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sensor faults. We consider a system with multiple sensors measuring the same physical variable, where
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1. INTRODUCTION

Many Cyber-Physical Systems (CPS) are vulnerable to security breaches and are in-

creasingly being subjected to attacks. Recent developments have shown that it is possi-

ble for an attacker to hijack such a system by exploiting vulnerabilities in its on-board

communication protocol [Checkoway et al. 2011; Koscher et al. 2010; Greenberg 2015]

or through sensor spoofing [Rutkin 2014; Warner and Johnston 2002]. Weaknesses in

Supervisory Control and Data Acquisition (SCADA) systems have also been used as

a channel to disrupting critical infrastructure [Falliere et al. 2011]. Therefore, it is

imperative that these systems are designed in a secure and resilient fashion so as to

guarantee their proper functionality.

As a step towards the design of resilient CPS, in this work we focus on ways to im-

prove their resiliency to sensor attacks. We assume that some of the system’s sensors

may be compromised by a malicious attacker; the attacker can then send any measure-

ments on behalf of those sensors. As shown in previous work [Rutkin 2014; Warner and

Johnston 2002], sensor attacks alone are sufficient to severely affect a system’s opera-

tion, e.g., drastically disrupt its localization and lead it off the desired course. Thus, the

goal of this work is to develop algorithms that guarantee proper system performance

even in the presence of sensor attacks.

One way to address this problem is to utilize the increased diversity and reduced

price of modern sensing technology, which have made it possible to equip CPS with

multiple sensors. Not only can these systems measure variables that were not mea-

sured before (e.g., electric currents in batteries) but there also exist multiple sensors

that can estimate the same physical variable (e.g., GPS, wheel encoders and IMU’s

can all provide velocity measurements). Fusing their measurements increases both

the robustness to external disturbances (e.g., moving uphill) and the confidence in the

obtained estimate [Luo et al. 2002]. This paper shows that such redundant information

can also be used to cope with sensor attacks and proposes an attack-resilient sensor

fusion framework.

The first aspect to be considered for such a framework is the underlying sensor

model. There are two main sensor models used in the literature – probabilistic and

abstract. In the former, each sensor measurement is corrupted by stochastic noise
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(e.g., Gaussian [Kalman 1960]). In the latter, an interval is constructed around the

measurement containing all possible values of the true state (e.g., set membership

approaches [Milanese and Novara 2004]). While the probabilistic approach is well

suited for the analysis of the system’s expected operation, it requires knowledge of

noise distribution, where wrong assumptions may introduce vulnerabilities that can

be exploited by an attacker. The abstract model, on the other hand, makes no assump-

tions about the distribution of the noise and thus naturally lends itself to worst-case

analysis.

Since in this paper we consider the problem of CPS security, usually addressed using

worst-case reasoning, we adopt the abstract sensor model. Previous works employing

the abstract model [Marzullo 1990; Jayasimha 1994] consider the case where the num-

ber of faulty sensors (i.e., providing intervals that do not contain the true value) can

be bounded; they provide theoretical bounds on the output of sensor fusion in such a

scenario. An attack-resilient extension of [Marzullo 1990] has been developed by in-

troducing a sensor transmission schedule [Ivanov et al. 2014a] and by using measure-

ment history [Ivanov et al. 2014b]. A primary limitation of existing fault and attack

detection methods [Marzullo 1990; Jayasimha 1994; Ivanov et al. 2014a] is that they

treat attacks and faults in the same way. However, it is possible for a sensor to experi-

ence a transient fault, i.e., provide wrong measurements for a short period of time and

recover on its own, in which case the system should keep using it in the future.

Transient faults are a normal part of a sensor’s operation. They are often due to

temporary adverse conditions (e.g., a tunnel for GPS) but usually disappear quickly

and are not considered a threat for the system’s security. Thus, most sensors have a

transient fault model that bounds the time in which they can provide wrong data. On

the other hand, non-transient (or permanent) faults (e.g., a bias caused by a physically

damaged sensor) occur for a longer period of time, and are thus more dangerous and

can have catastrophic consequences. If systems cannot compensate for such faults in

software, they would benefit from removing the sensor’s measurements altogether.

Sensor attacks can manifest as either transient or non-transient (possibly Byzan-

tine) faults, depending on the attacker’s goals and capabilities. Masking a sensor’s

measurements as a transient fault may prevent the attacker from being discovered
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but limits his capabilities. On the other hand, if the attacked measurements are con-

sistently wrong and resemble a permanent fault, they may inflict more damage but

may be detected quickly. In this paper, we analyze different kinds of attacks and their

possible effect; we propose a detector for the more dangerous, but easier to detect, kind

of attacks and a filtering algorithm whose output is robust to more stealthy attacks.

To distinguish between attacks and faults and to quantify the stealth of an attack,

we make use of sensor transient fault models (TFMs) that are now being provided by

some manufacturers [Frehse et al. 2014]. Such a model consists of three dimensions:

(1) interval size, (2) window size, and (3) number of allowed faulty measurements per

window. At the same time, such specifications are not always available, so the first

contribution of this paper is a method for selecting the three parameters based on

observed training data. We illustrate this with a real-data study using a ground vehicle

called the LandShark [Black-I Robotics 2015].

Once such TFMs are available, we examine their effect on the performance of sen-

sor fusion over time (as described in Section 3, we adopt a sensor fusion algorithm

initially developed by [Marzullo 1990] and extended by [Ivanov et al. 2014a; 2014b]).

We present results showing what is the worst-case number of rounds, in which sensor

fusion cannot make any guarantees about its output. We then provide a filtered sen-

sor fusion algorithm that is robust to this worst case and outputs a conservative, but

bounded, interval that is guaranteed to contain the true value. This worst-case result

also holds in the presence of attacks that appear as transient faults.

To deal with the more immediately disruptive class of attacks that manifest as per-

manent faults, we propose a detection and identification algorithm for sensors that

do not comply with their TFM’s. The algorithm uses pairwise relationships between

sensors – if two sensors’ measurements are too distant from each other, then one of

them must be wrong. By accumulating this information over time, we develop a sound

algorithm for attack detection and identification.

Finally, we illustrate the performance of the proposed solutions on a real-data case

study using the LandShark. In particular, we show the performance of the attack de-

tection/identification algorithm in the form of false alarm and detection rates and show
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its advantage over the current sensor fusion technique. We also analyze the effect of

the TFM on sensor fusion and show the benefit of the filtered fusion interval.

To summarize, the contributions of this work are as follows: (1) a sensor attack de-

tection/identification algorithm in the presence of transient faults using the abstract

sensor model; (2) a framework for selecting the TFM parameters based on training

data; (3) an analysis of the effect of TFM’s on the performance of sensor fusion and the

introduction of the filtered fusion interval; and (4) a case-study evaluation of all the

contributed solutions on a robotic platform.

2. RELATED WORK

This section describes related work on fault and attack detection with different sen-

sor models, contrasting the attack detection methods to the traditional fault detection

ones.

2.1. Sensor Model

For the detection of sensor faults and attacks, the first thing to consider is the underly-

ing sensor model because different sensor models lead to different approaches to detec-

tion. Most sensor models used in the literature fall into two general categories: prob-

abilistic sensor models and abstract sensor models. The probabilistic sensor models

assume a probability distribution of the sensor noise (e.g., Gaussian [Kalman 1960]).

The noise distribution puts more weight on the points which are more likely to be the

true value. Thus, probabilistic sensor models are well suited for the analysis of the

expected system performance [Kalman 1960; Xiao et al. 2005], but require knowledge

of noise distribution, where detectors designed under wrong noise assumptions are

well-known to have decreased (attack) detection accuracy [Willsky 1976]. On the other

hand, in the abstract sensor model, a measurement is an interval which contains all

points that may be true value (e.g., set membership approaches [Milanese and Novara

2004]). This type of sensor models assumes no knowledge of the noise distribution on

the interval, but construct such intervals to contain the unknown true value even in

the worst case. Since abstract measurements are the worst case bounds for the true
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value, they are well-suited for worst case analysis of system operation under Byzantine

faults and sensor attacks [Marzullo 1990; Ivanov et al. 2014a; 2014b].

2.2. Fault Detection

There exists a large body of literature in the sensor fault detection and isolation do-

main with probabilistic sensors, including multiple well-written and exhaustive survey

papers, e.g., [Chen and Patton 2012; Frank 1990; Frank and Ding 1997; Hwang et al.

2010] and references within. The common theme among fault detection techniques is

that they either assume a prior on the initial condition [Isermann 1984] or a certain

model in which faults could occur [Joshi et al. 2011; Jiang et al. 2006]. The former

type is referred to as a “change detector” in which large deviations from expected be-

havior are flagged as faults [Basseville et al. 1993]. In the latter, the assumed failure

models include jump systems [Davis 1975], probability of occurrence of faults [Willsky

1976] (or probability of missing measurements altogether [Sinopoli et al. 2004]), and

known directions in the state space where faults may occur [Willsky 1976]. Approaches

also exist to distinguish between transient and persistent faults, e.g., [Serafini et al.

2007; Lee and Choi 2008; Serafini et al. 2011], and to provide trust assessment of

sensors [De Kerchove and Van Dooren 2010; Rezvani et al. 2015]. Finally, a powerful

technique is the utilization of sensor redundancy [Kim et al. 2010].

With the abstract sensor model, fault detection is usually performed by using sensor

redundancy and a voting system on the provided intervals [Marzullo 1990; Jayasimha

1994]. While some algorithms are more conservative and provide guarantees that the

output of sensor fusion contain the true value (hence, their fault detection perfor-

mance may suffer), others relax these worst-case guarantees in favor of better perfor-

mance [Brooks and Iyengar 1996]. Other works also suggest imposing a distribution

on the provided interval so that a hybrid abstract-probabilistic analysis may be per-

formed [Zhu and Li 2006]. Finally, in addition to the one-dimensional intervals that

are assumed by the above, sensors can be also assumed to provide multidimensional

hyper-rectangles [Chew and Marzullo 1991], polyhedra [Ivanov et al. 2014b], or more

general sets [Milanese and Novara 2004; 2011].
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2.3. Attack Detection

In contrast to traditional fault detection and isolation, attack detection works in gen-

eral involve worst-case analysis [Fawzi et al. 2011] because wrong model assumptions

can introduce vulnerabilities that can be exploited [Pajic et al. 2014]. Attack detection

papers try to minimize the prior assumptions in an attempt to address a wider va-

riety of possible attacks; thus, the abstract sensor model (or more generally, the set

membership model) is almost exclusively the model of choice, except when the initial

condition and system dynamics are known [Rezvani et al. 2015; Teixeira et al. 2012].

In the abstract sensor domain, an attack-resilient extension to [Marzullo 1990] has

been developed [Ivanov et al. 2014a; 2014b]. [Ivanov et al. 2014a] introduces the use

of sensor transmission schedules in order to limit the attacker’s available information,

thus reducing the attacker’s capabilities. [Ivanov et al. 2014b] improves the accuracy

of sensor fusion by incorporating historical measurements, thus providing a better at-

tack detection. A major shortcoming of the attack detection works [Marzullo 1990;

Jayasimha 1994; Ivanov et al. 2014a] is that they conservatively treat mere faults as

attacks. In our preliminary work [Park et al. 2015], we presented an attack detec-

tion method differentiating transient faults from attacks based on the transient fault

model which will be defined later herein. This paper extends our initial study [Park

et al. 2015] and our previous work on incorporating measurement history [Ivanov et al.

2014b] by adding a new sensor fusion algorithm considering the effect of the transient

fault model, thus providing an overall framework for attack detection in the presence

of transient faults.

3. PROBLEM FORMULATION

This section presents the problems considered in this work. It begins by explaining

the system and sensor models, including the transient fault model. It then introduces

attacks and analyzes the possible means and goals of an attacker. Finally, the problem

statements are presented.
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3.1. System Model

The considered system consists of n sensors that can be used to estimate the same

physical variable (e.g., velocity). The system is run in a periodic fashion during T time

rounds (the total time of the system’s operation) – at each round sensors transmit their

measurements to a centralized estimator; it then performs sensor fusion and attack

detection/identification.

As described above, we adopt the abstract sensor model, in which each sensor pro-

vides an interval of possible values [Marzullo 1990]. For each sensor si, the interval is

constructed symmetrically around its measurement at time t, denoted by y(t)i ; the in-

terval’s length is twice the size of si’s error bound, εi, which can be obtained from man-

ufacturer guarantees and physical limitations such as sampling jitter [Frehse et al.

2014]. However, due to external disturbances (e.g., rough terrain) and other reasons,

sensors sometimes provide faulty measurements that are outside of their predefined

bounds, hence their intervals may not contain the true value. We formally define the

predicate F (i, t) of sensor index i and time t as follows, to denote that sensor i provides

a faulty measurement at time t:

Definition 3.1 (Faulty Measurement). For any sensor index 1 ≤ i ≤ n and time 1 ≤

t ≤ T ,

F (i, t) ≡ |y(t)i − θ
(t)| > εi.

where θ(t) is the true value. We say that sensor i provides a faulty measurement at

time t iff F (i, t) holds.

3.2. Transient Fault Model

By their nature, faulty measurements occur infrequently and usually do not indi-

cate a permanent problem with the sensor. To reflect this feature and motivated

by recent manufacturer trends to provide faulty-measurements-per-window specifica-

tions [Frehse et al. 2014], we introduce the notion of a sensor’s transient fault model

(TFM). A TFM for a sensor si is a triple (εi, ei, wi), where εi is the error bound and

(ei, wi) is a transient threshold specifying that si can output at most ei faulty measure-

ments in any window of wi measurements. If si complies with its TFM, then any faulty
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Sensor 
Measurement 

s1 
s2 
s3 
s4 

Fusion 
Interval 

t = 1 t = 2 t = 3 

Fig. 1: An example of fusion intervals for three different rounds.

measurements are deemed transient faults. Otherwise, it is non-transiently faulty, de-

noted by the predicate NTF (i, t) of sensor index i and time t.

Definition 3.2 (Non-Transiently Faulty Sensor). For any sensor index 1 ≤ i ≤ n and

time 1 ≤ t ≤ T ,

NTF (i, t) ≡

(
t∑

t′=t−wi+1

F1(i, t
′)

)
> ei,

where F1(i, t) = 1 if F (i, t), and F1(i, t) = 0 if ¬F (i, t). We say that sensor i is non-

transiently faulty at time t iff NTF (i, t) holds.

3.3. Sensor Fusion

Since the true value is not known in practice, one can use the redundant sensor in-

formation to get an estimate of where it might be. One of the first works to develop

sensor fusion with abstract sensors [Marzullo 1990] assumes an upper bound on the

number of faulty measurements at any round, f , and outputs a fusion interval that is

guaranteed to contain the true value. The fusion interval is computed at each round

as the smallest interval that contains all points that lie in at least n− f intervals. In-

tuitively, since there are at least n− f correct intervals, the true value may lie in any

such group, thus all of them are included. Fig. 1 presents example fusion intervals in a

system with four sensors and f = 1. At each round, the fusion interval is the smallest

interval containing all points that lie in at least three intervals.

The fusion interval is used for worst-case analysis. For instance, the system is con-

sidered safe if the fusion interval does not contain any undesired states (since it is

guaranteed to contain the true value). Two results that will be used throughout this

paper are as follows: if f < dn/2e then the fusion interval is bounded by the size of
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some sensor’s interval; otherwise, the fusion interval can be arbitrarily large [Marzullo

1990].

3.4. Attack Model

In this work we assume that sensors may not only provide faulty measurements but

may also be compromised by attacks. A malicious attacker may gain control of a sensor

and send any measurement on its behalf. This subsection describes how and why a

sensor attack might be performed and what its effect on system perfomance may be.

3.4.1. Attack Goals and Means. CPS may be subject to sensor attacks for a variety of

reasons. The advancement of robotics research has made it possible to use unmanned

vehicles to perform critical missions on enemy territory; as shown in the case of the

RQ-170 Sentinel drone captured in Iran [Peterson and Faramarzi 2011; Shepard et al.

2012], it is possible to compromise these systems’ sensors and disrupt their operation.

Additionally, as described in [Checkoway et al. 2011; Koscher et al. 2010], an attacker

(e.g., a former employee or a market competitor) could greatly disrupt the performance

of a modern automobile by corrupting a single electronic control unit. In both cases,

sensor attacks could lead to a complete takeover or even destruction of the respective

system.

There are (at least) two ways for an attacker to compromise a given sensor. The

first is through a physical attack, e.g., unplugging a sensor and replacing its software

or using other physical means [Shoukry et al. 2013]. Additionally, modern sensors

have complex software modules that may be vulnerable to cyber attacks through weak-

nesses exposed in code (e.g., buffer overflow). Thus, as discussed in [Checkoway et al.

2011; Koscher et al. 2010], an attacker could gain access to a sensor over the network

without even requiring physical proximity.

At the same time, we argue that it may not be possible to compromise all sensors

on a given system. Some sensors may be more difficult to compromise than others. In

particular, certain sensors are attached to other platforms (e.g., wheel encoder) and

cannot be tampered without affecting critical components (e.g., the entire wheel); how-

ever, such actions could be detected and reported by an on-board diagnostics system.

Similarly, cyber attacks require significant efforts and knowledge of a sensor’s spe-
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cific implementation. Therefore, in this work we assume that some sensors might be

malicously attacked while others are not attacked but may be sometimes transiently

faulty.

3.4.2. Attack Detection and Consequences. Whether and when an attack is detected de-

pends first and foremost on the detection algorithm used by the system. As argued

above and in Section 2, in this work we use the abstract sensor model and the sensor

fusion algorithm presented in Section 3.3.

The way attacks are detected in this algorithm is by checking if an interval intersects

the fusion interval. Any interval not intersecting the fusion interval cannot contain the

true value (since the true value lies in the fusion interval). Thus, in Fig. 1 sensors s4, s2

and s3 would be detected as attacked in rounds 1, 2 and 3, respectively. The limitation

of this algorithm is that it treats attacks and faults in the same manner. While it

may be true that s4 is attacked in Fig. 1, it may also be the case that it experienced a

transient fault but recovered shortly afterwards.

This poses the question of how to formalize attacks and distinguish them from faults.

Of course, for any definition of a fault, it is possible for an attacker to mask his mea-

surements as a fault in order to avoid detection; it is even possible for the attacker

to just relay the actual sensor measurements. Therefore, in this paper we focus on

the detection of attacks that manifest as the most disruptive kind of faults, namely

non-transient faults.

Attacks that manifest as transient faults also pose a threat to the system, hence

they are addressed as well. However, rather than detecting such attacks, which would

also cause unnencessary detecions of transient faults, we use the fact that they are ac-

tually bounded by the definition of transient faults, i.e., at most ei faulty (or attacked)

measurements can be provided in any window of size wi. By utilizing this informa-

tion, we can develop both an algorithm for the detection of attacks that manifest as

non-transient faults and an algorithm for deriving a fusion interval that is robust to

the stealthy attacks that appear as transient faults. To avoid confusion, in the remain-

der of the paper an attacked sensor is equivalent to a non-transient fault only. Thus

we formally the predicate A(i) of sensor index i as follows, to denote that sensor i is

attacked:
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Definition 3.3 (Attacked Sensor). For any sensor index 1 ≤ i ≤ n,

A(i) ≡ ∃t ≤ T,NTF (i, t).

We say that sensor i is attacked iff A(i) holds.

3.5. Problem Statements

There are three problems addressed in this work. The first one arises from the fact

that TFM’s are not widely available for current sensors and are not straightforward to

obtain.

PROBLEM 1. Given a system with n sensors and a set of training measurement data,

develop a transient fault model for each sensor si.

We note that once a TFM is introduced, the analysis of sensor fusion changes as well.

In particular, the assumption that at most f sensors provide faulty measurements in

a given round cannot be justified since it is possible that all sensors provide faulty

measurements in one round and are all correct in the next without violating their

respective TFM’s. Note that in this problem attacks are not yet considered.

PROBLEM 2. Given a system with n sensors and a transient fault model (εi, ei, wi)

for each sensor, analyze the performance of sensor fusion over time.

Finally, we introduce sensor attacks and develop an algorithm for attack detection

and identification.

PROBLEM 3. Given a system with n sensors and a transient fault model (εi, ei, wi)

for each sensor, develop an algortihm to detect the existence of an attacked sensor and

possibly identify which sensor is under attack.

4. TFM PARAMETER SELECTION

This section describes a framework to choose the TFM parameters. As mentioned ear-

lier, manufacturers are transitioning towards providing transient fault specifications

for their sensors to allow for more realistic analysis [Frehse et al. 2014]. However,

when the TFM of a sensor is not provided, it is necessary to identify the TFM param-
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Fig. 2: Sample plots of the proportion of faults in a window (e/w) against the error
bound (ε).

eters from empirical data. Unlike probabilistic sensor models, abstract sensor models

are required to contain the true value in the interval except in the case of a faulty mea-

surement. Thus, statistical approaches to parameter selection (e.g., the best-fit Poisson

process) are unsuitable because they estimate parameters to maximally explain the

data, thus not providing worst-case bounds. Therefore, we provide a new method for

selecting the TFM parameters from empirical data.

To empirically identify the TFM parameters, we apply the following procedure. First,

we gather sensor measurements with known true value θ(t) as training data (e.g., by

applying a constant input to an automotive CPS and adjusting for the bias in the

input-output speed relation). Next, we examine the data and identify the set of feasible

parameters (ε, e, w) by sliding a window of size w and finding the worst-case number

of faulty measurements e in a window for different values of ε.

For a fixed window size w, intuitively, there exists a relation between ε and e. Sup-

pose that we plot the proportion of the number of faulty measurements in a window

(e/w) against ε (Fig. 2 shows possible examples of such curves for different window

sizes). Then, there can be observed a few interesting patterns. To begin with, there is a

large enough ε such that no faulty measurements can ever be observed (i.e., e = 0). As

ε is decreased from that point, the number of faulty measurements should slowly in-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 J. Park et al.

crease. The increase rate should be relatively moderate while ε is in the range of under-

lying true TFM. In other words, e increases in a relatively constant rate as ε decreases,

because ε gradually excludes more faulty measurements that occur transiently. Once

ε passes a certain threshold, it enters the range of the underlying noise model where

most of the sensor measurements lie. Thus, as ε decreases from this threshold, the

number of measurements that are deemed faulty increases rapidly. We refer to the

threshold as a “knee point”.

We argue that the knee points should be selected as the values for the TFM. On the

one hand, they are outside of the sensor’s underlying noise model, thus not making

noisy measurements be flagged as faulty. On the other, they are smaller than the sen-

sor’s underlying TFM, thus forcing most faulty measurements to be declared as such.

Consequently, the knee points govern the choice of ε and e for any window size w. Note

that the right window size depends on the purpose for which it is used; a larger window

size will better capture the true TFM; as will be apparent, however, sometimes it may

increase the time necessary to detect an abnormality. Section 7 provides a real-data

illustration of this process.

5. EFFECT OF TFM ON SENSOR FUSION PERFORMANCE

Having provided a framework for selecting the TFM parameters, in this section we

analyze their effect on the worst-case performance of sensor fusion. In addition, we

illustrate how to compute a filtered fusion interval that is robust to this worst-case

scenario. We only consider stealthy attacks in this analysis – the theory on attack de-

tection/identification is presented in the next section. Thus, in this section we assume

that all sensors comply with their respective TFM’s.

5.1. Precision vs. Accuracy of the Fusion Interval

We begin by noting that the assumption of at most f faulty measurements per round

that is required in the original sensor fusion algorithm no longer holds. This is due to

the fact that each TFM only quantifies one sensor’s output in isolation from the others.

Thus, it is possible that all sensors2 provide faulty measurements in a single round or

2Only possible if all sensors have e > 0.
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that all are correct in a single round. Therefore, f can now be considered as an input

parameter to the fusion algorithm as opposed to a preliminary assumption. Note that

if f is smaller than the actual number of faulty measurements per round, the resulting

fusion interval may not contain the true value.

The chosen value of f introduces a trade-off between accuracy and precision of the

fusion interval. In particular, decreasing f will result in a smaller (i.e., more precise)

fusion interval in any given round. On the other hand, it may increase the proportion

of rounds where the fusion interval does not contain the true value (i.e., less accurate),

in which case a more conservative value of f would be required. Therefore, in this

section we provide a way of quantifying the effect of the value of f on the performance

of sensor fusion.

To formalize these statements, suppose that we are given a TFM for each sensor.

Since we consider a periodic system in which sensors are sampled at the same rate, in

this section we assume that window sizes are the same for all sensors, i.e., the TFM’s

have the form (εi, ei, w). Define a global fault as a round in which there are more than

f faulty measurements. Recall that in such a case the fusion interval is not guaranteed

to contain the true value.

Definition 5.1 (Global Fault). Given the maximum number of faulty measurements

f , for any time t,

GF (t) ≡

(
n∑

i=1

F1(i, t)

)
> f.

The goal is to find a global fault model (E,W )f for the entire system in which there are

at most E rounds with a global fault in any window of W rounds. The fault model will

determine how robust (and consequently, conservative) any filtering algorithm has to

be in order to produce a meaningful output. Note that the value of (E,W )f depends on

the sensors’ TFM but not on the actual sensor measurements, even if they are faulty;

hence, this result holds even in the presence of stealthy attacks that comply with the

sensors’ TFM.

Obtaining a closed-form solution for the values of E and W is made difficult by the

combinatorial nature of the problem. Therefore, we have derived an algorithm that,
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Algorithm 1 Computing the Global Fault Model of Sensor Fusion
Input: n transient fault models of the form (εi, ei, w) and sensor fusion parameter f

1: WR ← w
2: ES ← order descending(

⋃
ei)

3: E ← 0
4: while WR > 0 and ES(f + 1) > 0 do
5: for {i← 1; i ≤ f + 1; i← i+ 1} do
6: ES(i)← ES(i)− 1
7: end for
8: ES ← order descending(ES)
9: WR ←WR − 1

10: E ← E + 1
11: end while
12: W ← w
13: return (E,W )

given the TFM’s and f as input, outputs E and W . As formalized in Algorithm 1, it

computes the largest possible number of rounds in which at least f+1 faulty measure-

ments can occur; this is the largest number of rounds in which the fusion interval is not

guaranteed to contain the true value. Intuitively, at each round the algorithm “sched-

ules” faulty measurements for the sensors that have the largest number of “allowed”

faulty measurements until the end of the window.

THEOREM 5.2. The output, E, of Algorithm 1 is the largest number of global faults

possible in a window of size W .

PROOF. The proof of optimality mirrors the proof of optimality of the Earliest Dead-

line First (EDF) scheduling algorithm. Suppose there exists a schedule s that is better

than the proposed here. Then s contains a round t in which a sensor si produces a

faulty measurement and sensor sj does not, even though sj has more “unused” faulty

measurements.

Suppose sj ’s next scheduled faulty measurement according to s is at time k > t.

Without loss of generality, we can assume si does not have a faulty measurement at

k.3 Then by swapping sj and si’s faulty measurements, i.e. making si’s measurement

faulty at time k and sj ’s faulty at time t, we do not affect the magnitude of E (since

the number of faulty measurements in each round remains the same). By replacing all

3Since sj has more remaining faulty measurements, there exists a time k when sj provides a faulty mea-
surement and si does not. If no such time exists, then we can remove the “scheduled” faulty measurement
by si at time t and replace it with a faulty measurement by sj (still within its TFM).
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such pairs we eventually transform s into a new schedule s′ that is exactly the schedule

suggested by the proposed algorithm here. Therefore, Algorithm 1 is optimal.

Note that Algorithm 1 is polynomial in the number of sensors, n, and is pseudo-

polynomial in the window size, w. At the same time, we note that it is executed offline,

at design stage, hence the execution time will not be prohibitive even for very large

window sizes. To inspect which choice of f is best suited for a given system, design-

ers need to take into account Algorithm 1 and its output. Comparing different pairs

(E,W )f may not always be possible in a quantitative way but an analysis similar to

that of Fig. 2 may be performed so that the best combination of accuracy vs. precision

is chosen.

5.2. Filtered Fusion Interval

In this subsection we describe how, given a pair (E,W )f and W rounds with a fusion

interval computed in each, one can derive a filtered fusion interval that is guaranteed

to contain the true value and is bounded in size. The filtered fusion interval can be

thought of as the system’s conservative, but correct, guess of its current state – since

it does not trust its last fusion interval, it examines the historical fusion intervals to

improve this estimate. To do this, we assume that the system has a known dynamical

model, up to additive noise, of the form:

xt+1 = g(xt) + wt, (1)

where x ∈ R denotes the system’s state (e.g., velocity), g(·) is the transition function

and w is bounded process noise, i.e., ‖w‖ ≤ M for some positive M . It is assumed that

each yi is a direct (possibly faulty) measurement of x.

Given this model, each fusion interval can be mapped from time t to t + 1 [Ivanov

et al. 2014b]. For instance, let I = [a, b]; then the mapping of I to the next round is

m(I) = {p | p = g(q) + n, ∀q ∈ [a, b], |n| ≤M}.4

4This definition is implicitly assuming g is continuous on the region [a, b]. If that is not true, the convex hull
of the mapping needs to be taken as well.
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Algorithm 2 Filtered Fusion Interval
Input: transition function g, an array FI containing W fusion intervals (in chronolog-

ical order) and a bound E on the number of global faults
1: FIC ← ∅
2: for {i← 1; i ≤W − 1; i← i+ 1} do
3: mapped I ← m(m(· · ·m(FI(i)))) // map i times
4: FIC .add(mapped I)
5: end for
6: FIC .add(FI(W ))
7: return sensor fusion(FIC , E)

It is now possible to design an algorithm to compute the filtered fusion interval at time

t using the last W fusion intervals.

The proposed algorithm is formalized in Algorithm 2. Essentially, all fusion intervals

are mapped, using g, to the current time t, thus obtaining W intervals at t. Then we

apply the original sensor fusion algorithm – since at most E mapped intervals are

faulty, we output the smallest interval that contains all points that lie in at leastW−E

mapped intervals. Thus, a filtered fusion interval is computed that is a conservative,

but bounded, estimate of the system’s current state.

We note that Algorithm 2 does not always produce the smallest possible interval

that is guaranteed to contain the true value. On other hand, it is efficient and can be

implemented in real time whereas it is difficult to obtain an algorithm that outputs

such an interval and is not exponential in the number of sensors and rounds. Finally,

Algorithm 2’s output is guaranteed to contain the true value and is bounded (provided

E < dW/2e), so it is still in the spirit of worst-case analysis.

6. A SOUND ALGORITHM FOR ATTACK DETECTION AND IDENTIFICATION

In this section we introduce attacks and describe our approach to their detection and

identification, which aims to differentiate sensor attacks from mere transient faults

given each sensor’s TFM. It is based on Pairwise Inconsistencies (PI’s) between two

sensors. Two types of PI’s are the key concepts of our approach: weak inconsistency

and strong inconsistency. We accumulate the information of strong inconsistencies

over time in order to utilize it for attack detection and identification. In the follow-

ing subsections, we first define each type of inconsistency and then present the attack
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detection/identification method. We conclude with a discussion on the conditions on

the TFM parameters under which our approach can operate.

6.1. Weak and Strong Inconsistency

This section is built on the premise that the true value θ(t) is unknown in general.

Thus, it is not always known which sensors have provided correct measurements.

However, we know how correct sensor measurements should relate to each other, and

mainly use this mutual information in our approach. The first relation between two

sensors, si and sj , is weak inconsistency, denoted by the predicate WI(i, j, t). Two sen-

sors are weakly inconsistent in a given round if and only if one of them provides a

faulty measurement.

Definition 6.1 (Weak Inconsistency). For any sensor indices i and j, and any time t,

WI(i, j, t) ≡ F (i, t) ∨ F (j, t).

We say that sensors i and j are weakly inconsistent at time t iff WI(i, j, t) holds.

Since weak inconsistency is defined upon the unknown true value θ(t), it is impossi-

ble to decide weak inconsistency in general. However, there exists a useful sufficient

condition. If the intervals of two sensors do not overlap each other, one of them must

have provided a faulty measurement because the true value cannot lie in both the

intervals. This condition is formally stated in the following lemma:

LEMMA 6.2. Given i, j and t,

|y(t)i − y
(t)
j | > εi + εj =⇒ WI(i, j, t)

PROOF. Assume for a contradiction that both si and sj provide non-faulty measure-

ments at time t, i.e., there exists θ(t) satisfying |y(t)i − θ(t)| ≤ εi and |y(t)j − θ(t)| ≤ εj .

This implies that

|y(t)i − y
(t)
j | = |(y

(t)
i − θ

(t))− (y
(t)
j − θ

(t))| ≤

|y(t)i − θ
(t)|+ |y(t)j − θ

(t)| ≤ εi + εj
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which contradicts the premise of the Lemma statement.

Note that both transient faults and attacks can cause weak inconsistency in a round.

Thus, to disambiguate between transient faults and attacks, we introduce another re-

lation between two sensors, namely strong inconsistency, denoted by the predicate

SI(i, j, t). Two sensors are strongly inconsistent if and only if one of them is non-

transiently faulty (i.e., it does not comply with its transient fault model).

Definition 6.3 (Strong Inconsistency). For any sensor indices i and j, and any time

t,

SI(i, j, t) ≡ NTF (i, t) ∨NTF (j, t)

We say that sensors i and j are strongly inconsistent at time t iff SI(i, j, t) holds.

Similar to weak inconsistency, strong inconsistency cannot be decided in general. How-

ever, there exists a sufficient condition again. If two sensors are weakly inconsistent

more times than a certain threshold in a window, they become strongly inconsistent.

LEMMA 6.4. Given i, j, t, t′=t∑
t′=t−min(wi,wj)+1

WI1(i, j, t
′)

 > ei + ej =⇒ SI(i, j, t)

PROOF. Note that a weak inconsistency at time t′ implies at least one sensor pro-

vides a faulty measurement at t′, hence the premise implies that the number of faulty

measurements in both sensors combined is also greater than ei + ej . This means that,

in a window of size min(wi, wj), either si has at least ei faulty measurements or sj

has at least ej faulty measurements. In turn, this implies that one of them must be

non-transiently faulty.

The notions of pairwise inconsistency in this subsection form a basis for the attack

detection and identification techniques to be explained in the following subsection.
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6.2. Attack Detection and Identification

In this subsection, we describe our approach to attack detection/identification using

the notions of weak and strong inconsistency. An attack is detected when there ex-

ist two sensors which are strongly inconsistent because one of them must be non-

transiently faulty. An attacked sensor is identified if it is strongly inconsistent with

multiple sensors. These statements are formalized in the remainder of this subsection.

To propagate the strong inconsistencies over time, we use a sequential detection

approach (motivated by sequential detection theory [Wald 1973]) and accumulate the

information over time. We use the predicate SI∗(i, j) to denote that there exists a time

t ≤ T when sensors si and sj are strongly inconsistent.

Definition 6.5 (Accumulated SI). For any sensor indices i and j,

SI∗(i, j) ≡ ∃t ≤ T, SI(i, j, t),

where T is the total time of the system’s operation.

Note that accumulated strong inconsistency between two sensors implies that one of

the two sensors is attacked.

LEMMA 6.6. Given si, sj

SI∗(i, j) =⇒ A(i) ∨A(j)

PROOF. From the definition,

SI∗(i, j) ≡ ∃t, (NTF (i, t) ∨NTF (j, t)). This implies

(∃t,NTF (i, t)) ∨ (∃t,NTF (j, t)) =⇒ A(i) ∨A(j).

We now formalize attack detection using accumulated strong inconsistency; there

exists a sensor attack if any pair of sensors have ever been strongly inconsistent.

THEOREM 6.7. (∃i,∃j, SI∗(i, j)) =⇒ ∃i : A(i).

PROOF. Let si and sj be two sensors that satisfy SI∗(i, j). By Lemma 6.6, this means

A(i) ∨A(j), and the Theorem statement follows.
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We now formalize the attack identification approach. Note that it is necessary to

assume that at most a sensors are attacked such that a < n−1. To explain the need for

the assumption, suppose that sensor si is strongly inconsistent with all other sensors.

Without the assumption on a, it is impossible to declare that si is attacked because

si could be correct and all other sensors could be attacked. Note that a should be less

than n − 1 because otherwise no sensor could be identified as attacked even if every

pair of sensors are strongly inconsistent. When a < n−1, there is a sufficient condition

to identify attacked sensors.

THEOREM 6.8. Let d(i) denote the size of set {j | SI∗(i, j)}, i.e., the number of sen-

sors that have been strongly inconsistent with si during the system’s operation. Then,

assuming a < n− 1,

d(i) > a =⇒ A(i).

PROOF. Suppose for a contradiction that si is not attacked. It follows that the

d(i) > a sensors which are strongly inconsistent with si must be attacked. This is a

contradiction because there are at most a attacks.

Lastly, we note that there exists a constraint on the TFM parameters governing the

feasibility of our PI-based approach. The following lemma provides a sufficient condi-

tion for the impossibility of attack detection by the PI-based method:

LEMMA 6.9. If ei + ej ≥ min(wi, wj) for all distinct i and j, then no attack can be

detected by our approach.

PROOF. Note that the premise implies that no strong inconsistency can be found

between any pair of sensors. This is true because even if si and sj are weakly inconsis-

tent in each round, it is possible that the measurements of si were faulty in the first ei

rounds and correct in the remaining ones, while the measurements of sj were correct

initially and faulty in the last ej rounds. In this way both sensors would be within their

TFM’s, and one cannot conclude that an attack exists.
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Fig. 3: The LandShark robot.

Table I: Fault models for the sensors on LandShark

Detector L. Encoder R. Encoder GPS
ε e ε e ε e

SF 0.26 n.a. 0.32 n.a. 0.48 n.a.
PI10 0.229 2 0.234 2 0.295 2
PI30 0.195 6 0.207 6 0.19 9
PI50 0.195 11 0.199 11 0.19 9
PI100 0.131 26 0.168 22 0.19 9
PI200 0.117 36 0.126 37 0.19 10

7. CASE STUDY

In this section, we evaluate the performance of the different aspects proposed in this

work through a case study on the LandShark robotic platform [Black-I Robotics 2015]

shown in Fig. 3. The LandShark is an electric unmanned ground vehicle, which con-

tains various sensors including left and right wheel encoders and a GPS unit. Each of

these sensors can be filtered to provide a velocity measurement at a rate of 10 Hz. Thus,

we use the redundancy of velocity measurements to evaluate the proposed techniques

in the presence of transient faults (e.g., tire slip).

7.1. Transient Fault Model Parameter Selection

This subsection illustrates the selection of the TFM parameters following the method

described in Section 4. First, we collect the training data by driving the LandShark

straight at a constant speed of 1 m/s on the different surfaces such as grass, asphalt

and snow, where the environment may cause transient faults (e.g., slipping tires would

mean encoders provide higher-than-actual velocity). The gathered training data corre-

sponds to 2400 velocity measurements by each sensor at 10 Hz (i.e., about four min-

utes). By examining the training data, we obtain Fig. 4, which is the real-data equiva-

lent of Fig. 2.
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(b) Sensor 2: Right Encoder
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(c) Sensor 3: GPS

Fig. 4: Empirical plots of the proportion of faults in a window (e/w) against the error
bound (ε).

Table I summarizes the chosen parameters, where setup PIw uses a window size w

for all three sensors and w is varied between 10, 30, 50, 100 and 200. For example, for

w = 50 in GPS (Fig. 4c), the knee point appears around ε = 0.19 and e/w = 0.18, cor-

responding to e = 9. Note that the knee points are more clearly visible as the window

size increases.

Finally, we note that the original sensor fusion (SF) approach would use the most

conservative error bounds (interval sizes) because it is designed for the worst case.

Specifically, in Fig. 4, we select the smallest ε such that no faulty measurements can

be observed (e.g., 0.48 for GPS). Note that the parameters for SF would be equivalent

to PI1. We observe that one benefit of using TFM is that as the window size increases,

the size of error bounds is generally reduced, thus allowing more precise sensor fusion

(e.g., PI200 is more than twice smaller than SF in the size of error bounds).

7.2. Sensor Fusion Performance

We now examine the effect of TFM on sensor fusion performance employing the TFM

parameters selected above. Note that no attacks have been introduced yet. As dis-

cussed in Section 5, there exists a trade-off between the precision and the accuracy of

the fusion interval depending on the choice of f . Thus, we evaluate these metrics using

the LandShark data and the selected TFM parameters for different window sizes.

To do this, we proceed as follows: we first collect test data from 17 runs of the Land-

Shark, each consisting of about 500 velocity measurements by each sensor at 10 Hz.

The true value is obtained in the same way as the one in the training data. Varying f
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Table II: Sensor fusion performance for different f . E (Ê) is the theoretical (empirical)
worst-case number of rounds with global faults. FI is the average size of correct fusion
intervals.

PIw
f = 0 f = 1

E Ê FI E Ê FI
PI10 6 (60%) 6 (60%) 0.428 3 (30%) 2 (20%) 0.482
PI30 21 (70%) 9 (30%) 0.329 10 (33%) 3 (10%) 0.397
PI50 31 (62%) 9 (18%) 0.325 15 (30%) 3 (6%) 0.391
PI100 57 (57%) 36 (36%) 0.248 28 (28%) 8 (8%) 0.318
PI200 83 (42%) 68 (34%) 0.211 41 (21%) 27 (14%) 0.263

Table III: Average size of filtered fusion interval for different values for f and noise
bound M .

PIw
f = 0 f = 1

M = 0.005 M = 0.001 M = 0.005 M = 0.001
PI10 0.504 0.466 0.499 0.466
PI30 0.545 0.400 0.493 0.397
PI50 0.635 0.403 0.540 0.399
PI100 0.815 0.366 0.598 0.358
PI200 1.036 0.371 0.673 0.334

between 0 and 1,5 we perform sensor fusion at each round of the test data and check

whether the fusion interval contains the true value (i.e., there is a global fault). Then

we compute the worst number of rounds (denoted by Ê) with global faults in a win-

dow and compare that with the theoretical bound E computed by Algorithm 1 given

the TFM parameters for each sensor. In addition, we calculate the average size of the

correct fusion intervals for each setup (denoted by FI).

Table II shows the performance results, where in addition to the absolute values of E

and Ê, we show their proportion of the window size in a percentage. Ê is never larger

than E but is sometimes equal, hence the worst case is indeed observed in reality. At

the same time, as the window size increases, the analytical worst-case becomes less

tight. Furthermore, as f increases, so does the average size of fusion interval, but

the number of worst-case global faults decreases. Regardless of the choice of f , both

metrics generally improve with window size. The reason is that the TFM for a bigger

window tends to have a smaller error bound (resulting in better precision) as well as a

smaller (e/w) ratio (resulting in better accuracy).

5The case of f = 2 is excluded because n = 3, and, in that case, the fusion interval cannot be bounded in
general.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 J. Park et al.

Table IV: False alarm rate
Detector SF PI10 PI50 PI200

False Alarm
Rate(%) 0.06 0.64 0.00 0.00

In addition, we also computed the filtered fusion interval at each round for the dif-

ferent setups. Since a constant input was used to drive the LandShark, the vehicle’s

state does not change except for process noise. Since the noise is not known exactly, we

used two different bounds to compute the filtered fusion interval. Table III presents

the average size of the filtered fusion interval for the two values of f and for noise

bounds equal to either 0.005 m/s or 0.001 m/s. For larger values of the noise, the pro-

posed filtering algorithm does not perform very well with large windows due to the

increased uncertainty that it introduces. Yet, for the smaller noise bound using larger

windows is still more beneficial for the system. Since the filtered fusion interval always

contains the true value and its size is not significantly larger than the average size of

the fusion interval in a given round, we argue that systems with small noise should

utilize the filtered fusion interval as a correct conservative estimate of their state.

7.3. Attack Detection Performance

In this subsection, we evaluate the performance of the attack detectors for the selected

TFM parameters employing various attack scenarios explained below. We use the same

test data mentioned in the previous subsection.

We first evaluate the false alarm rates of the attack detectors; the false alarm rate

is calculated as the number of incorrect alarms over the total number of tests. Note

that all raised alarms are considered to be incorrect because no attacks are present

yet. We perform the first test as soon as w measurements are available; consequently,

whenever a new measurement arrives from each sensor, a new test is performed using

the last w measurements. Table IV shows the false alarm rates for the TFM param-

eters of Table I.6 The results show that for window sizes 200 and 50, the false alarm

rate is zero, but it is non-zero for window sizes 10 and 1 (i.e., the SF-based detector).

The reason is that the false alarms result from transient faults and they do not appear

too often in larger windows. On the other hand, the SF-based approach has a low false

6PI30 and PI100 are excluded for the rest of the paper to avoid clutter.
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Table V: Detection rate
Detector SF PI10 PI50 PI200

Biased Attack 62.74 99.74 100 100
Random Attack 4.91 36.10 93.30 100
Greedy Attack 0 0.4817 0 0

alarm rate because it uses conservative error bounds; it raises some false alarms be-

cause the largest faulty measurement observed in the training data was less than the

one in the test data.

We now evaluate the attack detection rate assuming that only one (unknown to

us) out of the three sensors is attacked. We consider three different attack scenarios:

(1) bias attack; (2) random attack; (3) greedy attack. The bias attack adds a constant

of 0.8 m/s to the attacked sensor. The random attack adds a uniformly distributed

random noise between 0 and 0.8 m/s.7. The greedy attack replaces the measurement of

the attacked sensor with a specially crafted measurement designed to maximize the

uncertainty (i.e., the fusion interval size) in the system; this is also a stealthy attack

as discussed in [Ivanov et al. 2014a].8 Note that the attack is present in every round

in the detection rate test, thus all raised alarms are true alarms.

To evaluate the attack detection rate, we employ the same test data as above and

augment it by simulating each attack scenario described above. Table V summarizes

the detection rates for each detector and attack scenario. The detection rate improves

in general as the window size increases. The only exception is greedy attack, where

most of the detectors raise no alarms. This indicates that given enough knowledge and

computational power, the attacked sensor can pretend as if it is a correct one while

it negatively affects the system. Note that the SF-based approach’s detection rate is

lower than the PI-based one’s because it uses conservative error bounds.

Note that the false alarm rate improves with window size, whereas, for the same

reason, the attack detectors with a large window size may be slow to detect attacks.

Therefore, we also evaluate the detection rate vs. the elapsed time since the attack

begins. The results for the various TFM parameters are shown in Fig. 5, where the

steady-state detection rates correspond to the detection rates in Table V. Fig. 5c shows

7The magnitudes of the bias and random attacks are selected to be roughly as large as the interval size of
the most imprecise sensor (i.e., GPS).
8We assume the greedy attack knows the other abstract measurements, as possible if sensor communication
occurs on a shared medium, e.g., CAN bus.
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(c) Greedy attack.

Fig. 5: Time to detection plots under the three classes of attacks.

that all detectors rarely detect any greedy attacks. From the cases of biased and ran-

dom attacks, Fig. 5 shows that the steady-state detection rate improves with win-

dow size, and the time needed to reach the steady-state detection level increases only

marginally.

To compare the attack detectors in greater depth and to examine their robustness

to the choice of the TFM parameters, we vary the error bounds of the TFM parame-

ters selected in Section 7.1. Specifically, varying ε of each sensor from 50% to 150% of

their magnitudes, we calculate the false alarm rate and detection rate for each setup.

By examining the robustness of attack detector regarding the TFM parameters, we

can qualitatively demonstrate the importance of accurate parameter selection. The re-

sults for the varied TFM parameters for each window size are depicted as the receiver

operator characteristic (ROC) curve in Fig. 6, which is a classical way to measure a

detector’s performance. Note that the 45◦ line is a dotted line and is moved lower to

make comparative performance clear.9

Note that data points which trend towards the upper left corner indicate a better

detector because the detector would have a larger detection rate and a smaller false

alarm rate [Wald 1973]. We can qualitatively evaluate that one detector is more robust

than another if the ROC data points cluster nearer to the upper left corner when vary-

ing its parameters [Wald 1973]. Therefore, the robustness of the PI-based detectors

improves with window size in general. Note that PI10 performs marginally better than

the SF-based detector, and PI200 and PI50 apparently outperform the others. Lastly,

the ROC curves for the greedy attack scenario lie on the 45◦ line, which implies that

9Only 13 points are used to show the general trend and avoid overcrowding.
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Fig. 6: Detection Rate vs. False Alarm Rate under the three classes of attacks. Dotted
black lines denote 45◦ lines. Solid lines connect points for a clearer presentation. Note
the scale is different in the greedy attack case.

when the most powerful attacker is present, the performance of the attack detectors is

not better than a coin flip.

The results presented in this section suggest that the false alarm rate, the detection

rate and the robustness of PI-based detectors improve with window size, at a cost of a

marginal increase of time-to-detection. In addition, the PI-based detector outperforms

the SF-based one as the window size increases.

Finally, we only briefly highlight the attack identification performance because it

shows the almost identical result to the detection one. Note that in general, the iden-

tification rate also improves with window size, experiencing only a marginal increase

in time-to-identification.

8. CONCLUSION

In this paper, we considered the security of CPS with redundant sensors, some of

which can be attacked while others may be transiently faulty. Employing TFM’s, we

presented an algorithm to detect and identify sensor attacks in the presence of tran-

sient faults. Since reliable TFM parameters may not be given by manufacturers, we

provided a method to identify such parameters from training data. We examined the

effect of TFM on sensor fusion performance, and provided an algorithm to find the fil-

tered fusion interval which is guaranteed to contain the true value. These approaches

were evaluated on real data from a robotic platform. For future work, we plan to en-

hance the detection method by incorporating a system’s dynamical model (currently

only used for the filtered fusion interval).
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