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In recent years, we have witnessed a significant increase in the number of security related

incidents in control systems. These include high-profile attacks in a wide range of application

domains – from attacks on critical infrastructure, as in the case of the Maroochy Water breach [1],

and industrial systems (e.g., the StuxNet virus attack on an industrial SCADA system [2],

[3]), to attacks on modern vehicles [4], [5], [6]. Even high-assurance military systems were

shown to be vulnerable to attacks, as illustrated in the highly publicized downing of the RQ-

170 Sentinel US drone [7], [8], [9]. These incidents have seriously raised security awareness in

Cyber-Physical Systems (CPS), which feature tight coupling of computation and communication

substrates with sensing and actuation components. However, the complexity and heterogeneity of

this next generation of safety-critical, networked and embedded control systems have challenged

the existing design methods in which security is usually consider as an afterthought.

This is well illustrated in modern vehicles that present a complex interaction of a large

number of embedded Electronic Control Units (ECUs), communicating over an internal network

or multiple networks. On the one hand, there is a current shift in vehicle architectures, from

isolated control systems to more open automotive architectures with services such as remote
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diagnostics and code updates, and vehicle-to-vehicle communication. On the other hand, this

increasing set of functionalities, network interoperability, and system design complexity may

introduce security vulnerabilities that are easily exploitable. Security guarantees for these systems

are usually based on perimeter security where internal networks are resource constrained, mostly

depending on the security of the gateway and external communication channels. Thus, any

successful attacks on the gateway or external communication, or physical attacks on components

connected to an internal network, could completely compromise the system; as shown in [4], [5],

[6], using simple methods an attacker can disrupt the operation of a car, even taking complete

control over it.

In general, attacks on a cyber-physical system may affect all of its components –

computational nodes and communication networks are subject to intrusions, and physical

environment may be maliciously altered. Thus, control specific CPS-security challenges arise

from two perspectives. On the one hand, conventional information security approaches can be

used to prevent intrusions, but attackers can still affect the system non-invasively via the physical

environment. For instance, non-invasive attacks on GPS-based navigation systems [10], [11],

[12], and anti-lock braking systems [13] in vehicles illustrate how an adversarial signal can

be injected into the control loop using the sensor measurements. This highlights limitations of

the standard cyber-based security mechanisms, since even if employed communication protocols

over the internal networks ensure data integrity, they do not alone guarantee resilience of control

systems to attacks on physical components of the system. On the other hand, getting access

to an internal network would allow the attacker to compromise sensors→controller→actuators

communication; from the control perspective these attacks can also be modeled as additional

adversary signals introduced via the sensors and actuators [14]. Although these types of attacks
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could be addressed with the use of cryptographic tools that guarantee data integrity, resource

constraints inherent in many CPS domains may prevent heavy-duty security approaches from

being deployed.

Therefore, it is necessary to address the security challenge related to the attacks against

the control system as the primary function of CPS, where the attacker can (1) take over a sensor

and supply wrong or untimely sensor readings, or (2) disrupt actuation. These attacks manifest

themselves to the controller as malicious interference signals, and the defenses against them have

to be introduced in the control design phase. Specifically, resilience against these attacks is built

into the control algorithm under the assumption that the controller itself executes according to

its specification. This approach have attracted a lot of attention, with several efforts focused on

the use of control-level techniques, which exploit a model of the ‘normal’ system behavior, for

attack-detection and identification in CPS (e.g., [15], [14], [16], [17], [18], [19], [20], [21]). For

instance, methods for attack-detection based on the use of standard residual probability based

detectors were presented in [22], [23], [20], [21], while the problem of state estimation in the

presence of sensors attacks was addressed in [16], [17], [24], [25].

By contrast, attacks on the execution platform prevent the correct operation of the control

system as in the cases where the attacker can disrupt execution of control tasks. Defense against

such attacks cannot rely on the control algorithm, which may not be running correctly. Instead,

it requires security and performance guarantees that the platform components provide to the

control system, and which have to be incorporated into the design of control-based security

techniques. For example, the attacker may try to affect control performance by dramatically

slowing down the controller task; one way to achieve this is by introducing a higher-priority,
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computationally intensive task into the operating system. The key to addressing these types

of attacks is to explicitly specify the assumptions made about the platform during the control

design. Real-time issues such as sampling and actuation jitter, and synchronization errors between

system components directly affect quality of control and the level of guarantees provided by

control-based security mechanisms. For instance, execution timing directly affects the controlled

plant’s model that should be used for control-level security techniques; control engineers may

determine that the controller guarantees the required resiliency levels (e.g., attack-detection) and

the desired control performance, as long as the worst-case execution time of the control task is

20 milliseconds and output jitter is no more than 2 milliseconds.

Consequently, for attack-resilient control in CPS it is necessary to be able to capture plat-

form effects on the control-level security guarantees by providing robust security-aware control

methods that can deal with noise and modeling errors. This will enable the extraction of system

level requirements imposed by control algorithms on the underlaying OS and utilized networking,

and facilitate reasoning about attack-resilience across different implementation layers.

In this article, we describe our efforts on the development of attack-resilient CPS.

Specifically, we consider a case study – a resilient cruise controller for an autonomous ground

vehicle, focusing on one component of the system, namely attack-resilient state estimator (RSE).

Hence, we start by addressing the problem of attack-resilient state estimation, before providing

robustness guarantees for the implemented RSE (building on our work from [24]). We show

that the maximal performance loss imposed by a smart attacker, exploiting the difference

between the model used for state estimation and the real physical dynamics of the system,

is bounded and linear with the size of the noise and modeling errors. Furthermore, we describe
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how implementation issues such as jitter, latency and synchronization errors can be mapped

into parameters of the state estimation procedure. This effectively enables mapping control

performance requirements into real-time (i.e., timing related) specifications imposed on the

underlying platform. Finally, we show how to construct an assurance case for the system that

covers both a mathematical model of the state estimator and its physical environment, as well as

a software implementation of the controller. While the models considered in the case study are

specific to the control system and its intended deployment platform, the modeling, robustness

analysis, and assumptions encountered on each level in this case study are typical of many other

CPS control problems.

Attack-Resilient State Estimation with Noise and Modeling Errors

The problem of state estimation in the presence of sensor and actuator attacks has attracted

significant attention in recent years. This has been motivated by the fact that we can use the

same controllers as in the case without attacks, if the controller is able to reasonably well

estimate the state of the controlled physical process even if some of the sensor measurements

and actuator commands have been compromised. For deterministic (i.e., noiseless) linear time-

invariant systems, the correct state estimate in the presence of sensor attacks can be obtained as

the solution of l0 optimization problems [16], [17]. In addition, in [25], [26], the authors presented

SMT-based state estimation techniques for linear and differentially-flat systems, respectively.

However, the initially proposed techniques for state estimation in the presence of attacks

focus on noiseless systems for which the exact model of the system’s dynamics is known. This,

as we discussed in the introduction, limits their applicability in real systems since it is unclear
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what level of resiliency guarantees they could provide with more realistic sensing, actuation,

and execution models. Hence, in this section we focus on the attack-resilient state estimation for

dynamical systems with bounded noise and modeling errors, and provide a worst case bound

for performance degradation in the presence of attacks. We start by presenting the system model

and how some implementation effects can be mapped into the model’s parameters, before we

introduce the estimator and the procedure to bound its worst-case estimation error in the presence

of attacks.

Notation and Terminology

We use the following notation. For a set S, |S| denotes the cardinality (i.e., size) of the

set, while for two sets S and R, we use S \ R to denote the set of elements in S that are not

in R. In addition, for a set K ⊂ S, with K{ we specify the complement set of K with respect

to S – i.e., K{ = S \ K. We use R to denote the set of reals, and 1′N to denote the row vector

of size N containing all ones. Finally, we assume that
∑−1

0 αi = 0 for any sequence of αis.

We use AT to indicate the transpose of matrix A, while ith element of a vector xk is

denoted by xk,j . For vector x and matrix A, we use to denote by |x| and |A| the vector and

matrix whose elements are absolute values of the initial vector and matrix, respectively. Also,

for matrices P and Q, by P � Q we specify that the matrix P is element-wise smaller than the

matrix Q.

For a vector e ∈ Rp, the support of the vector is set

supp(e) = {i | ei 6= 0} ⊆ {1, 2, ..., p},
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while l0 norm of vector e is the size of supp(e) – i.e., ‖e‖l0 = |supp(e)|. Also, for a matrix

E ∈ Rp×N , we use e1, e2, ..., eN to denote its columns and E′1,E
′
2, ...,E

′
p to denote its rows. We

define the row support of matrix E as the set

rowsupp(E) = {i | E′i 6= 0} ⊆ {1, 2, ..., p}.

As for vectors, l0 norm for a matrix E is defined as ‖E‖l0 = |rowsupp(E)|.

System Model

We consider a Linear-Time Invariant (LTI) system

xk+1 = Axk + Buk + vk

yk = Cxk + wk + ek,

(1)

where x ∈ Rn and u ∈ Rm denote the plant’s state and input vectors, respectively, while

y ∈ Rp is the plant’s output vector obtained from measurements of p sensors from the set S =

{s1, s2, ..., sp}. Accordingly, the matrices A,B and C have suitable dimensions. Furthermore,

v ∈ Rn and w ∈ Rp denote the process and measurement noise vectors, while e ∈ Rp denotes

the attack vector. To model attacks on plant sensors, we assume that sensors with indices in set

K ⊆ {1, 2, ..., p} are under attack. This means that ek,i = 0 for all i ∈ KC and k ≥ 0, where

KC = S \ K, and therefore supp(ek) ⊆ K for all k ≥ 0.

Note that we assume that the noise vectors are constrained in certain ways. Furthermore,

we use v and w to capture different types of modeling errors that may be caused by some

implementation (e.g., real-time) issues. In addition, the setup presented in this paper can be

easily extended to include attacks on the system’s actuators. In this case additional vector eak is

added to the plant input at each step k ≥ 0. As shown in [27], the same technique used for
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resilient-state estimation in the presence of attacks on sensors can be used to obtain the plant’s

state when both the plant’s sensors and actuators are compromised. Consequently, the analysis

and results presented in this paper can be easily extended to the case when a subset of the

actuators is also under attack.

Attack-resilient State Estimation for Noiseless Dynamical Systems

For linear systems without noise (i.e., systems from (1) where wk = 0 and vk = 0, for

all k ≥ 0), a l0-norm based method to extract state estimate in presence of attacks is introduced

in [28]. To obtain the plant’s state at any time-step t (i.e., xt), the proposed procedure utilizes the

previous N sensor measurement vectors (yt−N+1, ...,yt) and actuator inputs (ut−N+1, ...,ut−1)

to evaluate the state xt−N+1; the state xt is then computed using the history of actuator inputs

(ut−N+1, ...,ut−1) by applying the system evolution from (1) for N − 1 steps. Specifically, the

state xt−N+1 is computed as the minimization argument of the following optimization problem

min
x∈Rn
‖Yt,N − ΦN(x)‖l0 . (2)

Here, Yt,N = [ỹt−N+1|ỹt−N+2| . . . |ỹt] ∈ Rp×N aggregates the last N sensor measurements while

taking into account the inputs applied during that interval

ỹk = yk, k = t−N + 1

ỹk = yk −
k−t+N−2∑

i=0

CAiBuk−1−i, k = t−N + 2, ..., N

Furthermore, ΦN : Rn → Rp×N is a linear mapping defined as ΦN(x) =[
Cx|CAx| . . . |CAN−1x

]
, which captures the system’s evolution over N steps caused by the

initial state x.
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The rationale behind the problem (2) is that the matrix Et,N = Yt,N − ΦN(xt−N+1)

presents the history of the last N attacks vectors et−N+1, ..., et – i.e.,

Et,N = [et−N+1|et−N+2| . . . |et] ∈ Rp×N . (3)

The critical observation here is that for a noiseless LTI system there is a pattern of zeros

(i.e., zero-rows) in the matrix Et,N that corresponds to the non-attacked sensors and which

remains constant over time; if K is the set of compromised sensors then for all N, t such that

N ≥ 0, t ≥ N − 1

rowsupp(Et,N) ⊆ K.

As shown in [27], [28], for noiseless systems the state estimator from (2) is optimal in

the sense that if another estimator can recover xt−N+1 then the one defined in (2) can as well.

In addition, the estimator from (2) can extract the system’s state after N steps when up to q

sensors are under attack if and only if for all x ∈ R \ {0},

|supp(Cx) ∪ supp(CAx) ∪ . . . ∪ supp(CAN−1x)| > 2q.

We use qmax to denote the maximal number of compromised sensors for which the

system’s state can be recovered after N steps despite attacks on sensors. However, note that

the size of the utilized measurement history N is considered to be an input parameter to the

resilient-state estimator; in the general case we should use the notation qmax,N . Hence, if the

number of compromised sensors q satisfies that q ≤ qmax, for noiseless systems the minimal

l0 norm of (2) is equal to q. In addition, note that for these systems qmax does not decrease

with N, and due to Cayley-Hamilton theorem [29] it cannot be further increased when more

than n previous measurements are used – i.e., qmax obtains the maximal value for N = n.
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Finally, beside the measurement window size N , qmax only depends on the system’s dynamics

(i.e., matrices A and C), as was characterized in [30], [17].

Definition 1 ([30]): An LTI system with the form as in (1) is said to be s-sparse

observable if for every set K ⊂ S of size s (i.e., |K| = s), the pair (A, PK{C) is observable.

Lemma 1: qmax is equal to the maximal s for which the system is 2s-sparse observable.

Sources of Modeling Errors

Beside measurement and process noise, vectors vk and wk in (1) can be used to capture

any deviation in the plant model (1) from the real dynamics of the controlled physical system.

Here, we present some of the common modeling errors introduced by non-idealities of control

system implementation and limitations of the utilized computation and communication platforms.

Specifically, we focus on the modeling errors caused by sampling and computation/actuation

jitter, and synchronization errors between system components in scenarios where continuous-

time plants are being controlled.

The described attack-resilient state estimator (2) is based on discrete-time model (1) of the

system. Consequently, to be able to deal with continuous-time plants it is necessary to discretize

the controlled plant, while taking into account real-time issues introduced by communication

and computation schedules. To illustrate this, consider a standard continuous-time plant model

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t),

(4)

with state x(t) ∈ Rn, output y(t) ∈ Rp and input vector u(t) ∈ Rm, where matrices Ac,Bc,Cc
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are of the appropriate dimensions.

We first consider setups where all plant’s output are sampled (i.e., measured) at times tk,

k ≥ 0 and where all actuators apply newly calculated inputs at times tk + τk, k ≥ 0, as shown

in Fig. 1. We denote the kth sampling period of the plant by Ts,k = tk+1 − tk, and note that the

the input signal will have the form shown in Fig. 1(b). Using the approach from [31], [32], we

describe the system as

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t), t ∈ [tk + τk, tk+1 + τk+1),

u(t+) = uk, t ∈ {tk + τk, k = 0, 1, 2, . . .}

(5)

where u(t+) is a piecewise continuous function that only changes values at time instances

tk +τk, k ≥ 0. From the above equation, the discretized model of the system can be represented

as [29]

xk+1 = Akxk + Bkuk + B−k uk−1

yk = Cxk,

(6)

where xk = x(tk), k ≥ 0, and

Ak = eAcTs,k ,

Bk =

∫ Ts,k−τk

0

eAcδBcdδ, B−k =

∫ Ts,k

Ts,k−τk
eAcδBcdδ.

(7)

Note that the matrices Ak,Bk and B−k are time-varying (with k) and depend on the

continuous-time plant dynamics, inter-sampling time Ts,k, and latency τk. On the other hand,

when control (and state estimation) is performed using resource constrained CPUs, the designers

usually utilize the ‘ideal’ discrete-time model of the system of the form (1) where for all k ≥ 0,
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Ts,k = Ts and τk = 0

A = eAcTs , B =

∫ Ts

0

eAcδBcdδ, (8)

Hence, by comparing the discrete-time models (1) and (6), in this case sampling and actuation

jitter, and actuation latency (caused by computation and/or communication) introduce the error

component vjitk (k ≥ 0) defined as

vjitk = eAc(Ts,k−Ts)︸ ︷︷ ︸
∆A

xk +

∫ Ts,k−τk

Ts

eAcδBcdδ︸ ︷︷ ︸
∆B

uk + B−k uk−1 (9)

Finally, note that from the equation above it follows that a bound on the size of the error vjitk

can obtained from the conservative bounds on the sampling jitter (i.e., Ts,k − Ts) and latency

(i.e., τk), for a predefined range of acceptable system states and actuator inputs.

Effects of Synchronization Errors: To simplify the presentation, we only consider

systems where the sensors do not have a common clock source – i.e., where there possibly exist

synchronization errors between sensors; the same approach can be extended to scenarios where

there exist synchronization errors between plant actuators. In this case, although scheduled to

measure corresponding plant outputs at the same time-instance tk, each sensor sj will actually

perform measurement at time tk,j . Therefore, for every j = 1, ..., p, yk,j = C′jx(tk,j) instead of

C′jx(tk), where C′j denotes the jth row of C, meaning that the synchronization error introduces

a measurement error defined as

vsynk,j = C′j(x(tk)− x(tk,j)) = C′j(e
Ac∆tk,j +

∫ ∆tk,j

0

eAcδBcdδuk−1) (10)

Here, ∆tk,j = tk − tk,j captures the synchronization error for each sensor sj . Hence, for a

predefined actuation range it is possible to provide a bound on the size of the measurement error

vector vsynk ∈ Rp describing modeling errors due to synchronization errors between sensors.
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l0-based Method for Resilient State Estimation in the Presence of Noise

In the rest of this section, unless otherwise specified we will use the term noise to both

include process and measurement noise, and capture modeling errors – i.e., discrepancy between

the model used to design the state-estimator and the real dynamics of the plant. The presence

of noise limits the use of the attack-resilient state estimator from (2). For example, in this

case the l0 norm of a solution of the problem in (2) may be larger than qmax, indicating that

more than the allowed number of sensors has been compromised, which violates requirements

for correct operation of the state estimator. Therefore, it is necessary to provide a method for

attack-resilient state estimators in presence of noise, with a provable bound on the worst-case

performance degradation of the introduced resilient-state estimator due to the bounded size noise.

As illustrated in the previous subsection, the effects of the input vectors uk are taken

into account when computing the matrix Yt,N . Thus, in the rest of this paper we assume that

in (1) uk = 0 for all k ≥ 0. In addition, to further simplify the notation we consider the case

for t = N − 1, meaning that our goal is to obtain x0, and we denote the matrices Yt,N ,Et,N

and ΦN(x) as Y,E and Φ(x), respectively.

We assume that the state of the plant at k = 0 is x0 and that the system evolves for N steps

as specified in (1) (for uk = 0) for some attack vectors e0, ..., eN−1 applied on sensors from set

K = {si1 , ..., siq} ⊆ S, where |K| ≤ qmax, and the corresponding matrix E = [e0|e1| . . . |eN−1].

Furthermore, we assume that |wk| � εwk
and |vk| � εvk for k = 0, 1, ..., N − 1, and lets define

Yw,v = [y0|y1| . . . |yN−1] .

Note that the matrix Yw,v contains measurements of the system including noise. Finally, we use
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Ȳ = [ȳ0|ȳ1...|ȳN−1] to denote the sensor measurements (plant outputs) that would be obtained

in this case if the system was noiseless – i.e., for ‖εwk
‖2 = ‖εvk‖2 = 0 (meaning that ȳk =

CAkx0 + ek, k = 0, 1, ..., N − 1).

We consider the following optimization problem

P0(Y) : min
E,x
‖E‖l0

s. t. E = Y − Φ(x)

(11)

As we described before

(x0,E) = argmaxP0(Ȳ) (12)

where q = ‖E‖l0 ≤ qmax. However, the ’ideal’ (noiseless) measurements from Ȳ are not available

to the estimator; the estimator can only use the measurements specified by the matrix Yw,v. In

addition, it is worth noting that (x0, E) may not even be a feasible point for problem P0(Yw,v)

that utilizes noisy sensor measurements. Consequently, there is need to adapt problem P0(Y) to

non-ideal models that capture noise and modeling errors.

To achieve this we consider the following problem that relaxes the equality constraint

from (11) by including a noise allowance

P0,∆(Y) : min
E,x
‖E‖l0

s. t. |Y − Φ(x)− E| �∆

(13)

In the above problem, the matrix ∆ ∈ Rp×N contains non-negative tolerances δj,i for each sensor

si, i = 1, ..., p, in each of the N steps j: ∆ = [δ0|δ1| . . . |δN−1] . We use the following notation

(x0,∆,E∆) = argmaxP0,∆(Yw,v)

q∆ = ‖E∆‖l0

(14)
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Note that P0,0p×N (Y) = P0(Y), for all Y ∈ Rp×N .

To allow for the use of (13) as an attack-resilient state estimator it is necessary to ensure

that P0,∆(Y) has a feasible point (x,E) such that ‖E‖l0 ≤ qmax; this condition has to be satisfied

for all Y ∈ Rp×N that could be ’generated’ by the system when at most qmax sensors have been

attacked. This can be guaranteed with an appropriate initialization of the matrix ∆. From (1)

we have that for k = 0, 1, ..., N − 1

yk = CAkx0 + ek + C
k−1∑
i=0

Ak−1−ivi + wk

= ȳk + C
k−1∑
i=0

Ak−1−ivi + wk

If we use |(Ak−1−i)| to denote the matrix whose elements are absolute values of the

corresponding elements of the matrix Ak−1−i, we can provide the following bound

|yk − ȳk| ≤ |C|
k−1∑
i=0

|(Ak−1−i)||vi|+ |wk|

≤ |C|
k−1∑
i=0

|(Ak−1−i)|εvi + εwi
= δ̄k. (15)

Therefore, for δk � δ̄k (k = 0, ..., N − 1) we have that (x0,E) from (12) is a feasible

point for the problem P0,∆(Yw,v), meaning that there exists a solution of the problem – i.e.,

there exists (x0,∆, E∆) from (14) such that q∆ = q ≤ qmax. This means that the solution of

P0,∆(Yw,v) from (13) can be used as a state-estimator in the sense that if at most qmax sensors

have been compromised it would provide a solution where the size of row-support of E∆ is not

larger than qmax.
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Robustness of P0,∆(Y) State Estimation

To perform robustness analysis for P0,∆(Y) optimization problem we assume that the

matrix ∆ satisfies the aforementioned conditions; consider (x0,∆,E∆) from (14), and a matrix

Σ ∈ Rp×N such that

Y − Φ(x0,∆)− E∆ = Σ. (16)

Here, |Σ| �∆. In addition, because (x0,E) is a feasible point for P0,∆(Y), it follows that

q = ‖E‖l0 ≥ ‖E∆‖l0 = q∆,

implying that ‖E− E∆‖l0 ≤ 2q. Our goal is to provide a bound on ‖∆x‖2 where

∆x = x0,∆ − x0. (17)

If we also define ∆E = E∆ − E it holds that

∆E = (Yw,v − Φ(x0,∆)−Σ)− (Ȳ − Φ(x0))

= (Yw,v − Ȳ −Σ)︸ ︷︷ ︸
∆Y

−Φ(∆x0)

Lets denote by ∆y0, ...,∆yN−1 the columns of the matrix ∆Y (i.e., ∆Y =[
∆y0, ...,∆yN−1

]
). From (15) and (16) it follows that

|∆yk| � δ̄k + δk � 2δk

Accordingly, to provide a bound on ‖∆x‖2 we consider the following problem

max
∆x

‖∆x‖2 (18)

‖Φ(∆x)−Ω‖l0 ≤ 2q (19)

Ω � 2∆ (20)
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Since q ≤ qmax, we can increase the feasible space by relaxing constraint (19) to

‖∆Y − Φ(∆x)‖l0 ≤ 2qmax (21)

Therefore, our goal is to bound ∆x for which there exists Ω ∈ Rp×N that satisfies (20), and for

where at least p− 2qmax rows of the matrix Φ(∆x)−Ω are zero-rows. Lets use F and KF ⊂ S

to denote the number of rows Φ∆(x) that are zero-rows and the set of corresponding sensors,

respectively. This means that at least F1 = p− 2qmax−F rows of Φ(∆x) are equal to the rows

of Ω, which are non-zero, and we use KF1 ⊂ S to denote sensors corresponding to those rows.

It is worth noting here that |KF ∪ KF1| = p− 2qmax and KF ∩ KF1 = ∅.

We also exploit the following notation – for any set K = {sk1 , ..., sk|K|} ⊆ S, where

k1 < k2 < ... < k|K|, we define the matrices OK and PK as

OK =



PKC

PKCA

...

PKCAN−1


PK =


i′k1

...

i′k|K|

 (22)

Here, PK denotes the projection from the set S to the set K by keeping only rows of C with

indices that correspond to sensors from K, because i′j denotes the row vector (of appropriate size)

with a 1 in its jth position. Since KF ⊂ S contains indices of zero-rows of Φ(∆x) we have that

OKF
∆x = 0. In addition, OKF1

∆x = ΩKF1
, where for Ω = [ω1|ω2|...|ωN ] (i.e., ωi, i = 1, ...N
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are columns of Ω such that |ωi| � 2δi), and we define

ΩKF1
=



PKF1
ω1

PKF1
ω2

...

PKF1
ωN


∆KF1

=



PKF1
δ1

PKF1
δ2

...

PKF1
δN


.

Consequently, for ∆x to satisfy constraints (21) and (20) there have to exist sets

KF ,KF1 ⊂ S such that

|KF | = F, |KF1| =p− 2qmax − F, (23)

KF ∩ KF1 = ∅ (24)

OKF
∆x = 0 (25)

|OKF1
∆x| � 2∆KF1

(26)

Now, consider the polyhedron P defined with constraints (23)-(26). From its definition

it follows that the point ∆x = 0 belongs to the polyhedron. In addition, the polyhedron P is

bounded. To show this, we start with the following lemma.

Lemma 2: For any two sets KF ,KF1 ⊂ S such that |KF | = F , |KF1| = p − 2qmax − F

and KF ∩ KF1 = ∅,

rank(OKF∪KF1
) = n. (27)

Proof: From [28], qmax = ds/2− 1e where s is the cardinality of the smallest set K ⊆

S for which the matrix OK{ has non-trivial kernel. Note that |K{| = p − s, and since s ≥

2qmax + 1 > 2qmax, it follows that |K{| < p − 2qmax. Now consider any set K1 for which

|K{
1| ≥ p− 2qmax, meaning that |K1| ≤ 2qmax < s. Thus, OK{

1
does not have non-trivial kernel
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(since K is the smallest such matrix), meaning that columns of OK{
1

are linearly independent.

Thus, since OK{
1
∈ RN |K{

1|×n, it follows that rank(OK{
1
) = n. This implies that for any K{

1 with

at least p − 2qmax sensors, and hence (27) holds since the set KF ∪ KF1 contains p − 2qmax

sensors.

Theorem 1: The polyhedron P defined by constraints (23)-(26) is bounded.

Proof: Lets assume the opposite, that P is unbounded; there exist a feasible point ∆x ∈ P

and a direction d ∈ Rn such that d 6= 0 and for any ε > 0, ∆x + εd ∈ P [33]. Therefore,

OKF
(∆x + εd) = 0, and since ∆x ∈ P it follows that OKF

d = 0. In addition,

|OKF1
(∆x + εd)| � 2∆KF1

(28)

implies that OKF1
d = 0 (otherwise for any non-zero element of the vector OKF1

d, when ε→∞

the absolute value of that element in vector εOKF1
d will be unbounded and the constraint (28)

will be violated). Therefore, d belongs to the kernel of OKF∪KF1
– i.e., OKF∪KF1

d = 0. However,

from Lemma 2, OKF∪KF1
has full rank (i.e., rank(OKF∪KF1

) = n), meaning that it has non-trivial

kernel and thus d = 0, which violates our initial assumption and concludes the proof.

As a direct consequence of the above theorem we have that maximal ‖∆x‖2 is bounded,

and the attacker can not use modeling errors and the corresponding relaxation of the l0

optimization problem to introduce an unbounded error in the attack-resilient state estimator.

Bounding the State-estimation Error

The above theorem allows us to bound ‖∆x‖2, the error of the resilient state estimator

P∆,0(Yw,v), by noticing that the maximal value of a convex function over a polyhedron can be
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obtained in a vertex of the polyhedron [34]. Thus, to determine the maximal ‖∆x‖2 over the

polyhedron P it is sufficient to compute ‖∆x‖2 at each vertex of the polyhedron. The vertices

of the polyhedron satisfy that  OKF

OKF1


︸ ︷︷ ︸

ÕKF∪KF1

·∆x =

 0

2∆+−
KF1

 , (29)

where ∆+−
KF1

denotes a vector such that |∆+−
KF1
| = ∆KF1

(i.e., with elements whose absolute

values are equal to the corresponding elements of ∆KF1
). It is worth noting that there are

2|KF1
|·N such elements and thus 2|KF1

|·N vertices of the polyhedron. Finally, since ÕKF∪KF1
is a

full rank matrix (rank(ÕKF∪KF1
) = rank(OKF∪KF1

) = n), vertex points can be found as

∆xver = (ÕT
KF∪KF1

ÕKF∪KF1
)−1ÕT

KF∪KF1

 0

2∆+−
KF1

 = Õ†KF∪KF1

 0

2∆+−
KF1

 . (30)

where Õ†KF∪KF1
denotes the pseudoinverse of matrix ÕKF∪KF1

. Consequently, for any sets KF

and KF1 that satisfy (23) and (24), by checking all 2|KF1
|·N vertices defined by (31) we can

determine the maximal ‖∆x‖2 for the corresponding polyhedron. However, since

‖∆xver(∆
+−
KF1

)‖2 = ‖∆xver(−∆+−
KF1

)‖2,

where ∆xver(∆
+−
KF1

) denotes the solution of (31) for specific ∆+−
KF1

, we only need to evaluate

norms at 2|KF1
|·N−1 points (i.e., vertices). Furthermore, to provide a bound on ‖∆x‖2 for all ∆x

that satisfy (20) and (21) we have to consider all such sets KF and KF1 . Therefore, it is necessary

to evaluate all possible values for F . From the definition F ≥ 0. On the other hand, from (25) KF

has nontrivial kernel, meaning that as in the proof of Lemma 2, F = |KF | ≤ p−s ≤ p−2qmax−1.
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Finally, from (31) the bound can be over-approximated as

‖∆x‖2 ≤ 2 max
F,F1

λmax
Õ†KF∪KF1

‖∆KF1
‖2 = 2 max

F,F1

‖∆KF1
‖2

λmin
ÕKF∪KF1

(31)

where λmax
Õ†KF∪KF1

denotes the maximal singular value of matrix Õ†KF∪KF1
, while λmin

ÕKF∪KF1

denotes

the smallest singular value of matrix ÕKF∪KF1
(and this is non-zero as it is a full rank matrix).

Note that the matrix ∆ captures several sources of modeling errors (e.g., noise, jitter,

synchronization errors). Since (31) is linear in ∆, the estimation error bound obtained by

evaluating the ‖∆x‖2 in vertices of the polyhedron will be less than or equal to the sum of

estimation error bounds computed separately for each error component. Therefore, it is possible

to separately analyze the impact for each source of modeling errors on robustness of the state

estimator.

However, to obtain the bound, in the general case the number of times that equation (31)

needs to be solved is
∑p−s

F=0

(
p
F

)(
p−F

p−2qmax−F

)
2(p−2qmax−F )N−1. Note that, for almost all systems,

meaning that for almost all pairs of matrices A×C ∈ Rn×n×Rp×n (i.e., the set of matrices for

which the property does not hold has Lebesgue measure zero), the number of correctable errors

using the previous N = n measurement vectors is (maximal and) equal to qmax = dp/2− 1e [28];

in this case s = p, and thus F can only take the value 0, meaning that the error needs to be

evaluated in p · 2n−1 if p is an odd number, or p(p−1)
2

22n−1 if the system has an even number

of sensors. This effectively limits the above described exhaustive search for systems with large

number of states or sensors. In this case it is possible to utilize a more conservative bound that

we introduced in [35], which significantly reduces the complexity of the procedure used for the

computation.
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Evaluation

To evaluate conservativeness of the error bound described in the previous subsection, we

consider two types of systems – systems with n = 10 states and p = 5 sensors, and with n = 20

states and p = 11 sensors. For each system type we randomly generated 100 systems with

measurement models satisfying that the rows of the C matrix have unit magnitude and matrices

∆ had elements between 0 and 2. In addition, for each of the 200 systems we evaluated the

state-estimation error ∆x = ‖x0,∆ − x0‖2 in 1000 experiments for various attack and noise

realizations. Attacks and noise profiles were chosen randomly assuming uniform distribution of

the following: (a) The number of attacked sensors between 0 and 2 for systems with 5 sensors,

and between 0 and 5 for systems with 11 sensors, (b) Attack vectors on the compromised sensors

between −10 and 10, chosen independently for each attacked sensor, and (c) Noise realizations

between the noise bounds specified by matrices ∆.

We considered the case when window size N is equal to the number of system states

(i.e., N = n). Comparison between the bounds computed as described in the previous section

and simulation results are shown in Fig. 2 and Fig. 3. Fig. 2(a), Fig. 2(b) and Fig. 3(a) present

histograms of ‖∆x‖2 errors for all 1000 scenarios for three randomly selected systems. As can be

seen, the computed bound is an order of magnitude larger than the average state-estimation error

for each system. However, for each system S we are more interested in the ratio between the

worst-case observed state estimation error for all 1000 simulations – i.e., maxi=1:1000 ‖∆xS‖2,

and the computed error bound MAX ‖∆xS‖2 for the system. Thus, we consider relative
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estimation error defined for each system S as

Rel errorS =
maxi=1:1000 ∆xS

MAX ‖∆xS‖2

.

A histogram of the relative errors for both types of systems are presented in Fig. 2(c) and

Fig. 3(b). For the systems with n = 10 states the maximal relative error reaches almost 20% of

computed bounds, while for larger system (with n = 20 states) the maximal relative error is 2%

of computed bounds.

However, it is worth noting here that conservativeness of the presented results is (at least

partially) caused by the fact that for each system we only considered random initial points, and

random uncorrelated attack vectors and noise profiles/modeling errors. Thus, the errors obtained

through simulation do not represent the worst-case errors; for each system, to obtain scenarios

that result in the worst-case estimation errors it is necessary to derive the corresponding attack

vector (and the initial state), which is beyond the scope of this paper.

This is especially illustrated in histograms of relative estimation errors for systems with

different size. As in the histograms from Fig. 2(c) and Fig. 3(b), in simulations we observed a

decrease in the obtained maximal relative estimation error with an increase in the system size n

(and thus increase in the window size N = n). One of the reasons is that with the increase of N

we increase the number of attack vectors, and due to the random actor selection of the vectors

we reduce probabilities to incorporate a worst-case attack. On the other hand, for systems with

n = 1 and n = 2 states we were able to generate initial states and attack vectors for which the

computed bounds are tight – i.e., the error ‖∆x‖2 is equal to the obtained bounds.
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Case Study: Attack-Resilient Cruise Control on Autonomous Ground Vehicle

We illustrate the development framework on a design of secure cruise control of the

LandShark vehicle [36], a fully electric Unmanned Ground Vehicle (UGV) shown in Fig. 4(a).

In a tethered mode, the robot can be fully tele-operated from the Operator Control Unit (OCU).

However, in our scenario the operator only specifies the desired vehicle speed, while the on-

board control has to ensure that all of the safety requirements are satisfied even if some of the

sensors are under attack.

Vehicle Modeling

To obtain a dynamical model of the vehicle we used the standard differential drive

vehicle model (Fig. 4(b)) [37]. Here, Fl and Fr denote forces on the left and right set of wheels

respectfully, and Br is the mechanical resistance of the wheels to rolling. The vehicle position

is specified by its x and y coordinates, θ denotes the heading angle of the vehicle measured

from the x axis, while v is the speed of the vehicle in this direction. The LandShark employs

skid steering, meaning that in order to make a turn it is necessary to generate enough torque

to overcome the sticking force Sl. Therefore, when B
2
|Fl − Fr| ≥ Sl the wheels start to slide

sideways (i.e., the vehicle begins to turn). Consequently, if we assume that the wheels do not

slip, the dynamical model of the vehicle can be specified as
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v̇ =


1
m

(Fl + Fr − (Bs +Br)v, if turning

1
m

(Fl + Fr −Brv, if not turning

ω̇ =


1
Jt

(B
2

(Fl − Fr)−Blω, if turning

0, if not turning

θ̇ = ω

ẋ = v sin(θ), ẏ = v cos(θ)

Also, w = 0 if the vehicle is not turning.

Finally, to estimate the state of the vehicle for cruise control (i.e., its speed and position)

we use three sensors – two speed encoders, one on each sets of wheel side, and a GPS. The GPS

provides time-stamped global position and speed, while from the encoders we can obtain the

rotation angle (which could be translated into rotational velocity and finally into linear velocity).

Note that other sensors can be used to estimate the state of the vehicle; for instance, linear

acceleration measurements coming from the IMU, or use optical flow algorithms to compute

visual odometry from a camera. However, to illustrate the use (and robustness) of the attack-

resilient state estimator we only used the encoders and GPS.

The above model presents a high-level model of the vehicle, describing only the motion

equations. However, the forces Fl and Fr, which can be considered as inputs to the model, are

derived from the vehicle’s electromotors and are affected by the motors, gearbox and wheels.

Thus, we have also derived a 6-state linear model of this low-level electromechanical system

based on the model from [37], which is then used to derive a local state (i.e., velocity) feedback

controller that provides the desired Fl, Fr levels.
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System Architecture

On the LandShark, all sensors are connected to the CPU, which implements the state-

estimator and controller procedure, through independent serial buses, while the motors are

connected to the CPU via motor drivers (as presented in Fig. 4(c)). Since the speed of the

vehicle is bounded, the attack-resilient state-estimator from (13) can be formulated as a mixed

linear integer programming (MILP) problem

min
γ,E,x

1>p γ

−δk � yk −CAkx− ek � δk, k = 0, ..., N − 1

−γjα · 1′N �E′j � γjα · 1′N , j = 1, ..., p

where E′j and ek denote the jth row and kth column of the matrix E ∈ Rp×N , respectivelly.

Here, γ = [γ1, . . . , γp] ∈ {0, 1}p are binary optimization variables representing, for each sensor

j, whether the sensor is considered attacked (γj = 1) or safe (γj = 0), and α is a sufficiently

large positive constant. Note that since the robot cannot obtain speed larger than 20mph, all

sensor measurements larger than the value have to be obtained from compromised sensors and

thus can be discarded. Hence, we can assume that elements of attack vectors can not be larger

than the maximal speed.

The developed resilient controller is executed on top of the Linux operating system (OS)

and the Robot Operating System (ROS) middleware [38]. ROS is a meta-operating system that

facilitates development of robotic applications using a publish/subscribe mechanism in which a

master superintend every operation. Associated with each sensor there is a driver that takes care

of getting time stamped informations from the sensor and publishing this data in ROS format to

the ROS master. The controller written in C++ language subscribes to each sensor measurements
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(called topics) through the master, and sends inputs to the motor driver to maintain the desired

cruise speed. We use the tool ROSLab [39] to describe the architecture of the control system.

Experiments

Fig. 5 presents a deployment of the robot during experiments run on a tiled uneven

surface and a grass uneven field. From the developed GUI we demonstrate that the robot can

reach and maintain the desired reference speed even when one of the sensors is under attack,

as shown in Fig. 6. Fig. 6(a) presents speed estimates from the encoders and GPS; each of the

sensors has been attacked at some point, with attacks such that their measurements would result

in the speed estimate equal to 4 m/s, except in the last period of the simulation when we have

switched to an alternating attack on the encoder left. However, as shown in Fig. 6(b) when the

attack-resilient controller is active the robot reaches and maintains the desired speed of 1 m/s.

On the other hand, if the state estimator is disabled and instead a simple observer is employed

(as in the interval between 68 s and 73 s – the shredded area in Fig. 6), even when one of the

sensors is under attack the robot cannot reach the desired state (e.g., it can even be forced to

stop). Videos of the Landshark experiments can be seen at [40].

Robustness Analysis

All ROS nodes are executed in the run-to-completion manner. Thus, although the

execution period for the controller node is 20 ms, other instantiated nodes might affect its

execution (i.e., the controller might run with a variable period). Each sensor has its own clock

and all measurements are time-stamped before being transmitted to the controller. However, since

27

Limited circulation. For review only

Preprint submitted to IEEE Control Systems Magazine. Received January 15, 2016 23:17:13 PST



relative changes in obtained measurements are used, time synchronization error between sensors

does not accumulate. In addition, there is a huge discrepancy between sensors’ sampling jitters.

For example, encoders’ sampling jitters are bounded by 100 µs (as shown in Fig. 7), while GPS

has highly variable jitter with maximal values up to 125 ms. Therefore, it is not possible to use

the idealized discrete-time model from (8), but rather the full input compensation has to be done

as in (6) and (7), before the state-estimator is executed.

Consequently, a bound on GPS error is determined from manufacturer specifications,

worst-case sampling jitter and synchronization error, and is experimentally validated to be δk,1 ≤

0.4 m/s. On the other hand, each encoder has 192 cycles per revolution, resulting in a measuring

error of 0.5%. Thus, since the maximal achievable vehicle speed is 20 m/s, we have that for

both encoders δk,2 = δk,2 ≤ 0.1 m/s. For these values the computed state-estimation error

bound isf 0.72 m/s. Note that the conservativeness of the bound was mostly caused by the large

worst-case GPS sampling jitter.

Assurance Case for the Resilient Cruise Control Implementation

In a complex CPS design project, when a large team is engaged in design and V&V

activities it can be difficult to maintain a centralized, coherent view of the system and its

associated evidence in all its detail. Assurance cases have been proposed as means to organize

the evidence into a coherent argument that captures what evidence is available, what assumptions

have been made in the design process, how each piece of evidence contributes to the overall

assurance, etc. For the considered case study, we constructed a detailed assurance case that

covers both a mathematical model of the state estimator and its physical environment, as well
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as a software implementation of the controller. Our goal has been to gain understanding of what

levels of modeling are involved in the design and implementation of a resilient control system,

what reasoning techniques are used at each level, and what assumptions are likely to be made

at each level of abstraction, as well as how these assumptions can be justified by guarantees

established in a lower-level model. In this paper, we present an overview of the developed

assurance case, while focusing on the implementation guarantees. The detailed assurance case

description can be found in [41].

In a straightforward generalization from [42], we define an assurance case as a docu-

mented body of evidence that provides a convincing and valid argument that a system has desired

critical properties for a given application in a given environment. A common example of such

a critical property is system safety, even in the presence of attacks, in which case the argument

is known as a safety case. The top-level claims of the assurance case are shown in Figure 8,

and the argument is partitioned into two parts. One part is concerned with the algorithmic

correctness of the state estimator and the tracking PID controller. We refer to this part of the

assurance case as the control-level argument, since it deals with mathematical models of the

estimator and relies on the robustness analysis presented in the previous sections. The other

part addresses the implementation of the overall controller and the way it is deployed on the

LandShark platform. The argument also specifies assumptions and the implementation context.

We rely on three categories of assumptions.

Attack assumptions represent our model of the attacker capabilities. We consider attacks

on sensor data and do not restrict the attacker’s capability to manipulate a stream of sensor data.

However, we assume that less than half of the sensors are attacked. Given that the LandShark
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platform has three sensors, we assume that at most one sensor can be compromised at any time.

There is no direct way to prove that this assumption holds, since it describes the limitation on

the capability of the attacker. Indirect justification for the attack model can be derived from

the implementation of the control system. In particular, sensors are implemented as different

ROS nodes and publish their readings on separate ROS topics, making it more difficult for

an attacker to compromise multiple sensor streams. Environmental assumptions describe the

intended operating environment of the vehicle, which are used to derive a model of its dynamics.

Finally, platform assumptions and the implementation context deal with the properties of the

LandShark platform. Here, we assume a certain sampling frequency, expected latency of sensing

and actuation, and maximum actuation jitter, which have been validated on the platform as shown

in the previous section; in general, when an assurance case for the whole vehicle is constructed,

these platform assumptions correspond to claims made in other parts of the assurance case.

Implementation-level Assurance Arguments

In the rest of the section we present an overview of the implementation-level arguments.

This part of the argument is given in Figure 9. The strategy is to separate the argument into two

sub-claims. The first one covers the platform-independent implementation of the RSE algorithm

and PID controller, implemented as a step function periodically invoked by the platform. The

second sub-claim considers the deployment of the step function within a platform-specific

wrapper, which handles periodic invocation of the step function, its connection to the streams

of sensor data, and makes speed estimates available to other modules in the system. Arguments

for both sub-claims are instances of the model-manipulation strategy.
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The step function is obtained using Simulink Coder, and which has been verified using

the methods we introduced in [43], [44]. The wrapper for the step function is produced

from the architectural model of the LandShark platform, which captures ROS topics and their

respective publishers and subscribers. The wrapper generator has been implemented in Coq [45]

and supplies a proof that (a) the wrapper subscribes to the sensor topics as specified in the

architectural model, and that subscribed values are passed to the parameters of the step function,

and also that (b) the step function is invoked with the period specified in the architectural model.

We use this proof as evidence for the technique sub-claim, and perform review of the architectural

model as evidence for the model sub-claim.

Conclusion

In this paper, we have presented methods to provide performance guarantees in CPS in

the presence of sensor attacks. By focusing on the design of attack-resilient cruise control for

autonomous ground vehicles, we have described control-theoretic challenges in attack-resilient

state estimation for dynamical systems with noise and modeling errors. We have presented a l0-

norm based state estimator and provided an algorithm to derive a bound for the state estimation

error caused by noise and modeling errors in the presence of attacks. Furthermore, we have

described methods to map control requirements into specifications imposed on the underlying

execution platform. Finally, we have presented an approach to construct an assurance case for the

considered system. This overall assurance case is the subject of an on-going multi-institutional

project funded by the DARPA HACMS program. Some of the platform assumptions made in

our argument have been claims delivered by other parts of the overall assurance case.
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Note that during the control design phase for resilient CPS, the designers are usually

facing limitations of the platform, as a certain degree of redundancy in the control loop is needed

to achieve the necessary detection and mitigation capabilities. Sensor redundancy is (relatively)

easy to handle by adding additional sensor payload to the platform, such as odometers, IMUs,

and GPS in the LandShark case study. However, the biggest limitation is the redundancy of

actuators. For example, if actuators on one side of the vehicle are compromised, the skid-steer

approach used in LandShark is not feasible. Furthermore, synthesis of control task code and

proof of its correctness relies on the guarantees provided by the platform services. Therefore,

in some cases the assumption needed to make the proofs go through may turn out to be too

restrictive for the platform operating system.
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Figure 1. Scheduling sampling and actuation.
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(a) Histogram for a system with error bound

41.43

(b) Histogram for a system with error bound

35.74

(c) Histogram of the maximal relative state-

estimation error for all 100 system

Figure 2. Simulation results for 1000 runs of 100 randomly selected systems with n = 10

states and p = 5 sensors.
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(a) Histogram for a system with error bound

155.98

(b) Histogram of the maximal relative state-

estimation error for all 100 system

Figure 3. Simulation results for 1000 runs of 100 randomly selected systems with n = 20

states and p = 11 sensors.
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Figure 4. LandShark unmanned ground vehicle; (a) The vehicle; (b) Coordinate system and

variables used to derive the model; (c) Control system diagram used for cruise control.
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Figure 5. Deployment of the LandShark on a tiled pathway. The picture in the picture displays

the user interface used in experiments.
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Figure 6. Experimental results; (a) Comparison of velocity estimated from the encoders’ and

GPS measurements; (b) Reference speed, the estimated speed, and the input applied to the

motors.
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Figure 7. Times between consecutive left encoder measurements.
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Figure 8. Top level claims of the assurance case
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Figure 9. Argument for the code-level claims
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