent physi-
ological dependency, the RoC based detectors may suffer
from high false positives, considering that non-meal distur-
bance factors may also cause significant glucose fluctuations
(e.g. exercising [13], stress [4], and depletion of insulin-on-
board [27]). Additionally, the trajectory-matching meal
detector has a long average detection delay [15]. As an
alternative, recent work by Turksoy et al. simultaneously
aims to estimate physiological variables and model param-
eters to provide accurate meal detection and estimation;
however, no guarantees are provided that the physiological
parameter estimates converge to their true value [31]. Quick
and reliable meal detection is critical for the AP systems:
false detections can lead to unnecessary insulin delivery that
may trigger life-threatening hypoglycemia; missed detec-
tions or significant detection delays can leave the patient
with marked postprandial hyperglycemia.

[0022] The subject matter described herein includes a
novel meal detection algorithm that is based on a commonly
accepted minimal glucose physiological model and is
“invariant” to individual physiological parameters—i.e., it
achieves a near constant false alarm rate (CFAR) across the
patient population without needing individual tuning. We
compare an example implementation of a parameter invari-
ant (PAIN) meal detector with various aspects described
herein with three published meal detection techniques [9, 16,
22]. Evaluations on an FDA-accepted T1D simulator [21]
and a real T1D clinical dataset [36] show that our detector
outperforms (often significantly) other detectors in multiple
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aspects: detection rate, false-positive rate, detection delays,
and per-subject missed meals.

[0023] Methods

[0024] In this section, aspects related to meal detection
using a parameter invariant (PAIN) design approach [35]
usable for achieving a CFAR [30] or near-CFAR is dis-
cussed. In many medical monitoring applications, including
meal detection, unknown or uncertain patient physiology
presents a fundamental challenge in generating mathemati-
cal models useful for detector design. The PAIN approach
utilizes physiological models and trends to capture the
effects of the unknown nuisance parameters, then establishes
invariance to the nuisance parameters by projecting the
measurements onto a space which is unaffected by the
unknown parameters, mathematically known as a null space
projection. The benefit of the PAIN approach is that the
projected measurements will be the same, regardless of the
patient’s unknown physiology, allowing the design of pow-
erful detectors that leverage this population-level consis-
tency. PAIN design approaches have been successfully
applied to various engineering applications with unknown
parameters [32, 33, 34] and have recently been extended to
medical monitor design [18, 28, 29, 35].

[0025] To present an example PAIN-based meal detector,
this section utilizes FIG. 1 as a visual aid and discloses
useful mathematics related to its formulation. In some
embodiments, meal detection may be performed in two
steps. First, at time k in FIG. 1, we use a time window of
measurements (denoted by w in FIG. 1) and comparatively
test, using PAIN techniques [35], two consecutive sub-
windows of time ending d time steps before k (represented
by d, and d, in FIG. 1) for the presence of a meal. The time
steps correspond to the CGM sampling period and we use
1-minute sampled CGMs in the in silico study, which is
consistent with the sampling rate of the clinical dataset [36].
Second, we sequentially filter the test decisions generated at
each time step k to generate a threshold-based test for meal
detection. The remainder of this section describes, in detail,
various components of the meal detector, namely, modeling
glucose-insulin physiological trends, designing physiology-
invariant tests, and filtering test decisions.

[0026]

[0027] Many models exist for describing glucose-insulin
physiology, ranging from high-fidelity maximal models [8,
21] to an assortment of low-fidelity minimal models [1]. For
the PAIN technique to be useful, a chosen model should
capture the general physiological trends that discriminate
meal occurrence or absence. In some embodiments, to
capture the real-life scenario where the glucose level is
measured at a subcutaneous site and carbohydrates enter
plasma via a digestion pathway, a modified 5%-order linear
Bergman model [1] augmented with minimal compartmen-
tal models that describe the subcutaneous insulin pathway
[20, 26] and meal carbohydrate digestion pathway [12] is
utilized. The complete augmented physiological model is a
five-state linear system (discussed further below with refer-
ence to Equation 1) and contains several specific physiologi-
cal parameters, e.g., the insulin sensitivity [1], the insulin
diffusion rate [26], and the time of maximum glucose
appearance [12]. Identifying these parameters for each indi-
vidual patient requires time-consuming tests in strictly con-
trolled clinical settings, which may be inaccurate outside the

Modeling Glucose-Insulin Physiological Trends



US 2017/0296746 Al

controlled setting. Thus, a core element of our meal detector
is the design of tests invariant to the unknown time-varying
physiological parameters.

[0028] Designing Physiology-Invariant Tests

[0029] Applying standard time-series analysis techniques
[30], we can write the CGM measurement model at time step
k (as shown in FIG. 1), assuming meal window d, for
ie{0,1}, as y,=H, ,6+on, where y, is a vector of the w CGM
measurements, and H,, is a known matrix (defined in
Equation 2 discussed below) which relates how the CGM
measurements are affected by the lumped-physiological
parameters, 6. The value of 0 is a function of the unknown
physiological variables (the specific mapping of physiologi-
cal variables to the lumped-parameters is omitted as it is
irrelevant in the design of PAIN detectors [30], i.e., design-
ing tests invariant to the lumped-parameters is equivalent to
designing invariant to the underlying physiological vari-
ables). Additionally, a represents an unknown uncertainty
associated with a zero-mean noise, n. Utilizing the CGM
measurement model, we can generate two invariant statis-
tics, t(y,) and t,(y,), as defined in Equation 3 discussed
below.

[0030] In words, for t,(y;), CGM measurements are pro-
jected onto the null space of H, , [17], then t,(y,) is gener-
ated using the ratio of the remaining measurement energy in
the space of H, , to the measurement energy not remaining
in H, ;. The form of t,(y;) is commonly referred to as an
F-ratio in the signal processing and statistics literature [30],
and has the useful feature that its value is invariant to the
noise level o as well as the lumped-physiological parameters
0. In the context of various aspects of the subject matter
described herein, t,(y,) represents the ratio of measurement
energy aligned with (and only with) the meal effects of d, to
the measurement energy that cannot be explained exclu-
sively by meals within d,. Comparing t,(y,) to a threshold
Mo, selected to achieve a specified probability of false alarm,
generates a decision. Similarly, t,(y,) is generated by first
projecting the measurements onto the null space of Hy,,
then generating an F-statistic using H, , and comparing to a
threshold n;.

[0031] The selection of PAIN-based meal detector param-
eters, d,, d,, 8, and w, can significantly affect its perfor-
mance. In some embodiments, d,, d,, and d are selected to
be 5 time steps and w to be 300 time steps. These values are
chosen because they may provide a ‘best’ detection rates
among the range of values evaluated. A discussion of
PAIN-based meal detector parameter effects is provided
below with a detailed presentation of the test statistics.
[0032] Mathematical details and supporting discussion for
implementation of parameter invariant detectors (e.g., a
PAIN-based meal detector) are discussed herein. Deriving
the detector test statistics requires null space transforma-
tions, where the null space of an arbitrary matrix X is [17]

() +={vixv=0}

and has an orthonormal basis transposed, X', satisfying [17]
Xe{MVve{x) 1 3x P ix=vA PVT=I}

where, V7 denotes the transpose of matrix V [17]. The
following employs the above notation to present, math-
ematically, the meal-detector test statistics implemented in
various aspects of the subject matter described herein.
[0033] For completeness, we begin by stating the aug-
mented 5”-order linear Bergman model employed in various
aspects of the subject matter described herein,
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where, G, m, g, I, and I, denote the physiological state for
plasma glucose, plasma glucose appearance rate, digestive
compartment glucose, plasma insulin, and subcutaneous
insulin, respectively. The insulin bolus and meals are rep-
resented by u and D, respectively. All other variables
represent unknown physiological parameters. For a com-
plete discussion of the model in Equation 1 see [5; sec. 4.2].
Applying standard time-series discretization techniques, the
model in Equation 1 can be written as a 5”-order discrete
time system, assuming piecewise constant insulin and meal
inputs.

[0034] Assuming a 1 minute sampling rate, we denote at
time step k, the CGM measurement as X, (as sampled from
(3), the injected insulin bolus as u,, and write

T
Vi =X oen Xiow]

X1 e Xgos Up_| ... Uyg
Fo = . . . .
Up—w—4

Xp—w—1 oo Xpow—5 Uyl e--

where, we call y, the measurements (representing a point in
the measurement space) and we say F, spans the measure-
ment space affected by the insulin bolus and physiological
dynamics. More importantly, each column of F,, corresponds
to the effect, on the measurements, of an unknown lumped-
physiological parameter. The mapping of the physiological
parameters in Equation 1 to the lumped-physiological
parameters is unimportant in implementing a PAIN-based
meal detector and consequently omitted from discussion
herein.

[0035] While F, spans the measurement space affected by
insulin bolus and physiological parameters, it does not
(necessarily) span the effect of meals on the measurements.
We capture the effect of meals within the hypothesized meal
windows, d, and d, in FIG. 1, respectively, as

Ots—ap(ag +4) Ot —ax(aty +4)

Go = Lidg+) and Gy = Ly +a)

Op—s-dg(dg+4) O—5-dy—d <ty +4)

where, 0,,)..(,», denotes an n-by-m matrix of all zeros and [ ,,,,
corresponds to the m-dimensional identity matrix. We note
that G, has d,+4 columns (as opposed to d, columns) since
the effect of the most recent hypothesized meal (of unknown
magnitude) within the d, window affects measurements up to
4 time steps later. Thus, we say that G, spans the measure-
ment subspace affected by meals within d, (according to the
Bergman model).

We write

Hy = [F3GJ.ie{0,1} [2]
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and say that H; , spans the measurement subspace affected
by the combined effect of parameters corresponding to the
physiological dynamics, insulin bolus, and the meals within
the d, time window. Assuming a meal occurs exclusively
within the time window d,, then y,=H, ,0+on as described
in the text.

To present the test statistics, we introduce intermediate
variables

’k,osz,oLyx Uk,OZHk,OLGl

rk,lek,lLyx Uk,lek,lLGO

where, 1, , and U, , denote the projection of the measure-
ments and projected meal effects for d; onto the nullspace of
H, o, respectively (and vice-versa forr, ; and U, ;). In words,
I;0 and U, , denote the measurements and the effects of
meals within d, which cannot be explained by physiological
parameters, insulin bolus, and meals occurring within d,.
Consequently, to quantify whether the projected measure-
ments and projected meal effects are significantly aligned
[30], we write test statistics, t,(y,) for ie{0,1}, as

L0 = WU Wi 131

() =
U U

For ty(y,), the numerator denotes the magnitude of the
projected measurements aligned with (i.e., in the subspace
of) the projected meal effects of d,, while the denominator
represents the energy of the projected measurements which
cannot be explained exclusively by meals within Thus,
large/small values of t,(y,) implies that a meal within d, is
likely/unlikely. Similarly, large/small values of t,(y,) indi-
cates that a meal within d, is likely/unlikely.

[0036] In order for the test statistic in Equation 2 to be
non-trivial, necessitates the selection of d,, d,, 9, and w in
FIG. 1 such that all dimensions within in G, and G, are
non-negative. In some embodiments, d,, d,, and d may be
selected to be 5 time-steps and w to be 300 time steps for an
example PAIN-based meal detector. In general, the perfor-
mance of a PAIN-based meal detector varies with the
selected parameters. Qualitatively, increasing w improves
the detector performance as long as the Bergman model
remains accurate. At the same time, decreasing d,, d;, and §
improves detection accuracy (and time-to-detection) so long
as the statistics are non-trivial. Quantifying the detector
performance is a subject of future work.

[0037] FIG. 1 illustrates how an example PAIN-based
meal detector works on simulated scenarios generated by the
FDA-accepted simulator [21]. Please note that for aesthetics
the values of d,,, d,, and §, and w in FIG. 1 are not the same
as the values used in the evaluation. The CGM measure-
ments correspond to a one-minute sampling rate of the
interstitial glucose level shown in FIG. 1. The true meal
happens around time 22 minutes (the pink upper triangle in
the top plot of FIG. 1). The example PAIN-based meal
detector works in a sliding-window fashion: at time k, the
detector run tests on the d, and d, windows utilizing the past
w CGM measurements; the relevant time windows at time k
are scoped by the box labeled ‘B1’ in FIG. 1; the detector
generates a decision at each time and the time windows (as
highlighted in the box labeled ‘B1’) shift forward in time
with the detector to generate sequential statistics and (whose
values are shown in the second and third sub-figures in FIG.
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1). In FIG. 1, as the d, window approaches the true meal
event (the detector never knows when a meal actually
happens and tests every time step), the statistic ty,) (rep-
resented by a dotted line in the figure’s middle graph) starts
rising and becomes separated from t,(y,) (represented by a
dotted line in the figure’s middle graph), indicating a meal
is more likely to have occurred in d,, than in d,. Then as the
detector moves further ahead, the true meal enters the d,
window, and t,(y,) increases while t,(y,) decreases, indicat-
ing that a meal is more likely in d, than in d,,. This sequential
rise and fall of the statistics t,(y,) and t,(y,) is leveraged to
design a sequential test.

[0038] Filtering Sequential Test Decisions

[0039] To leverage the structured sequential rise and fall
of the statistics, we design an algorithm that generates a
cumulative decision score based on the residual statistics
(vt (v)-n; for ie{0,1}. The residual statistics have the
useful property that an increasingly positive ry(y,) implies
an increasing likelihood that a meal has occurred in the
window d,; (and vice versa). Thus, the algorithm generates
an S-score, S(j), for each time step j (assuming S(j) is
initialized to zero) and accumulates S-scores according to
the rules in Table 1, where a larger S-score indicates a higher
confidence in the occurrence of a meal.

TABLE 1

Score Accumulation Rules for S(j) at k

To(y) > 0 oy = 0
11(yx) > 0 Meal indgord; + Meal in dy +
1i(yx) toj €do 2*r(yp) to jedg
oy to j edy
1(yp) =0 Meal ind; + No Meal
2 * 1y tojed; Do not change S(j)
[0040] At every step, when the detector claims a meal

occurs in window d,, we add 2%*r,(y,) to S(j) for each time
step j in the d, window; similarly, if the detector claims a
meal occurs in d;, we add 2*r,(y,) to S(j) for each time step
in the d; window. If it is likely that a meal was in both
windows, then we add r,(y,) to S(j) for each time step in the
d, and similarly, we add r,(y,) to S(j) of each time step in the
d,. Note that we drop the factor of 2 in the increments when
both residual statistics, r(y,) and r,(y,), are positive, thus
weakening the confidence of a meal happening in any
individual window. If both residual statistics are negative,
then neither d, nor d, is likely to contain a meal; thus, no
score accumulation occurs.

[0041] The score accumulation rules are shaded in FIG. 1:
each shaded region corresponds to the rule in Table 1 that
applies in that region. In a typical positive meal detection
scenario, one should first see the ‘green’ region (labeled with
a ‘G’ in FIG. 1 and corresponding to the d, window)
approaches the meal event, followed by the ‘yellow’ region
(labeled with a ‘Y’ in FIG. 1) as the meal event transitions
from d, to d,, and finally see the ‘red’ region (labeled with
a ‘R’in FIG. 1), after which a peak in the S(t) curve emerges,
indicating that the detector makes a series of decisions at
sequential time steps that all point to the same meal time
region where the S(t) peak emerges. The magnitude of S(t)
corresponds to our confidence in a meal occurring at time t.
To trigger an alarm (indicating a meal has occurred), we
utilize two design parameters, a threshold S, and a minimum
width S, ; a peak is characterized by at least S, consecutive
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S(j)’s that are above S,. At each time step, the detector raises
a meal alarm if a new S(t) peak emerges. The parameters S,
and S,, can be tuned to achieve different detection perfor-
mance: smaller S, and S, result in higher sensitivity but
more false alarms. We note that there is a few steps delay
between the actual meal time and the S(t) peak, as shown in
FIG. 1. This delay phenomenon is consistently observed in
the in silico studies and is related to the physiological fact
that there is a delay from the onset of eating to when the
CGM reading starts changing: in the maximal model, meal
carbohydrates have to pass several digestion compartments
before affecting the plasma glucose.

[0042] Results

[0043] This section presents the evaluation results of an
example implementation of a PAIN-based meal detector
with various aspects described herein and three existing
meal detection algorithms. We compare the performance of
detectors in both an in silico clinical trial and on a real
clinical dataset.

[0044] In Silico Experimental Results

[0045] We compare the tested PAIN-based meal detector
with three existing meal detectors: the Dassau et al.’s
detector [9], Harvey et al.’s detector [16], and Lee and
Bequette’s detector [22]. We evaluate the detectors in an in
silico clinical trial using the academic version of the FDA-
accepted T1DMS simulator [14, 8]. A “virtual subject” in the
T1DMS simulator is a realization of the 32 physiological
parameters. The academic version of the TIDMS simulator
contains 10 adult virtual subjects that are sampled from the
same parameter distribution of the FDA-accepted popula-
tion.

[0046] The simulation configuration mimics the daily glu-
cose management scenario of a T1D patient. Each virtual
subject is fed three meals a day with randomized carb
counts. Patient may check their glucose level every two
hours and take correctional boluses if glucose levels are
high. The meal-time boluses and correctional boluses are
calculated based on personalized meal ratio and insulin
sensitivity parameters, which are included in the TIDMS
simulator. Those parameters are perturbed by a random
variation at each meal time and glucose check-point, in order
to simulate real-life variation factors such as time-varying
meal and insulin responses.

[0047] We run the tested PAIN-based meal detector, the
Dassau et al.’s detector, Harvey et al.’s detector, and Lee and
Bequette’s detector using the same glucose measurements
from the 10 adult virtual subjects in a 300-day in silico trial.
Each of the four meal detectors has a set of configurable
parameters, e.g., the threshold S, of the tested PAIN-based
meal detector and RoC thresholds of the RoC-based detec-
tors. We systematically explore the combinations of each
detector’s parameters and get its best detection performance.
A receiver operating characteristic (ROC) curve represents
the detection rate and false alarm rate of a detector under
different configurations. FIG. 2 shows the ROC curves of the
four detectors. Table 2 lists a ‘best’ operating point of each
detector. As used herein, a ‘best’ operating point may be the
one that is closest to the theoretical perfect operating point
of 100% sensitivity and 0% false alarm rate (100% speci-
ficity). The tested PAIN-based meal detector has a number
of near-perfect operating points, e.g., the one reported in
Table 2 is at the 99.1% sensitivity (meaning that the detector
correctly detects 99.1% of meal events within 2 hours) and
1.5% false alarm rate, i.e., on average, the tested PAIN-
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based meal detector has one missed true meal event every 37
days and one false alarm every 22 days. Here we follow the
established convention [16] of using the false alarm rate,
instead of the classical notion of specificity, to quantify the
meal detection performance. In the sequential time-series
meal detection, there is no clear definition of what counts as
one “true negative” (no meal presence) discrete event.
Therefore the classical specificity definition cannot be
applied.

TABLE 2

Operating Points of the Four Detectors

Detector Detection Rate False Alarm Rate
PAIN-based 99.1% 1.5%
Dassau et al.’s 89.9% 13.3%
Lee and Bequette’s 87.8% 11.0%
Harvey et al.’s 91.6% 14.3%

[0048] FIG. 3 shows the cumulative detection rate from
the onsets of meals when running the detectors at their ‘best’
operating points in the in silico trial. The tested PAIN-based
meal detector dominates the others and detects 99.1% meals
within 40 minutes (although the common meal detection
accounting rule counts any detection within 2 hours of the
true meal event as true positives [16]), with a mean detection
time of 24 minutes. The other three detectors have longer
detection delays and lower maximum detection rates.
[0049] FIG. 4 compares the per-subject misses of the four
detectors, which is a measure of the consistency of detection
performance, i.e., whether a detector can perform particu-
larly bad on any subject. The tested PAIN-based meal
detector never misses more than 31 meal events (i.e., 3.5%
out of all 900 meals in 300 simulation days) on any of the
10 virtual subjects. In sharp contrast to the tested PAIN-
based meal detector, all other three detectors miss a signifi-
cant portion of the meals on certain subjects, e.g., subject
No. 2 and No. 6.

[0050] Validation of Detectors on a Clinical Dataset
[0051] To further validate the in silico evaluation results,
we ran the four detectors on a retrospective clinical dataset
collected from a DirecNet pilot study [36]. The clinical
dataset includes one-minute CGM readings from 21 T1D
patients (age 11+4 years, height 147+23 cm, body weight
45+20 kg, duration of diabetes 53 years, HbAlc 7.0%z=0.
5%). The patients receive a meal challenge test at a clinical
research center, during which the insulin bolus is withheld
for one hour after the breakfast.

[0052] We evaluate the four detectors on the testing-
breakfast of each patient. FIG. 5 shows the cumulative
detection rate curves of the four detectors running at their
‘best” operating points identified in the in silico trial. The
mean detection time of the tested PAIN-based meal detector,
Dassau et al.’s detector, and Harvey et al.’s detector is 21
minutes. The mean detection time of LLee and Bequette’s
detector is 35 minutes. All four detectors are able to detect
all meals within two hours.

[0053] Discussion

[0054] The in silico trial results show that an example
implementation of a PAIN-based meal detector with various
aspects described herein significantly improves the detection
performance when compared with the other three detectors.
For example, compared to Harvey et al.’s detector, the tested
PAIN-based meal detector reduces the number of false
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alarms by 90% and reduces the number of missed detections
by 88% at the same time in the 10-subjects in-silico study.
In terms of detection delay during the in silico trial, the
tested PAIN-based meal detector has the shortest mean
detection delay and achieves its near-perfect maximum
detection rate ahead of all others. The per-subject miss
distribution result validates the unique strength of the tested
PAIN-based meal detector: it is “invariant” to differences in
patients’ physiological parameters and thereby achieves
highly consistent detection performance across the virtual
patient population. This unique feature of the tested PAIN-
based meal detector is critical to the safety of artificial
pancreas: A meal detector that frequently misses true meal
events on some subjects could result in severe post-prandial
hyperglycemia and possibly subsequent hypoglycemia
“overshoots” of large insulin boluses (to correct the high
glucose level). It is worth noting that although we do not
implement Cameron et al.’s detector and explicitly compare
it with the others in the in silico trial, their original paper also
uses the TIDMS for evaluation and reports average detec-
tion delay of greater than 50 minutes [3]. In addition,
Cameron et al.’s detector requires identifying patient-spe-
cific insulin sensitivity profiles. In theory, the performance
of the RoC-based detectors may be further improved by
carefully tuning the detector parameters for each individual
patient. However, such tuning process may require frequent
clinic visits because patients’ physiological characteristics
change over time. Moreover, even with parameter tuning,
the RoC-based meal detectors have their fundamental limi-
tation because the post-meal glucose rise rate depends on
many other factors such as the nutrition composition of
meals [37] and insulin-on-board [10], which can not be
mitigated by simply tuning the threshold parameters. In
contrast, the in silico trial demonstrates that the tested
PAIN-based meal detector is able to achieve consistent
performance without any individual-level parameter tuning.

[0055] Evaluation result on the DirecNet clinical dataset
shows that the tested PAIN-based meal detector detects all
meals within about 40 minutes and the mean detection delay
is 21 minutes, which is consistent with the in silico trial
results. Dassau et al.’s detector and Harvey et al.’s detector
also exhibit consistent performance in the in silico trial and
retrospective test on the clinical dataset (Dassau et al.’s
original paper uses the same DirecNet dataset for evaluation
[9]). Compared to the in silico trial results, Lee and
Bequette’s detector has a slightly longer mean detection
delay. This may due to the relatively limited population size
of the DirecNet dataset.

[0056] Comparing the results over the DirecNet clinical
data illustrates that the tested PAIN-based meal detector
achieves a similar performance as the detectors of Dassau et
al. and Harvey et al. This is due, in large part, to the fact that
the DirecNet clinical data was collected in a laboratory
setting over the course of one breakfast test while withhold-
ing the insulin bolus. Withholding insulin for the meal size
in the experiments results in a significant rise in blood
glucose which is (often) detectable by RoC detectors. In
scenarios where the meal size is reduced and/or an insulin
bolus is administered at meal time (possibly via human
request) we anticipate the clinical results would be similar to
those in the in silico trial. Regardless, the significance of the
clinical data results is that the tested PAIN-based meal
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detector has detection delays consistent with the in silico
trial and is not outperformed by the RoC detectors in the
literature.

[0057] Further Thoughts

[0058] The subject matter described herein includes vari-
ous aspects, methods, systems, and/or techniques related to
PAIN-based meal detection, e.g., a PAIN-based meal detec-
tor that is based on a physiological model. The in silico trial
and evaluation on a clinical dataset demonstrate that an
example implementation of a PAIN-based meal detector
with various aspects described herein has significantly better
detection performance than three existing meal detectors. In
addition, the evaluation results validate that the tested PAIN-
based meal detector has the unique strength of achieving
highly consistent performance across a virtual patient popu-
lation, with varying physiology, without any individual-
level parameter tuning. The high detection rate, low false
alarm rate, and consistent inter-subject performance indicate
that the tested PAIN-based meal detector and/or other meal
detection with various aspects described herein can serve as
a reliable meal detection component in artificial pancreases
to inform closed-loop controller or be the safety back up for
user-provided meal information or other meal detectors.
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[0096] The disclosures of the above-mentioned references
[1]-[37] are incorporated herein by reference in their entire-
ties.
[0097] The foregoing description is for the purpose of
illustration only, and not for the purpose of limitation, as the
subject matter described herein is defined by the claims.
[0098] Some aspects of the present subject matter
described herein may include, support, or provide mecha-
nisms, techniques, methods, and/or systems associated with
a novel meal detector based on a minimal glucose/insulin
metabolism model. In some embodiments, the meal detector
may be invariant to patient-specific physiological param-
eters in the minimal model and may achieve a near constant
false alarm rate (CFAR).
[0099] Reference will now be made in detail to exemplary
embodiments of the subject matter described herein,
examples of which are illustrated in the accompanying
drawing. Wherever possible, the same reference numbers
will be used throughout the drawings to refer to the same or
like parts.
[0100] FIG. 6 is a diagram illustrating an example insulin
management system 102 (e.g., an embedded chip or system,
a processor executing software in an artificial pancreas (AP)
system, or an insulin pump) for performing meal detection.
Insulin management system 102 may be any suitable entity,
such as a computing device, node, or platform, for perform-
ing one or more aspects of the present subject matter
described herein. In some embodiments, components, mod-
ules, and/or portions of insulin management system 102 may
be implemented or distributed across multiple devices or
computing platforms.
[0101] Insulin management system 102 may include vari-
ous components and/or control modules, e.g., one or more
communications interface(s) 104, a memory 106, one or
more processors 108, and a meal detection module 110.
Communications interface(s) 104 may be any suitable entity
or entities (e.g., a communications card or controller) for
receiving and/or sending communications. For example,
communications interface(s) 104 may allow a meal detec-
tion module 110 to interact with various devices and/or
components (e.g., a continuous glucose monitor (CGM), an
insulin pump, and/or a related component or device of an AP
system). In another example, communications interface(s)
104 may be associated with a user interface or other entity
(e.g., a configuration tool or device) and may be usable for
receiving configuration settings and/or other information
associated with insulin management or meal detection.
[0102] In some embodiments, communications interface
(s) 104 or another component may be configured to interact
with a CGM or another device for receiving insulin intake
data and/or blood glucose level readings for a user (e.g., a
person with Type 1 Diabetes). For example, a CGM may be
configured to provide readings and/or other information to
insulin management system 102 via communications inter-
face(s) 104 after every reading (e.g., every 5 minutes),
periodically, and/or on-demand.
[0103] In some embodiments, communications interface
(s) 104 or another component may be configured to interact
with an insulin pump or other device for triggering one or
more insulin management related actions. For example,
insulin management system 102 may send, via communi-
cations interface(s) 104, commands, messages, other com-
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munications to an insulin pump for triggering the insulin
pump to release insulin into a user’s body or for triggering
the insulin pump to stop or cancel a scheduled insulin
release. In another example, insulin management system 102
may send, via communications interface(s) 104, commands,
messages, or communications to an alarm or other compo-
nent for notifying a user about a detected meal event.
[0104] Memory 106 may be any suitable entity (e.g.,
random access memory or flash memory) for storing soft-
ware, logic, and/or information associated with meal detec-
tion and/or insulin management. For example, memory 106
112 may store software and/or logic associated with one or
more algorithms associated with various aspects or func-
tionality described herein.

[0105] In some embodiments, components, such as com-
munications interface(s) 104, meal detection module 110
and software executing on processor(s) 108, of insulin
management system 102 may utilize (e.g., read from and/or
write to) memory 106. For example, memory 106 may be
usable to store historical blood glucose level readings and/or
insulin intake data. In another example, memory 106 may be
usable to store various scores, detection statistics, test deci-
sions, and/or other information related to meal detection
module 110.

[0106] Processor(s) 108 represents any suitable entity or
entities (e.g., a physical processor, a field-programmable
gateway array (FPGA), and/or an application-specific inte-
grated circuit (ASIC)) for performing one or more functions
associated with meal detection. Processor(s) 108 may be
associated with meal detection module 110. For example,
meal detection module 110, e.g., software or algorithms
therein, may be implemented using (e.g., executed by)
processor(s) 108.

[0107] Meal detection module 110 may be any suitable
entity or entities (e.g., software executing on at least one
processor) for meal detection. In some embodiments, meal
detection module 110 may be configured to use one or more
techniques, methods, and/or algorithms for detecting a meal
event. For example, meal detection module 110 may utilize
a physiology parameter-invariant meal detection algorithm.
In this example, the physiology parameter-invariant meal
detection algorithm may detect a meal event (e.g., when a
user ingested a certain number of carbohydrates) based on a
minimal glucose/insulin metabolism model and using his-
torical blood glucose level readings (e.g., from a CGM) and
historical insulin intake information.

[0108] It will be appreciated that FIG. 6 is for illustrative
purposes and that various nodes, their locations, and/or their
functions may be changed, altered, added, or removed. For
example, some nodes and/or functions may be combined
into a single entity. In a second example, a node and/or
function may be located at or implemented by two or more
nodes. Further, it will appreciated that insulin management
system 102 may include various components, control mod-
ules (e.g., insulin dose titration, glucose prediction, etc.),
and/or functions not shown in FIG. 6 or described herein.
[0109] FIG. 7 is a diagram illustrating an example process
700 for meal detection. In some embodiments, example
process 700 may include an algorithm or related logic for
physiology parameter-invariant meal detection. In some
embodiments, exemplary process 700, or portions thereof,
may be performed by or at insulin management system 102,
meal detection module 110, a CGM, an AP system, and/or
another node or module.



US 2017/0296746 Al

[0110] Referring to FIG. 7, in step 702, insulin intake
information and blood glucose level information may be
received for a user.

[0111] In some embodiments, insulin intake information
and blood glucose level information may be provided by a
user, a CGM, an insulin pump, an AP system, or insulin
control system 102.

[0112] In step 704, a meal event may be detected, using a
physiology parameter-invariant meal detection algorithm.
[0113] In some embodiments, a physiology parameter-
invariant meal detection algorithm may use a null space
projection to detect a meal event regardless of a user’s
physiology.

[0114] In some embodiments, a physiology parameter-
invariant meal detection algorithm may use a sliding win-
dow of time corresponding to a number of historical blood
glucose level readings and historical insulin intake events.
[0115] In some embodiments, a physiology parameter-
invariant meal detection algorithm may analyze consecutive
sub-windows of a sliding window of time associated with
historical blood glucose level readings and historical insulin
intake events to identify sequential test decisions, e.g., a test
decision may indicate that for a given sub-window a meal
event is likely or unlikely. In such embodiments, each of the
sub-windows may correspond to one or more sampling
periods (e.g., blood glucose level readings every five min-
utes) associated with a CGM.

[0116] In some embodiments, a physiology parameter-
invariant meal detection algorithm may filter sequential test
decisions by generating a cumulative decision score indica-
tive of the likelihood that a meal event occurred.

[0117] In some embodiments, a physiology parameter-
invariant meal detection algorithm may determine that a
meal event occurred when a cumulative decision score
exceeds a threshold value for a predetermined amount of
time.

[0118] In step 706, at least one control action associated
with insulin management may be performed after detecting
the meal event.

[0119] In some embodiments, a control action (e.g., meal
detection decisions initiated, triggered or performed by meal
detection module 110 or insulin management system 102)
may include generating meal event detection decisions, meal
event detection scores, meal event alarms, or other output
indicating a meal event has occurred. In some embodiments,
various outputs from meal detection module 110 may facili-
tate or include triggering a release of insulin, preventing the
release of insulin, and/or triggering a notification or alarm.
For example, a control action may include a meal detection
decision that is used by an insulin pump or other entity to
trigger a release of insulin or adjust an insulin release
schedule. In another example, where meal detection module
110 is implemented as a backup meal detection system in a
user-inputted meal detection system, meal detection module
110 may notify the user about a detected meal event (e.g.,
when a meal is detected but no meal was user inputted) such
that the user can confirm or deny the detected meal event.
[0120] It will be understood that various details of the
subject matter described herein may be changed without
departing from the scope of the subject matter described
herein. Furthermore, the foregoing description is for the
purpose of illustration only, and not for the purpose of
limitation, as the subject matter described herein is defined
by the claims as set forth hereinafter.
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What is claimed is:

1. A method for physiology parameter-invariant meal
detection, the method comprising:

receiving insulin intake information and blood glucose

level information for a user;

detecting a meal event using a physiology parameter-

invariant meal detection algorithm; and

after detecting the meal event, performing at least one

control action associated with insulin management.

2. The method of claim 1 wherein the insulin intake
information and the blood glucose level information is
provided by the user, a continuous glucose monitor (CGM),
an insulin pump, an artificial pancreas (AP) system, an
insulin control system.

3. The method of claim 1 wherein the physiology param-
eter-invariant meal detection algorithm uses a null space
projection to detect the meal event regardless of the user’s
physiology.

4. The method of claim 1 wherein the at least one control
action includes generating a meal detection decision, gen-
erating a meal detection score, generating a meal detection
alarm, generating an alarm indicating a meal event has
occurred, triggering a release of insulin, preventing the
release of insulin, or triggering a notification or alarm.

5. The method of claim 1 wherein detecting, using the
physiology parameter-invariant meal detection algorithm,
the insulin intake information, and the blood glucose level
information, a meal event includes using a sliding window
of corresponding to a number of historical blood glucose
level readings and historical insulin intake events.

6. The method of claim 5 wherein the physiology param-
eter-invariant meal detection algorithm analyzes consecu-
tive sub-windows of the sliding window to identify sequen-
tial test decisions, wherein each of the sub-windows
corresponds to one or more sampling periods associated
with a contiguous glucose monitor (CGM).

7. The method of claim 6 wherein the physiology param-
eter-invariant meal detection algorithm filters the sequential
test decisions by generating a cumulative decision score
indicative of the likelihood that the meal event occurred.

8. The method of claim 7 wherein the physiology param-
eter-invariant meal detection algorithm determines that the
meal event occurred when the cumulative decision score
exceeds a threshold value for a predetermined amount of
time.

9. A system for physiology parameter-invariant meal
detection, the system comprising:

at least one processor; and

a meal detection module implemented using the at least

one processor, the meal detection module configured to
receive insulin intake information and blood glucose
level information for a user, to detect a meal event
using a physiology parameter-invariant meal detection
algorithm, and after detecting the meal event, to per-
form at least one control action associated with insulin
management.

10. The system of claim 9 wherein the insulin intake
information and the blood glucose level information is
provided by the user, a CGM, an insulin pump, an artificial
pancreas (AP) system, an insulin control system.

11. The system of claim 9 wherein the physiology param-
eter-invariant meal detection algorithm uses a null space
projection to detect the meal event regardless of the user’s

physiology.
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12. The system of claim 9 wherein the at least one control
action includes generating a meal detection decision, gen-
erating a meal detection score, generating a meal detection
alarm, generating an alarm indicating a meal event has
occurred, triggering a release of insulin, preventing the
release of insulin, or triggering a notification or alarm.

13. The system of claim 9 wherein the physiology param-
eter-invariant meal detection algorithm uses a sliding win-
dow of time corresponding to a number of historical blood
glucose level readings and historical insulin intake events.

14. The system of claim 13 wherein the physiology
parameter-invariant meal detection algorithm analyzes con-
secutive sub-windows of the sliding window to identify
sequential test decisions, wherein each of the sub-windows
corresponds to one or more sampling periods associated
with a contiguous glucose monitor (CGM).

15. The system of claim 14 wherein the physiology
parameter-invariant meal detection algorithm filters the
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sequential test decisions by generating a cumulative decision
score indicative of the likelihood that the meal event
occurred.

16. The system of claim 15 wherein the physiology
parameter-invariant meal detection algorithm determines
that the meal event occurred when the cumulative decision
score exceeds a threshold value for a predetermined amount
of time.

17. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
at least one processor of a computer cause the computer to
perform steps comprising:

receiving insulin intake information and blood glucose

level information for a user;

detecting, using a physiology parameter-invariant meal

detection algorithm, a meal event; and

after detecting the meal event, performing at least one

control action associated with insulin management.

#* #* #* #* #*
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