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Abstract

This dissertation concerns the sequential large-scale detection of multiple
potential sources using wireless sensor networks. A new 2-step approach to
sequential multiple-source detection is introduced called the iterative partial
sequential probability ratio test (IPSPRT) that minimizes the time-to-decision
as the desired probability of false alarm and probability of miss decrease. The
first step of the IPSPRT sequentially decides whether any or no sources become
active at a specific time, based on a sequential probability ratio test using the
generalized likelihood ratio such that the probability of indecision is minimized
and the maximum probability of false alarm and maximum probability of miss
are bounded. If step one decides that some source is active, step two identi-
fies active sources through an iterative maximization of the likelihood ratio and
physical inspection process such that the probability that an active source is not
detected is bounded. After a decision is made regarding sources which become
active at a specific time, the IPSPRT increments the time at which sources are
hypothesized to become active and the procedure continues. Numerical evalu-
ations of the IPSPRT are provided in comparison to other feasible methods for
a diffusion process monitoring example consisting of 100 sensors and 100 po-
tential sources. A new dynamic sensor selection problem is formulated for the
non-Bayesian multiple source detection problem using a generalized likelihood
ratio based dynamic sensor selection strategy (GLRDSS) which a minimum
number of sensors to report observations at each sampling instance. An evalu-
ation of the GLRDSS is provided through simulation. A carbon sequestration
site monitoring application is introduced as a case study and a test bed im-
plementation discussed. The robustness of the IPSPRT and dynamic sensor
selection algorithm to common wireless sensor networking errors and failures is
evaluated using the carbon sequestration site monitoring application as a case
study.
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Chapter 1

Introduction

Multiple source detection (MSD) occurs in many applications such as environmental mon-

itoring [14, 41, 47, 71], object identification [7, 35], communications [77], acoustic source

localization [56, 76], fault detection [6, 28, 30], and object tracking [9, 32]. In many MSD

applications, the spatial area being monitored can extend for miles, may require months to

years of monitoring, and contain hundreds of sensors and sources. These large-scale long-

term MSD applications introduce new and challenging information processing problems.

These problems include handling a large number of possible sources, which leads to detec-

tion problems that explode combinatorially using standard optimal detection strategies.

Additionally, there are sensor-related information processing issues, such as addressing

sensor calibration, drift, and failure.

Large-scale long-term MSD applications also introduce sensor deployment issues. In

this class of problems, the deployment of a standard wired sensor network may not be fea-

sible due to cost, environmental constraints, and potentially unsightly effects of network

wiring. By applying recent advances in wireless sensing devices and wireless networking

to large-scale long-term MSD applications, the prohibiting issues associated with standard

wired networks can be avoided. Wireless sensor networks (WSNs) are easily deployed and

present an inexpensive means to gather sensed data with minimal invasion of the sur-

rounding environment. WSNs also introduce new and challenging cyber-physical problems
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such as maximizing network lifetime without sacrificing detection performance, allocating

network resources (bandwidth), dealing with loss of sensed information (packet loss), and

detecting sensor failures - all of which can affect performance in large-scale long-term MSD

applications.

The following sections survey previous work on MSD and sensor selection, introduces

a carbon sequestration site monitoring application as a potential case study, and describes

the contributions of this dissertation.

1.1 Multiple source detection (MSD)

The fundamental problem of signal detection and estimation is to use information-bearing

signals to make inferences about the contained information [26]. Since the 1940’s the

process of making decisions based on observations has received significant attention in a

variety of fields. Specifically, when known dynamical models exist relating observations to

underlying stochastic sources, these information-processing problems are aptly classified as

problems of detecting stochastic processes. Within this class of problems, we are concerned

with detection problems involving Gaussian processes that stem from the classical work of

Neyman and Pearson [40]. Their work considers hypotheses having no a priori probability

of being true and introduces a fixed-sample-size detector that minimizes the probability of

a miss for a specified probability of false alarm. From the Neyman-Pearson criterion, the

optimal detector results by formulating a scalar test on the likelihood ratio. The standard

Neyman-Pearson solution requires at least one threshold per hypothesis, and does not scale

when the number of hypotheses grows exponentially with the number of possible sources;

furthermore, the Neyman-Pearson solution considers only constant sample sizes, and does

not allow sequential hypothesis testing.

Building upon the results obtained by Neyman and Pearson, Wald [65] introduced the

sequential probability ratio test (SPRT) as a method of performing sequential binary hy-

pothesis testing that meets both a bounds on the probability of false alarm and probability
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of miss by allowing the sequential gathering of observations. Wald considered simple bi-

nary hypothesis testing problems with the same covariances, and Cox [8] extended Wald’s

results to incorporate simple binary hypothesis tests with different covariances. Beyond

the initial work of Wald and Cox, relatively few have attempted to extend the SPRT to

include multiple hypotheses or to sequential binary tests of composite hypotheses. Early

noteworthy contributions were made by Sobel and Wald [57] and Armitage [3] who inde-

pendently expanded the SPRT to include three hypotheses (H−1, H0, and H1); however,

their results were constrained to special hypothesis tests where the null hypothesis (H0)

lies between the two event hypotheses (H−1, H1), effectively resulting in a two-sided se-

quential binary hypothesis test where each side corresponds to a different event. Hecht

and Schwartz [18] extended sequential detection for multiple hypotheses, but were still

constrained to ordered hypotheses as in the earlier work of Sobel, Wald and Armitage.

After the work of Hecht and Schwartz, the focus shifted to the time-series inclusion of mul-

tiple hypotheses for determining when a single event occurred. To retain (in some sense)

the notion of ordered hypotheses, Newbold and Ho [39] proposed a SPRT-based solution

to single persistent-source detection that uses a periodic test to determine active sources.

Their contribution was the first real attempt at sequential persistent source detection.

Although they considered only systems with a single source and provided no theoretical

bounds on the performance, their solution was shown to work well in simulation. Since

the work of Newbold and Ho, we are unaware of any work that has extended the SPRT to

include unordered multiple hypotheses.

Other researchers have addressed the M-ary hypothesis testing problem with a variety

of heuristics. The two most frequently applied methods still used today are maximum-

likelihood sequence estimators (MLSE) proposed by Forney [12], and information theoretic

criteria approaches first introduced by Akaike [1], Schwarz [52], and Rissanen [46], and later

formalized for detection purposes by Wax and Kailath [69]. The MLSE based approaches
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result from applications of the Viterbi algorithm (VA) [64], which was later shown by Forney

[13] to recursively and optimally solve the problem of estimating the state sequence of a

discrete-time finite-state Markov process observed in memoryless noise. Further extensions

of the MLSE have led to the multi-user detectors (MUD), first described by Verdú [63]

as a method to demodulate non-orthogonally multiplexed signals. Both the MLSE and

information theoretic approaches are suboptimal solutions to the M-ary hypothesis testing

problem. The former applies estimation as a direct means of performing detection, while

the later optimizes over various cost functions similar (but not identical) to the optimal

likelihood ratio approach of the SPRT. Both approaches increase in dimensionality with

the observation set, which is known to increase with both the number of sources and time.

In recent applications, both the MLSE approaches [56, 76, 77] and information theoretic

approaches [30, 68] have been shown to perform well, as their decisions are known to be

the same as the optimal M-ary hypothesis test as the number of observations approaches

infinity.

While the area of MSD has been well studied, the work described above applies only

when the hypothesis testing problem contains a manageable number of hypotheses. To

date, it is our belief that no one has considered problems where the number of hypotheses

grows combinatorially with the number of sources. For large-scale long-term MSD ap-

plications, a solution is needed that can handle hundreds of sources which result in an

unprecedented number of possible hypotheses.

1.2 Sensor selection

The problem of sensor selection has recently been linked to an increasing number of ap-

plications including robotics [21], sensor placement [16, 75], target tracking [66], and plant

control [29]. Sensor selection is a type of 0 − 1 integer programming problem that was

shown to be NP-complete by Karp [27]. The major difficulty in 0−1 integer programming

(and thus sensor selection) lies with the fact that there is no optimality criterion for which
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a specific solution can be tested [38]. Researchers have addressed the sensor selection prob-

lem in various ways. Most related to this dissertation are the methods developed in the

context of large-scale dynamic systems that contain a large number of sensors (possibly

hundreds). While there are many ways to perform sensor selection [48], this related work

survey will focus primarily on a specific subset of these strategies that lead to solutions

that are feasible for large-scale systems.

One method of performing sensor selection, proposed by Feng and Zhao [11], applies the

branch and bound method developed by Land and Doig [31]. Their results demonstrate

that the sensor selection problem can typically be solved optimally using less computa-

tion, but the worst-case solution still involves an exhaustive search. An early heuristic

solution to sensor selection introduced by Oshman [42] assumes a subset of possible sensor

selection matrices that adequately span the entire set of sensor selection matrices. By

applying filtering, a selection matrix is selected from the spanning subset. The primary

drawback with Oshman’s solution is the arbitrary determination of the spanning subset.

Furthermore, Oshman’s result still requires an iterative search of the spanning set to find

the optimum. As a shift away from iterative search methods, Gupta et al. [17] developed

a method of choosing sensors over time using a stochastic method. Their strategy requires

the linear programming relaxation of the 0−1 integer programming problem. The optimal

solution yields values between 0 and 1 as opposed to value equalling 0 or 1 for each sensor.

These values are used for sensor selection by interpreting each value as the probability of

selecting a specific sensor.

Most recently, Joshi and Boyd [25] addressed the sensor selection problem through a

hybrid method consisting of both relaxation and iterative search techniques. They apply

the same relaxation as Gupta et al., but select sensors that minimize the state estimation

error. The constraints on the problem are that the sum of the 0 − 1 approximations

(interpreted as stochastic values by Gupta et al.) be less than the maximum number of
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sensors selected. Once a minimum is found, the largest-valued sensors are chosen. Then,

a local minimum is found by iteratively switching any two sensors. The results of Joshi

and Boyd are applicable to large-scale monitoring systems and form the basis for the

work in this dissertation. Their method has been shown to be O(m3), where m is the

number of sensors, which is a significant improvement over previous iterative approaches.

An extension of the work of Joshi and Boyd is the work of Mo, Ambrosino, and Sinopoli

[74], which performs multi-step sensor selection to maximize WSN lifetime subject to a

constraint on the estimation error.

For the MSD problem considered in this thesis, the only work we are aware of that

attempts to extend network lifetime constrained by MSD performance is the work of Sri-

vastava, Plarre, and Bullo [58]. In their work, they introduce a randomized sensor selection

method to minimize a function of time to decision for a binary hypothesis testing prob-

lem. In their approach, they propose that at each time step, a single sensor is selected.

Under this assumption, they minimize the expected time to decision by assigning a selec-

tion probability to each sensor. Like the approach of Joshi and Boyd, this strategy uses

convex-optimization to assign the probability of selection. The authors of [58] extend their

results to the case of three hypotheses (one null hypothesis and two event hypotheses),

but assert that for more than three hypotheses, their objective function is neither convex

nor concave and therefore requires the use of more sophisticated algorithms. In large-scale

MSD applications, the number of hypotheses is much larger than three and choosing a

single sensor at each time step may not be sufficient to meet the time to decision criterion.

While the work of Srivastava, Plarre, and Bullo attempts to bound the time-to-decision,

their approach does not scale well as the number of potential events increases, and thus is

not feasible for large-scale MSD applications.

Like the area of MSD, sensor selection is also a well studied topic. In the most basic

sense, all sensor selection strategies leverage the information desired to perform a task
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against the cost of gathering information. In large-scale MSD using WSN, sensor selection

is used to prolong the network lifetime, which comes at the cost of the ability to decide

which sources are active. While the strategies discussed above address sensor selection for

the purpose of extending network lifetime, the strategies do not consider networks used for

MSD with many possible sources in their selection criteria.

1.3 Application: carbon sequestration site monitoring

In an October 2009 report on carbon sequestration written by the United States Secretary

of Energy, it was stated that, “coal accounts for 25 percent of the world’s energy supply and

40 percent of carbon emissions, and is likely to be a major and growing source of electricity

generation for the foreseeable future.” [59] Since greenhouse gases produced from burning

fossil fuels are adversely affecting the environment, the United States Department of Energy

is especially interested in carbon capture and sequestration to reduce emissions of carbon

dioxide (CO2) [5]. The United States government has earmarked more than $4 billion to

further carbon capture and sequestration technologies, including a continuing investment

of over $500 million over 10 years in sequestration science and monitoring techniques to

ensure safe and long-term effective geological storage of CO2 [59].

It has been proposed that sequestration be accomplished by storing the CO2 in large

underground geological formations, where injecting CO2 into some of the proposed geolog-

ical formations can have an added financial benefit to help defray the cost of sequestration.

These profitable sequestration applications include performing enhanced oil recovery in

current oil wells and collecting methane from deep un-minable coal beds [50, 71]. It has

been proposed to monitor CO2 from both surface and underground sensors [71]. Under-

ground monitoring is much more expensive than surface monitoring, but surface monitoring

can be significantly affected by advection (wind) whereas underground monitoring is not

as susceptible [50]. Since the CO2 concentration fluctuates with season and environmental

variables, it is suggested that other detectable gaseous molecules, less affected by seasonal
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and environmental variables, be injected into the sequestered CO2 and these molecules be

detected to identify leaks [50]. Regardless of whether CO2 or another molecule is used

for detection, or wether underground or surface sensing is employed, a cheap method of

collecting the sensed data is to deploy a WSN [71]. Due to underground dispersion of se-

questered CO2, monitoring (either on the surface or underground) needs to be performed

over vast areas (hundreds of square kilometers) containing a large number of potential CO2

leak locations (sources) [50, 71]. Additionally, the monitoring period is required to last for

years [71]. Thus, carbon sequestration site monitoring is a prime example of a large-scale,

long-term MSD problem that uses a WSN to gather observations.

Performing detection of potential sources using a WSN, has been addressed in many

ways. The simplest approaches involve static sensor-level detection based on a thresholding

of the local-sensor measurements [22, 35, 60]. The simplicity of these approaches comes at

a cost of ignoring any dynamics governing the space and time evolution of the effect of an

active CO2 source. To develop a dynamic detection algorithm requires a model of the CO2

dispersion process, which is described by a second order partial differential equation (PDE)

known as Fick’s second law of advection and diffusion [53] relating the parameters of eddy

diffusion and wind magnitude to spatial and temporal concentration. In Fick’s second law,

the eddy diffusion parameter is difficult to characterize [53, 54] since the parameter value

changes with the environmental terrain, wind intensity, wind turbulence, and atmospheric

conditions [45, 62]. The most common dynamical model resulting from Fick’s second law

is the Gaussian plume model [53], which applies a down-wind Gaussian assumption for

diffusion. Researchers have applied this model to the problem of detecting gas leaks using

wireless sensor networks [14, 41], and while the model has been shown to be accurate

[53, 54], it is non-linear in both space and time. To avoid the non-linear properties of the

Gaussian plume model, linear lumped-parameter models have been developed for Fick’s

second law by applying an Euler’s approximation [34] to the spatial derivatives [9, 19, 55],
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where the accuracy of these models depends on the granularity of spatial discretization

[34]. These linear lumped-parameter models are well suited for MSD applications since

they result in parameterized linear state-space models [23] where each state represents the

gas concentration at a unique spatial location [9, 19].

1.4 Contributions

This dissertation addresses the general problem of large-scale long-term persistent MSD

using wireless sensor networks. We consider MSD applications where the objective is to

detect the presence of persistent sources so that appropriate actions can be taken when

sources are active. This problem can be divided into two sets of concerns : information

processing and resource management. In the area of information processing, we have

the issues of large-scale MSD based on noisy observations. Within the realm of resource

management, we have the issue of performing long-term sensing and data collection in the

presence of bandwidth and power consumption constraints. We develop scalable solutions

to these problems. In particular, we provide the following contributions:

1. A heuristic solution to persistent MSD that scales linearly with the number of po-

tential sources.

2. An empirical evaluation of the above MSD solution through simulation in comparison

to other feasible solutions for large-scale persistent MSD.

3. A scalable dynamic sensor selection (DSS) strategy that prolongs the lifetime of a

WSN used for MSD and empirical evaluation.

4. A physical implementation and evaluation of the robustness of the above contribu-

tions with respect to common sensor networking errors and failures.

The following chapter formulates the MSD problem to be solved. A large-scale long-

term MSD heuristic is introduced in Chapter 3 and simulated results are shown for a

diffusion example. Chapter 4 introduces a dynamic sensor selection (DSS) strategy as
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an approximate one-step optimal sensor selection strategy for the purpose of extending

network lifetime and illustrates its performance using simulation. An implementation and

robustness evaluation of the MSD strategy using a WSN network is described in Chapter

5 for the carbon sequestration site monitoring application, and concluding remarks are

provided in Chapter 6.
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Chapter 2

MSD Problem Formulation

This chapter formulates the general problem of performing multiple source detection (MSD)

using a wireless sensor network (WSN). The following section introduces a system model re-

lating potential sources to intermittent noisy observations. Section 2.2 presents preliminary

notation for MSD and an overview of sequential hypothesis testing. Section 2.3 formulates

the sequential hypothesis testing problem for MSD addressed in this dissertation.

2.1 System model formulation

In general, real world processes are modeled by continuous PDEs that describe the effect of

each source on the surrounding environment. When discretized spatially and temporally,

the resulting linear time-varying dynamical model relates a finite set of potentially active

sources, uk, to a finite set of noisy sensor observations, yk, through a set of process state

variables, xk. This section presents the general system model used for identifying active

sources from the noisy sensor observations.

We consider linear process models, relating the sources to observations, written as:

xk+1 = Akxk +Bkuk + wk

yk = Ckxk + vk,

(2.1)

where wk and vk are uncorrelated zero-mean Gaussian process and measurement noise
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with covariance matrices W and V respectively, Ak is the lumped-parameter process state

dynamics governing xk, Bk describes the effect of the sources, uk, on xk, and Ck is the

observation matrix relating the process state to the sensor measurements. It is assumed

that the process state in (2.1) is observable.

In this formulation, the source vector, uk, is comprised of J sources. Each source is

written as ujk v uk,
1 where every component of uk is a component of exactly one source.

Each source, ujk, is modeled as:

zjk+1 = F j
kz

j
k + hjk

ujk = Γjk
(
(Gj

k)
T zjk + djk

)
,

(2.2)

where, zjk is the vector of source state variables associated with ujk, h
j
k v hk and djk v dk

are the zero mean Gaussian source process noise and source output noise with covariances

H and D, respectively (assumed to be uncorrelated with wk, vk, and each other), F j
k

represents the source dynamics for ujk, G
j
k is a matrix that projects the source state vector

zjk into the source ujk, and Γjk ∈ {0, I} specifies whether ujk is active or inactive. When

Γjk = 0, ujk is considered inactive, while Γjk = I implies ujk is active. This work only

considers persistent sources, that is, sources that remain active indefinitely once becoming

active. Since each source is persistent, if ΓjK = I for source j at time K, then Γjk = I for

all k ≥ K. The model that incorporates all the sources and source dynamics, referred to

as the source model, is written as:

zk+1 = Fkzk + hk

uk = Γk (Gkzk + dk) .

(2.3)

It is assumed that the concatenation of the source states, zk, in (2.3), is fully observable

when Γk = I. In this formulation, there are M sensor measurements available at each time

1xi v x means xi is a vector of components selected from x
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k and J possible persistent sources we wish to identify as active or inactive.

Since observations are gathered using a WSN with an imperfect communication channel,

some observations will be lost. In addition to the observation loss associated with the

WSN communication channel (known as channel loss), observations may be intentionally

uncollected by performing sensor selection. Sensor selection is the process of requesting

only a subset of the observations to be reported at each time step and is used to meet

the bandwidth and power constraints of the WSN. The observation model including both

channel loss and sensor selection is written as:

rk = ΛkQkyk, (2.4)

where rk v yk is the vector of observations received over the WSN at time k, Qk ∈ Q is the

sensor selection matrix, and Λk is the channel selection matrix. The sensor and channel

selection matrices correspond to sensor selection and channel loss, respectively. We denote

the sensor selection matrix in the extreme cases when no sensors are selected and all the

sensors are selected as Qk = ∅ and Qk = I, respectively. The set of all possible sensor

selection matrices, Q, is defined as:

Q =
{
Q ∈ {0, 1}L×M |1TLQ ∈ {0, 1}M , Q1M = 1L

}
, (2.5)

where L ∈ {0, 1, . . . ,M} is the number of sensors selected to report measurements. ΛT
k ∈

{0, 1}L×R in (2.4) is defined as the basis of the column space of QkΩkQ
T
k , and Ωk is the

channel reliability matrix defined as diag{ω1
k, . . . , ω

L
k }, where each ωlk is a bernoulli random

variable representing whether an observation is received (ωlk = 1) or lost (ωlk = 0), with

P
[
ωlk = 1

]
= ω̄lk. By combining the process, source, and observation models, the system
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model is written as:

 xk+1

zk+1

 =

 Ak BkΓkGk

0 Fk


 xk

zk

+

 I BkΓk 0

0 0 I



wk

dk

hk


rk =

[
ΛkQkCk 0

] xk

zk

+ ΛkQkvk.

(2.6)

We assume the process state is observable through yk. When a source is active, we also

assume the corresponding source state is also observable (otherwise the source would not

affect the observations). The a priori distribution on the process state is given as

x̃0 : N [x̂0,Σ
x
0 ], (2.7)

where N [µ,Σ] represents the Gaussian distribution with mean µ and covariance Σ. When

the jth source transitions from inactive to active at time k = K, the source state corre-

sponding to the jth source is initialized at time k = K according to

z̃jK : N
[
ẑj,K ,Σ

z
j,K

]
. (2.8)

The initial source state is assumed to be independent of the process state, and the noise

terms are distributed as:



w̃k

ṽk

h̃k

d̃k


: N





0

0

0

0


,



W 0 0 0

0 V 0 0

0 0 H 0

0 0 0 D




, (2.9)
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The above model relates a collection of potentially active sources to available noisy

observations through a time-varying linear dynamic process. The model developed in this

section will be referenced throughout the remainder of this chapter and again in Chapter

4 to formulate the problems of sequential multiple hypothesis testing and sensor selection,

respectively.

2.2 Sequential hypothesis testing

This section introduces notation useful for discussing MSD problems and provides a brief

review of classical sequential hypothesis testing (see, e.g., [44, 51, 61, 65, 67]). The following

subsections review sequential binary hypothesis testing and sequential multiple hypothesis

testing, respectively.

2.2.1 Sequential binary hypothesis testing

In a sequential binary hypothesis testing problem, the observation random vector, x̃, is

distributed as

x̃ : fθ(x), (2.10)

where θ ∈ Θ0

⋃
Θ1 parameterizes the distribution of the observation random vector and

Θ0 and Θ1 are disjoint subspaces of the parameter space corresponding to the hypotheses

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

. (2.11)

In the sequential binary hypothesis testing problem in (2.11), hypothesis H0 is the null

hypothesis and H1 is the event hypothesis. In general, a hypothesis Hi is a simple hypothesis

if the corresponding parameter space contains a single element (Θi = {θi}); otherwise it is

a composite hypothesis.

A test, φ(x), for the sequential binary hypothesis testing problem in (2.11) can either

accept the null hypothesis (φ(x) = H0), reject the null hypothesis (φ(x) = H1), or make
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Table 2.1: Classification of errors for binary hypothesis tests

H0 H1

φ(x) = H0 x II
φ(x) = H1 I x
φ(x) = H−1 x x

no decision and gather additional observations (φ(x) = H−1). A false alarm (type I error)

occurs when the null hypothesis is true and the test rejects the null hypothesis, while a

miss (type II error) occurs when the null hypothesis is false (the event is true) and the

test accepts the null hypothesis. Table 2.1 illustrates the types of errors that occur for

sequential binary hypothesis testing problems, where the columns represent what occurs

(the truth) and the rows denote the test decision. In Table (2.1), ‘I’ denotes a false alarm

(type I error), ‘II’ corresponds to a miss (type II error), and ‘x’ represents a decision

that does not result in error (i.e. when the test decision matches the truth, or the test is

inconclusive).

For sequential binary hypothesis testing problems, the probability of false alarm and

probability of miss of a test are defined as the following.

Definition 1. The probability of false alarm (PFA) and probability of miss (PM) of a

sequential binary hypothesis test, φ(x), of H0 vs. H1 are defined as:

PFA : P [φ(x) = H1|H0]

PM : P [φ(x) = H0|H1]

, (2.12)

where P [φ(x) = Hi|Hj] is the integral of fθ∈Θj
(x) over the region of x where the test,

φ(x), decides Hi. A sequential binary hypothesis test, φ(x), is designed such that both the
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probability of false alarm and probability of miss are bounded as

P [φ(x) = H1|H0] ≤ α

P [φ(x) = H0|H1] ≤ β

, (2.13)

where α and β represent the maximum probability of false alarm and maximum probability

of miss, respectively. Since the probability of false alarm and probability of miss are

bounded for sequential hypothesis testing problems, the expected time-to-decision under

both hypotheses is used to evaluate the test’s performance. The time-to-decision is defined

as the number of samples or sampling periods required to make a decision.

When both the null and event hypotheses are simple (meaning Θi = {θi} for i ∈ {1, 2}),

the sequential probability ratio test (SPRT) is the test that minimizes the expected time-

to-decision under both hypotheses while bounding both the probability of false alarm and

probability of miss. The SPRT is an extension of the Neyman-Pearson test that results in

the threshold test

φ(x) =


H0 if Λ(x) ≤ ηβ

H1 if Λ(x) ≥ ηα

H−1 otherwise

(2.14)

where Λ(x) is the likelihood ratio, defined as

Λ(x) =
fθ1(x)

fθ0(x)
. (2.15)

Assuming normal distributions, the optimal values of ηβ and ηα in (2.14) are difficult to

calculate analytically, except in special cases where either the means or covariances are the

same under the null and event hypotheses. Thus, a worst-case approximation is employed
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that bounds ηα and ηβ, known as Wald’s approximation, and written as:

ηα ≤
1− β
α

ηβ ≥
β

1− α

. (2.16)

Proofs of these bounds based on the maximum probability of false alarm and maximum

probability of miss are in Lemma 2 and Lemma 3 in Appendix B which follow directly

from [65]. In words, the upper bound for ηα results from recalling that H1 is accepted only

when the likelihood ratio, Λ(x), is greater than ηα. Recalling the definition of the likelihood

ratio in (2.15), the condition to accept H1 is equivalent to fθ1(RK) ≥ ηαfθ0(x). Thus the

total probability measure of fθ0(x) over the region where H1 is accepted, P [φ(x) = H1|H0],

must be at least ηα times larger than the total probability measure of fθ1(x) over the same

region, namely P [φ(x) = H1|H1]. By definition, P [φ(x) = H1|H0] is less than α, and by

definition, P [φ(x) = H1|H1] is greater than 1− β. Thus, the upper bound for ηα in (2.16)

guarantees that the test’s power is at least 1 − β and the size is at most α. A similar

analysis is made to derive a lower bound for ηβ.

The SPRT is an ideal test when observations are gathered sequentially and both hy-

potheses are simple (i.e. contain a single parameter). The SPRT bounds both the prob-

ability of miss and probability of false alarm while ensuring a minimal time to decision;

however, when considering a simple null hypothesis and a composite event hypothesis, the

SPRT can not be directly applied. When faced with a composite event hypothesis, Wald

proposed two methods to extend the SPRT. The first method involves adopting Bayesian-

like approach which weights the simple hypotheses contained in a composite hypothesis;

however, due to the subjectivity of the weight function, this method is not preferred [20].

The second method replaces the likelihood ratio, Λ(RK), in the SPRT with a maximum
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likelihood approximation known as the generalized likelihood ratio (GLR), given by

ΛG(x) =
supθ∈Θ1

fθ(x)

fθ0(x)
. (2.17)

In words, the GLR is the ratio between the maximum likelihood of H1 and the likelihood

of H0. The GLR replaces the likelihood ratio in the SPRT, and is commonly applied when

composite hypotheses are encountered since the GLR is known to asymptotically equal the

likelihood ratio as more observations are sequentially gathered. Observing that when only

simple hypotheses are considered, the GLR is equivalent to the likelihood ratio (since only

a single parameter exists for each hypothesis). Therefore, in the following we assume that

the GLR is used in place of the likelihood ratio in the SPRT and note that the SPRT is

only optimal when simple hypotheses are considered.

2.2.2 Sequential multiple hypothesis testing

This section extends the sequential binary hypothesis testing problem in Section 2.2.1

to formulate a sequential multiple hypothesis testing problem. We begin by denoting a

multiple hypothesis testing problem between a null hypothesis, H0, and M−1 unique event

hypotheses as:

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

...

HM−1 : θ ∈ ΘM−1

, (2.18)

where, consistent with the sequential binary hypothesis testing problem in (2.11), θ ∈

Θ0

⋃
Θ1

⋃
· · ·
⋃

ΘM−1 parameterizes the distribution on the observation vector and each

Θm represents a disjoint subspace of the parameter space corresponding to hypothesis Hm.
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We note that the hypothesis testing problem in (2.18) is usually referred to as an M -ary

hypothesis testing problem, not a multiple hypothesis testing problem. M -ary hypothesis

testing problems are a special class of multiple hypothesis testing problems where multiple

event hypotheses are tested against one another and a single null hypothesis, resulting in the

acceptance of at most one event. Since this dissertation only considers M -ary hypothesis

testing problems, we refer to the M -ary hypothesis testing problem as a multiple hypothesis

testing problem for readability.

A test, φ(x), for the sequential multiple hypothesis testing problem in (2.11) can either

accept the null hypothesis (φ(x) = H0), accept an event hypothesis (φ(x) ∈ {H1, . . . , HM−1}),

or make no decision and gather additional observations (φ(x) = H−1). Consistent with the

sequential binary hypothesis testing problem, a test for the sequential multiple hypothesis

testing problem is designed such that each probability of error is bounded. This results in

2M design constraints

P [φ(x) = H1|H0] ≤ γ0,1

...

P [φ(x) = HM−1|H0] ≤ γM−1,1

P [φ(x) = H0|H1] ≤ γ0,1

...

, (2.19)

where γi,j denotes the maximum probability of error when the test decides Hi (φ(x) = Hi)

and Hj is true; however, constraining every possible error is avoided for non-Bayesian for-

mulations since no known test minimizes the expected time-to-decision under all hypotheses

for non-Bayesian sequential multiple hypothesis testing problems.
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2.3 Sequential hypothesis testing for MSD

At the highest level, the purpose of MSD is to use acquired observations to decide which

(if any) of the persistent sources are active. The system model in (2.6) describes the

relation between the sensor observations, a real-world process, and potential sources. This

section employs the system model from Section 2.1 to formulate a multiple hypothesis

testing problem that tests the received sensor observations against a set of hypotheses

representing unique combinations of active sources. In the following, we consider an MSD

problem having J potential sources, and define B = {0, 1}J to be a parameter space. For

b ∈ B, a unit entry in the jth element of b corresponds to the jth source being active, and

similarly a zero element corresponds to an inactive source. Additionally, 0 and 1 denote

the vector of all zeros and all ones, respectively, corresponding to no active sources and all

active sources. The following subsection introduces notation and formulates a sequential

multiple hypothesis testing problem for MSD. The final subsection motivates and presents

performance criteria for designing a test for the sequential multiple hypothesis testing

problem.

2.3.1 Sequential multiple hypothesis testing problem

The observation set at time k = K is given by

RK =


r0

...

rK

 , (2.20)

where rk denotes the vector of observations received at time k for k = 0, . . . , K. To deter-

mine which sources are active (if any), the observation set is tested against a comprehensive

set of hypotheses representing all possible time-propagations of persistent active and inac-

tive sources from k = 0 to k = K. The resulting hypothesis testing problem at time k = K
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contains a null hypothesis that assumes no active sources from k = 0 to k = K and a set

of SK event hypotheses corresponding to unique time-propagations of active and inactive

sources from k = 0 to k = K that result in at least one active source at time k = K, where

SK = (K + 2)J − 1. (2.21)

Since the linear system model in (2.6) is assumed, the distribution of the received

observations, RK , is

R̃K : N [µb0,...,bK , Σb0,...,bK ] , (2.22)

where the mean and covariance are parameterized by the active and inactive sources. As

shown in Appendix A, the mean is

µb0,...,bK = m0(K) +
J∑
j=1

K∑
k′=0

(bjk′ − bjk′−1)mj,k′(K), (2.23)

where the vector m0(K) denotes the mean of RK under the null hypothesis and mj,k′(k)

represents the change in the mean due to source j becoming active at time k = k′. Similarly,

the covariance is

Σb0,...,bK = Σ0(K) +
J∑
j=1

K∑
k′=0

(bjk′ − bjk′−1)Σj,k′(K) (2.24)

where the matrix Σ0(K) � 0 denotes the covariance RK under the null hypothesis and

Σj,k′(k) � 0 is the change in the covariance due to source j becoming active at time k = k′.

The probability density function of the observation set is denoted as fb0,...,bK (RK), where

b0, . . . , bk parameterizes the distribution. With the aim of choosing b0, . . . , bK equivalent to

what actually occurs, the multiple hypothesis testing problem containing SK+1 hypotheses
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at time k = K is written as:

H0 : b0 = 0, . . . , bK = 0

He1,...,e1 : b0 = e1, . . . , bK = e1

He2,...,e2 : b0 = e2, . . . , bK = e2

...

(2.25)

where H0 is the null hypothesis corresponding to no active sources (bk = 0 for all time

k) and all other hypotheses equate to event hypotheses assuming specific time propaga-

tions of active persistent sources. The sequential multiple hypothesis testing problem in

(2.25) consists of only simple hypotheses since each hypothesis represents a unique time

propagation of active and inactive sources.

2.3.2 Test performance criteria

While the previous subsection formulated the sequential multiple hypothesis testing prob-

lem for MSD, it did not present constraints for designing a test. Before introducing the

test performance criteria, we define some useful notation. In the following, when given

b, b′ ∈ B, we write bB b′ to denote bT b′ = bT b, which means that the non-zero elements of

b are a subset of the non-zero elements of b′. To ease the notational burden when defining

the test performance criteria, we define the sets

Bk = {b0, . . . , bk|bk ∈ B\0 ∧ (bk′ B bk′+1|k′ < k)}

Bb′0,...,b′k = {b0, . . . , bk| (b′k′ B bk′ |k′ ≤ k)} \{b′0, . . . , b′k}
, (2.26)

where Bk is the set of time propagations of active and inactive persistent sources resulting

in at least one active source at time k and Bb′0,...,b′k is the set of time propagations of active

and inactive persistent sources at time k that, at some time, assume additional sources are

active when compared to {b′0, . . . , b′k}. These sets and notation are used in the following to
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motivate and define the performance criteria for testing between hypotheses in (2.25).

In the fault-detection literature (see [26, 72] and citations within), it is common to

constrain only the probability of false alarm (type I error) and miss (type II error) in

multiple hypothesis testing problems to decide whether any event or no event occurs. In

these problems (and consistent with the sequential binary hypothesis testing problem in

Section 2.2.1), a false alarm (type I error) occurs when the null hypothesis is incorrectly

rejected, while a miss (type II error) occurs when the null hypothesis is incorrectly accepted.

Definition 2. The probability of false alarm (PFA), probability of miss (PM) of a sequential

multiple hypothesis test, φ(x), for persistent MSD are defined as:

PFA : P [φ(RK) = Hb0,...,bK |H0]

PM : max
{b0,...,bk}∈BK

P [φ(RK) = H0|Hb0,...,bK ]
. (2.27)

In words, the probability of false alarm (PFA) for a test accepting the event hypothesis

Hb0,...,bK is the region of the null hypothesis distribution (f0(RK)) where the test accepts

Hb0,...,bK because a false alarm is defined to be the error occurring when the null hypothesis

is incorrectly rejected. The probability of miss (PM) for a test accepting the null hypothesis,

H0, assumes the worst case probability that an event occurs.

The disadvantage of bounding only the probability of false alarm and probability of

miss is that neither constrains the probability of error between different event hypotheses.

To address errors between different event hypotheses, a third type of error has been intro-

duced in the statistical literature as a type III error [36, 37]. While a type III error has

no universally accepted mathematical definition, it is typically referred to as the correct

rejection of the null hypothesis, but for the wrong reason. More plainly, a type III error

occurs when the wrong event hypothesis is accepted. Since this dissertation is concerned

with detecting active sources, we define the type III error as the error that occurs when the

null hypothesis is correctly rejected and an active source is not detected. Thus, as part of
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Table 2.2: Classification of errors for hypothesis testing for multiple sources

H0 He1 He2 H1

φ(Rk) = H0 x II II II
φ(Rk) = He1 I x III III
φ(Rk) = He2 I III x III
φ(Rk) = H1 I x
φ(Rk) = H−1 x x x x

the test performance criteria (to be formulated later), the probability that an active source

is missed is bounded.

Definition 3. The probability of type III error (PIII) of a sequential multiple hypothesis

test, φ(x), for persistent MSD is defined as:

PIII : max
{b0,...,bk}∈Bb′

0,...,b′
K

P
[
φ(RK) = Hb′0,...,b

′
K
|Hb0,...,bK

]
. (2.28)

Similar to the previous probability of miss discussion, the probability of a type III error

(PIII) is the maximum error over all hypotheses assuming additional sources at some point

in time. To motivate and better explain a type III error in the context of MSD problems,

we present a small illustrative example consisting of two constant sources, that is, sources

which are either active or inactive for all time. Since two potential sources are considered,

four different hypotheses result: H0, He1,...,e1 , He2,...,e2 , and H1,...,1. For readability in

the following discussion, we denote Hb,...,b as Hb. Consistent with (2.25), H0 is the null

hypothesis and He1 , He2 , H1 are the event hypotheses assuming only source 1 is active,

only source 2 is active, and both sources are active, respectively. Table 2.2 illustrates the

different types of errors occurring for the small source detection example described above.

Consistent with Table 2.1, the columns in Table 2.2 indicate what occurs in reality, the

rows correspond to the decision of the test, and their intersection denotes the type of error.

In Table 2.2, ‘I’, ‘II’, and ‘III’ denote a false alarm (type I error), miss (type II error) and
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type III error respectively, while ‘x’ entries denote conditions that do not result in an error

(when the test decision is correct or inconclusive). From Table 2.2, a false alarm (type I

error) occurs when any event is accepted and no sources are active. Similarly, A miss (type

II error) occurs when the null is accepted and any source is active. Lastly, a type III error

occurs if neither a type I error or type II error occurs and an active source is not assumed

active by the accepted hypothesis. For example if only source 2 is active (He2 is true) and

φ(x) = He1 , then a type III error occurs since source 2 is not assumed to be active by

hypothesis He1 . Similarly, a type III error also occurs when both sources are active (H1

is true) and φ(x) = He1 or φ(x) = He2 . When only source 1 or source 2 is active, and

φ(x) = H1 then the decision includes more active sources than what actually occurred.

Although this dissertation does directly address the error occurring when too many sources

are decided to be active, this error will be evaluated as a performance measure for different

MSD strategies in Chapter 3 and Chapter 5.

Consistent with the SPRT discussion from Section 2.2.1, the maximum probability of

false alarm (type I error) and maximum probability of miss (type II error) are denoted as

α and β, respectively. The maximum probability of a type III error is denoted as γ. We

define, the test performance criteria for the sequential multiple hypothesis testing problem

in (2.25) is

PFA ≤ α

PM ≤ β

PIII ≤ γ

. (2.29)

In (2.29), the first and second constraints bound the probability of false alarm of the test

to be less than α and the probability of miss of the test to be less than β, respectively. The

third constraint bounds the probability of a type III error (defined to be the probability

that an active source is missed) to be less than γ. The MSD problem posed in (2.25) and
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(2.29) formulates a sequential multiple hypothesis testing problem for deciding between

unique hypotheses according to minimum performance criteria on the probability of false

alarm, probability of miss, and probability of a type III error.

In this chapter, a linear dynamic model is introduced and a MSD problem posed based

on the SPRT for binary hypothesis testing. Criteria for deciding between the multiple

hypotheses is introduced and discussed. The MSD problem posed in (2.25) and (2.29) will

be considered in Chapter 3.
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Chapter 3

Large-Scale Persistent MSD

This chapter presents a new procedure for performing large-scale persistent MSD that scales

linearly with the number of sources being detected and assumes no a priori information on

the probabilities when sources become active. To avoid exponential computational growth,

our approach separates the sequential multiple hypothesis testing problem formulated in

(2.25) into a source detection problem followed by a source localization problem. This ap-

proach is similar to the hypothesis testing based work on fault-detection [6, 26, 28, 30, 72],

specifically the work of Athans et al. [4] and Jones and Willsky [73]. Athans et al. employ

a set of filters corresponding to every possible event to identify which event occurred. The

work of Athans et al. focuses on identifying faults (rejecting the null hypothesis) when

the probability of false alarm is bounded and there is evidence to support the rejection

of the null hypothesis. Decisions to reject or accept the null hypothesis are made based

on a collection of Neyman-Pearson tests between the null hypothesis and each event hy-

pothesis using an a priori specified number of observations and a maximum probability of

false alarm. Jones and Willsky use the generalized likelihood ratio test (GLRT) to detect

signals based on a maximum likelihood estimate. In the GLRT of Jones and Willsky, a

decision to accept or reject the null hypothesis is made by formulating a composite event

hypothesis consisting of all possible events. A maximum likleihood estimate is applied to

the composite hypothesis and treated as the actual parameter value in the binary test.
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The GLRT has been shown to perform well [72]; however, for the MSD problem considered

in this dissertation, the GLRT requires calculating the likelihood of every possible event

to identify the most likely. We propose a new test, called the iterative partial sequential

probability ratio teat (IPSPRT), for large-scale MSD problems. The IPSPRT considers a

sequential multiple hypothesis testing problem, but only tests a subset of the possible event

hypotheses that increases linearly with the number of potential sources, thereby avoiding

the combinatorial explosion of event hypotheses.

The IPSPRT presented in this chapter uses a set of simple binary hypothesis tests for

persistent source detection and localization. We first recall the definition of a persistent

source from Chapter 2 as a source which remains active indefinitely once becoming active.

The following section develops the IPSPRT for constant sources, that is, persistent sources

which are either active or inactive for all time. Section 3.2 extends the IPSPRT for constant

sources to the case of emergent sources, that is, persistent sources that can become active

at any time. The final section provides simulation results for the IPSPRT applied to MSD

in a distributed diffusion process.

3.1 IPSPRT for constant sources

This section introduces a new test for the MSD problem posed in (2.25) when sources

are constant. Constant sources are sources that are either active or inactive at time zero

and remain active indefinitely, which implies bk ≡ b0 in (2.25). We write the set of time

propagations of constant sources at time K as

Bck = {b0, . . . , bk|b0 ∈ B\0 ∧ (bk′ = b0|1 ≤ k′ ≤ k)} (3.1)

and note that Bck ⊂ Bk, where Bk is defined in Chapter 2 to be the set of all possible time

propagations of persistent sources resulting in at least one active source at time k. Thus,

assuming constant sources simplifies the original MSD problem in (2.25) since only a subset
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of the event hypotheses are considered, namely event hypotheses of the form Hb0,...,b0 . A

flowchart of the IPSPRT assuming bk ≡ b0 is given in Fig. 3.1 and will be referenced

throughout the following subsections to aid in explaining the IPSPRT when sources are

known to be constant.

We assume the discrete state space model in (2.6) relates the effects of sources on

the observations. In Fig. 3.1, after the system is initialized, regardless of what strategy

is used for MSD, data acquisition occurs and is followed b hypothesis testing. If the

original multiple hypothesis testing problem in (2.25) was tested, a hypothesis would be

assumed for each possible combination of active sources, where the number of hypotheses

explodes exponentially with the number of sources. To avoid the explosion of hypotheses,

the IPSPRT consists of two steps (as labeled in Fig. 3.1): aggregate source detection and

active source identification. The following subsections present each of the steps.

3.1.1 Aggregate source detection

To address the complexity of solving a multiple hypothesis testing problem, this subsection

first formulates and solves a sequential binary hypothesis testing problem between a com-

posite event hypothesis and the null hypothesis, then motivates and introduces the IPSPRT

for detecting constant sources in large-scale MSD applications. For notational simplicity,

in this subsection we refer to b as {b0, . . . , b0}, which represents constant sources. In many

monitoring applications, the null hypothesis is known to be much more likely than any

particular event, thus solving the simpler binary test for accepting or rejecting the null

hypothesis is preferred.

We denote a binary test, φ(RK), on the parameter, b ∈ BcK , for accepting or rejecting
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Figure 3.1: IPSPRT for constant sources.
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the null hypothesis as

φ(RK) =


H0 if b ∈ {0, . . . ,0}

¬H0 if b ∈ BcK

H−1 otherwise

(3.2)

where b ∈ {0, . . . ,0} denotes the assumption under the null hypothesis that no sources

are active, and b ∈ BcK denotes the assumption under the event hypothesis that anything

(other than the null) occurs. In this formulation, ¬H0 is called an aggregate event hypothesis

and represents the hypothesis that some event hypothesis is correct. The null hypothesis

is accepted (φ(RK) = H0) when it explains the observation set better than all event

hypotheses, and the null hypothesis is rejected (φ(RK) = ¬H0) if any event hypothesis

better explains the observation set. The test results in an indecision (φ(RK) = H−1)

when the null hypothesis can neither be accepted or rejected. Since the parameter b0

can only take a single value under the null hypothesis in (3.2) the null hypothesis is a

simple hypothesis; however, under the aggregate event hypothesis, the parameter can take

multiple values and is a composite hypothesis. Thus, the sequential binary hypothesis test

in (3.2) is a binary test between a simple null hypothesis and composite event hypothesis.

Recalling from Chapter 2, when given a sequential binary hypothesis testing problem

between a simple null hypothesis and composite event hypothesis, the SPRT bounds the

probability of false alarm (type I error) and the probability of miss (type II error) while

asymptotically minimizing the expected time-to-decision. Since a composite event is con-

sidered the generalized likelihood ratio (GLR), written as

ΛG(RK) =
supb∈Bc

K
fb0(x)

f0(x)
. (3.3)
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, is employed in the SPRT to formulate the threshold test on the observations

φ(RK) =


H0 if ΛG(RK) ≤ ηβ

¬H0 if ΛG(RK) ≥ ηα

H−1 otherwise

(3.4)

where ηβ and ηα are thresholds defined as

ηα =
1− β
α

and ηβ =
β

1− α
, (3.5)

such that α and β are the maximum probability of false alarm (type I error) and miss (type

II error), respectively. Recalling that this section only concerns constant sources (bk ≡ b0)

with no prior active sources (b−1 = 0), and recalling the distribution on the observation

random variables from Chapter 2, we write the distribution on the observation random

variables for constant sources, fb0(RK), as

fb0(RK) : N [µb0,...,b0 , Σb0,...,b0 ] , (3.6)

where

µb0,...,b0 = m0(K) +
J∑
j=1

bj0mj,0(K)

Σb0,...,b0 = S0(K) +
J∑
j=1

bj0Σj,0(K)

. (3.7)

In (3.7), we recall from Chapter 2 that bj0 is the jth element of b0, mj,0(K) is the difference

between the mean under the null hypothesis, m0(K), and the mean under the event hy-

pothesis assuming source j is active, and similarly Σj,0(K) � 0, is the difference between

the covariance under the null hypothesis, S0(K) � 0, and the covariance under the event
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hypothesis assuming source j is active.

While the test in (3.4) results in a collection of scalar threshold tests, it requires max-

imizing over the binary parameter b. Assuming there are J potential sources, the maxi-

mization requires searching over 2J values. This search is a binary programming problem,

shown to be NP-hard by Karp [27]. For large-scale MSD applications, searching the entire

parameter space is impractical since a system with 100 potential sources would require

2100 = 1.27 × 1030 likelihood ratio calculations. As a solution, we propose to only test a

subspace of the aggregate event hypothesis consisting of the elementary events, which are

the events that assume only a single source is active. Recalling from Chapter 2 that ej

denotes a vector with a single non-zero (unit) entry in the jth element, the set of elementary

events at time k is written as

Bek = {b0, . . . , bk|b0 ∈ {e1, . . . , eJ} ∧ (bk′ = b0|1 ≤ k′ ≤ k)}, (3.8)

where Bek ⊂ Bck ⊂ Bk. By searching over the elementary events, Be
k, as opposed to the

constant events, Bc
k, the number of parameters that must be searched to find the maximum

likelihood is reduced from 2J to only J . Thus, the IPSPRT for constant sources is written

as

φ(RK) =


H0 if Λ̂G(RK) ≤ ηβ

¬H0 if Λ̂G(RK) ≥ ηα

H−1 otherwise

(3.9)

where

Λ̂G(RK) =
supb∈Be

K
fb0(x)

f0(x)
. (3.10)

.

For the scalar observation case (the case where only a single observation is contained

in RK), Proposition 1 in Appendix B proves the test for accepting or rejecting the null
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hypothesis using only the J elementary events is equivalent to the test using all possible

events when the means are all greater than or equal to the null hypothesis mean. When

multiple observations are considered (the case where more than a single observation is

contained in RK), this property does not extend; however, as a heuristic, searching only

the elementary events seems to be effective (as will be illustrated through simulation results

in the following).

The strategy for aggregate source detection presented above tests the simple null hy-

pothesis against a composite event hypothesis representing all single-active-source events.

A heuristic is introduced, which is motivated by the single-observation case, that tests only

the J elementary hypotheses as a sufficient test for testing the entire hypothesis space for

accepting or rejecting the null hypothesis. As shown in Fig. 3.1, if the null hypothesis is

accepted, the procedure terminates (for the special case of bk ≡ b0). If the null hypothesis

is rejected, active source identification commences, as described in the following section.

3.1.2 Active source identification

Upon rejecting the null hypothesis (φ(RK) = ¬H0), the procedure outlined in Fig. 3.1

proceeds to identify the active sources (corresponding to a particular event hypothesis).

Recalling from Chapter 2, we refer to the error that occurs when an active source is not

identified as active as a type III error. This subsection presents a three-part method for

identifying active sources: prominent source identification, secondary source identification,

and active source verification. Prominent source identification is concerned with identifying

the sources that are most likely to be active. Secondary source identification and active

source verification ensure the probability of a type III error is bounded. The following

subsections describe prominent source identification, secondary source identification, and

source verification in detail.

36



Prominent source identification

The first step in identifying the active sources is to identify the combination of active

sources that best explains the observations, referred to as prominent source identifica-

tion. Identifying the event hypothesis (corresponding to a unique combination of active

sources) that best explains the received observations would, in general, require calculating

2J likelihoods corresponding to each potential combination of active sources. To avoid

this exhaustive search and similar to aggregate source detection discussed previously, the

IPSPRT identifies a set of prominent sources, bP ∈ B, corresponding to a 1-step maxi-

mization of the likelihood ratio. In this subsection, and unlike the previous subsection,

we denote b and bP to be the vector of active and inactive sources, and not a set of time

propagation of active and inactive sources. More plainly, b and bP are elements of the set

B, not of the set BK when K > 0. The remainder of this subsection describes the 1-step

maximization strategy for prominent source identification in detail.

To aid in describing the 1-step maximization strategy, we first define a toggle events

for any given event as an event representing only a single source having a different state

(active or inactive). Assuming there are J potential sources and recalling from Chapter

2 that bj denotes the jth element of b, we write the set of toggle events corresponding to

event b as

Tb = {b0, . . . , bJ |∀j, bj ∈ B ∧ (bj − b)T (bj − b) = 1 ∧ abs(bjj − bj) = 1}, (3.11)

where (bj−b)T (bj−b) = 1 ensures only a single element differs, and abs(bjj−bj) = 1 requires

that the jth element differ for all J potential sources. We note that the set of toggle events

for the null hypothesis, T0, is exactly the set of elementary events, {e1, . . . , eJ}. We refer

to a toggle event that assumes one additional active source as a positive-toggle events, and

will denote the set of positive-toggle events corresponding to event b as T+
b .
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Identifying the most likely active sources, bP , is equivalent to maximizing the general-

ized likelihood ratio in the SPRT over the set of all combinations of active and inactive

sources (Bck). As discussed in the previous section, maximizing the generalized likelihood

ratio over the set of constant sources is impractical for large-scale MSD. Thus, the IPSPRT

tests a subset of Bck corresponding to the elementary events, namely Bek. For the IPSPRT

to reject the null hypothesis requires that a single-source event satisfies the probability of

false alarm (based on the generalized likelihood ratio test); however, this does not neces-

sarily indicate the most likely event since combinations of active sources are not tested.

To identify most likely active sources, the IPSPRT iteratively maximizes the generalized

likelihood ratio over the toggle-hypothesis parameter space corresponding to the current

most likely event. This procedure is summarized as follows.

b_P=0

while (1)

b’ = arg max(b in T_{b_P}) f_b(R_K)

if: (f_{b’}(R_K) <= f_{b_P}(R_K)) then: exit

else: b_P = b’

end

In words, the IPSPRT begins by assuming bP = 0 (assuming no active sources), then deter-

mines which of the corresponding toggle hypotheses (if any) maximizes the likelihood. If the

maximum likelihood is greater than the likelihood of event bP , then the process repeats;

otherwise, the process terminates and bP denotes the prominent sources. We note that

prominent sources, bP , represent a local maximization of the likelihood, not a global max-

imization. The following subsection introduces a procedure identifying secondary sources

assuming the prominent sources, bP , are active.
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Secondary source identification

Aggregate source detection and prominent source identification ensure that the probability

of a false alarm is bounded by the maximum probability of false alarm.1 After identifying

the prominent sources and assuming they are active, the secondary sources are identified

such that the probability of a type III error is bounded. The secondary sources are the

nuisance sources that can not be classified inactive based on the information available such

that maximum probability of a type III error is bounded. In this subsection, we introduce

a method for identifying the secondary sources such that, under the assumption that the

prominent sources are active, the probability of a type III error is bounded.

We recall from Chapter 2 the definition of a type III error as the probability that an

active source is not contained in the accepted set of active sources:

max
{b0,...,bk}∈Bb′

0,...,b′
K

P
[
φ(RK) = Hb′0,...,b

′
K
|Hb0,...,bK

]
, (3.12)

where the φ(RK) = Hb′0,...,b
′
K

denotes the decision to accept the hypothesis Hb′0,...,b
′
K

in the

original sequential multiple hypothesis testing problem in (2.25). In the following, since this

subsection only considers constant sources and no new observations are gathered during

prominent source identification and secondary source identification (as illustrated by Fig.

3.1), we abuse notation slightly and the constraint on the probability of a type III error

for accepting hypothesis Hb′ as

max
b∈B

P [φ(RK) = HbP |Hb] ≤ γ, (3.13)

where, bP ∈ B are the prominent sources and γ ∈ [0, 1] is the maximum probability of

a type III error as defined in Chapter 2. In (3.13), HbP denotes the most likely event

1This is due to prominent source identification maximizing the likelihood ratio and aggregate source de-
tection not rejecting the null hypothesis until the likelihood ratio exceeds a minimum value (as determined
by the maximum probabilities of false alarm and miss).
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as determined by prominent source identification. To ensure the criterion in (3.13) is

true requires testing all possible alternative event hypotheses, which involves performing

2J−||bP ||
2

different tests since every combination of the J sources not assumed active by the

prominent sources must be tested. When only a few sources are active (which is common

in most monitoring applications), exhaustively testing all possible source combinations is

impractical.

By applying the same concepts used when performing aggregate source detection, we

propose to test only the positive-toggle events corresponding to the prominent sources, bP .

We recall that the positive toggle events are the events assuming exactly one additional

active source. The constraint on the type III error is then written as:

max
b∈T+

bP

P [φ(RK) = HbP |Hb] ≤ γ. (3.14)

This reduces the number of tests from 2J−||bP ||
2

to only J − ||bP ||2. The result of proposi-

tion 1 in Appendix B proves that testing the positive-toggle events corresponding to the

prominent sources, bP , is the equivalent to testing all possible combinations of secondary

sources when a scalar observation is considered. This follows directly by replacing the

null hypothesis in Proposition 1 to assume b = bP as opposed b = 0. As discussed in the

previous subsection, when the prominent sources, bP , matches the assumed sources under

the null hypothesis, then the positive-toggle events corresponding to bP are equivalent to

the elementary events. Similar to the discussion on aggregate source detection, the results

in Proposition 1 do not extend to include multiple observations, thus when multiple obser-

vations are considered, testing the secondary sources using only the positive-toggle events

is a heuristic.

As discussed in Chapter 2, verifying the constraint in (3.14) is difficult; however, a

sufficient test can be established for identifying secondary sources using the likelihood

ratio. Observing that through prominent source identification, it has already been decided
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that φ(x) = HbP , and thus

P [φ(x) = HbP |HbP ] = 1. (3.15)

Applying (3.14) to Lemma 3 in Appendix B, where HA = HbP , a sufficient test for the

probability of type III error to be bounded is

γfbP (RK) ≥ max
b∈T+

bP

fb(RK). (3.16)

All additional active sources corresponding to the positive-toggle events that prevent (3.16)

from being true are deemed to be secondary sources and denoted as bS. The secondary

sources are the nuisance sources which must be verified (in addition to the prominent

sources) in order for the probability of type III error to be bounded according to γ. Assum-

ing the prominent sources represents what is most likely to have occurred, the secondary

sources ensure the probability of a type III error is bounded. After performing secondary

source identification, source verification is performed, as discussed in the following subsec-

tion.

Source verification

Once prominent and secondary source identification have been performed, the sources are

verified through physical inspection. By performing source verification, all the prominent

and secondary sources will be identified as either active or inactive. Since secondary source

identification is performed under the assumption that the prominent sources are active,

the IPSPRT must verify that after source verification, the probability of a type III error is

still bounded. This subsection presents how source verification is used to ensure the type

III error is bounded.

To begin, we note that the active sources specified by bP and bS are verified through
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physical inspection. From this verification, a vector of known inactive sources is generated,

bI ∈ B, where the jth element of b is zero (bjI = 0) if and only if the jth source is verified

to be inactive. Similarly, a vector of known active sources is generated, bA ∈ B, where

the jth element of b is one (bjI = 1) if and only if the jth source is verified to be active.

Recalling the sufficient test criterion for bounding the type III error in 3.16, the type III

error remains bounded by γ after source verification if

γfbA(RK) ≥ max
b∈T+

bA

fb◦bI (RK), (3.17)

where, b ◦ b′ denotes the Hadamard product (element-wise product) of b with b′. In words,

the verified sources are tested against all events assuming an additional active source (ex-

cluding the sources known to be inactive) to ensure the type III error remains bounded. If

the criterion in (3.17) is not satisfied, than the probability of a type III error is not bounded

by γ. When this occurs, prominent source identification, secondary source identification,

and source verification are performed again until the criterion is satisfied (as shown in Fig.

3.1).

Active source identification example

To illustrate prominent and secondary source identification, we consider a MSD problem

containing 4 potential sources. In this example all numbers and values are chosen (not

calculated) to illustrate various steps in the prominent and secondary source identification

process. In the following, we denote the likelihood ratio between an event hypothesis and

the null hypothesis as lb(Rk) and choose the likelihood of all possible combinations of active
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sources to be:

l[0,0,0,0]T (Rk) = 1 l[0,0,0,1]T (Rk) = 4 l[0,0,1,0]T (Rk) = 10

l[0,0,1,1]T (Rk) = 8 l[0,1,0,0]T (Rk) = 5 l[0,1,0,1]T (Rk) = 9

l[0,1,1,0]T (Rk) = 11 l[0,1,1,1]T (Rk) = 9 l[1,0,0,0]T (Rk) = 8

l[1,0,0,1]T (Rk) = 7 l[1,0,1,0]T (Rk) = 12 l[1,0,1,1]T (Rk) = 10

l[1,1,0,0]T (Rk) = 15 l[1,1,0,1]T (Rk) = 4 l[1,1,1,0]T (Rk) = 14

l[1,1,1,1]T (Rk) = 10

. (3.18)

From these likelihood ratio values, it is clear that based on the observations, b = [1, 1, 0, 0]

maximizes the likelihood ratio. In this example, we assume the active sources are b =

[1, 0, 1, 0] where sources 1 and 3 are active and sources 2 and 4 are inactive. In this

factitious example, we note that the most likely event is not the event that actually occurs.

We assume the performance criteria for performing detection are:

α = 0.1 β = 0.05 γ = 0.30. (3.19)

The thresholds for accepting and rejecting the null hypothesis are β
1−α = 0.056 and 1−β

α
=

9.5 respectively. The likelihood ratios at time k are

l[0,0,0,1]T (Rk) = 4

l[0,0,1,0]T (Rk) = 10

l[0,1,0,0]T (Rk) = 5

l[1,0,0,0]T (Rk) = 8

. (3.20)

Since l[0,0,1,0]T (Rk) = 10 (which is greater than the threshold for rejecting the null hy-

pothesis), elementary source detection rejects the null hypothesis and the MSD procedure

proceeds to prominent source identification. The first iteration of prominent source identifi-
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cation assumes bP = [0, 0, 0, 0] (no active sources) and attempts to maximize the likelihood

over the corresponding toggle events (which, as discussed previously, are equivalent to the

elementary events). The likelihood is maximized when bP = [0, 0, 1, 0]T , corresponding to

l[0,0,1,0]T (Rk) = 10. After declaring bP = [0, 0, 1, 0]T as the maximum, the likelihood ratios

for the toggle events corresponding to bP = [0, 0, 1, 0]T are

l[0,0,0,0]T (Rk) = 1

l[0,1,1,0]T (Rk) = 11

l[1,0,1,0]T (Rk) = 12

l[1,0,1,1]T (Rk) = 10

. (3.21)

We note that the l[0,0,0,0]T (Rk) will always equal 1 since l[0,0,0,0]T (Rk) is exactly the likelihood

ratio of the null hypothesis with itself. As before, we attempt to maximize the likelihood

and declare bP = [1, 0, 1, 0]T to correspond to the new maximum, since l[1,0,1,0]T (Rk) = 12

which is greater than l[0,0,1,0]T (Rk) = 10 (corresponding the previous value of bP ). The

result of this iteration indicates that it is more likely that both source 1 and 3 are active.

Just as before, after declaring bP = [1, 0, 1, 0]T as the maximum, the likelihood ratios for

the toggle events corresponding to bP = [1, 0, 1, 0]T are

l[0,0,1,0]T (Rk) = 10

l[1,0,0,0]T (Rk) = 8

l[1,1,1,0]T (Rk) = 14

l[1,0,1,1]T (Rk) = 3

. (3.22)

Applying the same procedure as previously, bP = [1, 1, 1, 0]T is declared most likely, corre-

sponding to all the sources being active. Again, the likelihood ratios for the toggle events
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are

l[0,1,1,0]T (Rk) = 11

l[1,0,1,0]T (Rk) = 12

l[1,1,0,0]T (Rk) = 15

l[1,1,1,1]T (Rk) = 10

. (3.23)

This iteration indicates that the likelihood is maximized when bP = [1, 1, 0, 0]T , corre-

sponding to only sources 1 and 2 as active. Assuming bP = [1, 1, 0, 0], the corresponding

toggle event likelihood ratios are:

l[0,1,0,0]T (Rk) = 5

l[1,0,0,0]T (Rk) = 8

l[1,1,1,0]T (Rk) = 14

l[1,1,0,1]T (Rk) = 4

. (3.24)

At this iteration we conclude that bP = [1, 1, 0, 0]T maximizes the likelihood ratio since

l[1,1,0,0]T (Rk) = 15 is greater than all the corresponding toggle event likelihood ratios.

The procedure declares bP = [1, 1, 0, 0]T and proceeds to secondary source identification.

Secondary source detection is only concerned with the positive toggle events (events con-

sidering one additional active source) corresponding to bP , namely:

l[1,1,1,0]T (Rk) = 14

l[1,1,0,1]T (Rk) = 4

. (3.25)

The secondary source threshold is defined to be γ = 0.30. For each positive toggle event,

lb(RK), corresponding to bP , if γlbP (RK) < lb(RK), then the additional source assumed

by b is considered a secondary source. For the small example, ηγlbP (RK) = (0.30)(15) =
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4.5. Since l[1,1,1,0]T (Rk) = 14 and l[1,1,0,1]T (Rk) = 4, we conclude that only source 3 is a

secondary source and declare bS = [0, 0, 1, 0]T . Thus, in this example, source 1 and source

2 are considered prominent sources, while source 3 is a secondary source. To verify the

probability of type III error is bounded (since secondary source identification is performed

assuming the prominent sources are active), source verification occurs.

Recalling that in this example, only sources 1 and 3 are active, after performing source

verification we discover that sources 1 and 3 are active and source 2 is inactive. Since

source 4 was not decided to be a prominent or a secondary source, it was not verified and

is not known to be inactive or active. Since the prominent sources were bP = [1, 1, 0, 0]T , we

observe that the prominent sources assumed source 2 to be active when it was verified to

be inactive. Since not all the prominent sources are active, we must verify the constraint in

(3.17) is true. We write bI = [1, 0, 1, 1]T and bA = [1, 0, 1, 0]T as described in the discussion

of (3.17), where since source 4 is untested bI (denoting a collection of the known inactive

sources) assumes source 4 to be active while bA (denoting a collection of known active

sources) assumes source 4 is inactive. Applying (3.17), the type III error is bound if

γl[1,0,1,0]T (Rk) ≥ l[1,0,1,1]T (Rk). (3.26)

Since the likelihood ratios for the events above are

l[1,0,1,0]T (Rk) = 12

l[1,0,1,1]T (Rk) = 3

, (3.27)

we declare the type III error is bounded since, ηγl[1,0,1,0]T (RK) = (0.30)(12) = 3.6 which is

greater than l[1,0,1,1]T (Rk) = 3. In this example, even though some of the prominent sources

are inactive, the probability of type III error is sufficiently bounded and the active sources

are identified as source 1 and source 3.
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The above example illustrates how prominent source identification, secondary source

identification, and source verification are performed to bound the probability of type III

error. Prominent source identification attempts to maximize the likelihood ratio through

an iterative strategy, while secondary source identification selects sources to ensures the

probability that an active source is not declared active (type III error) is bounded if all

the prominent sources are active. If some of the prominent sources are inactive, through

source verification the bounds on the probability of a type III error can be achieved by either

inspection or re-performing prominent and secondary source identification after applying

the knowledge of which sources are active and inactive.

This section introduced a procedure for performing MSD for constant sources (sources

known to become active only at time k = 0). The following section extends the procedure

introduced in this section to consider emergent sources, that is, sources that can become

active at times other than k = 0.

3.2 IPSPRT for Emergent Sources

The previous subsection only considered constant sources, corresponding to persistent

sources that were known to switch from inactive to active at time zero and remain ac-

tive indefinitely. This section updates the procedure presented in the previous section to

include emergent sources. Emergent sources are persistent sources that may become active

at any time. The flowchart in Fig. 3.2 outlines the updated IPSPRT.

To determine not only which sources are active, but when they become active requires

a hypothesis for each source at each time step. Recalling from Chapter 2, the number of

event hypotheses for a problem containing J potential persistent sources and K time steps

is

SK = (K + 2)J − 1. (3.28)

47



Figure 3.2: IPSPRT for emergent sources.
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By applying the heuristic developed in the previous subsection, we reduce the sequential

hypothesis testing problem to a test consisting of onlyKJ−1. These hypotheses correspond

to a single null hypothesis (H0 assuming bk = 0) and KJ elementary event hypotheses

corresponding to each elementary source becoming active at each time k = 0 to k = K.

This results in a sequential multiple hypothesis testing problem with KJ+1 hypotheses. As

discussed in Chapter 2, no test exists that bounds the probability of error and minimizes

the expected time-to-decision under every hypothesis in a sequential hypothesis testing

problem.

As a heuristic approach, the sequential multiple hypothesis testing problem with KJ+1

hypotheses is approximated by K different sequential multiple hypothesis testing problems

each with J + 1 hypotheses that can be solved using the IPSPRT as introduced in the

previous section. This formulation tests a null hypothesis (H0) against the set of elementary

hypotheses that assume sources transition from inactive to active at time k = KH (where

initially KH = 0 as shown in Fig. 3.2). For notational convenience, we denote Hej ,k to be

the elementary event hypothesis that assumes the jth source transitions from inactive to

active at time k. Thus, the IPSPRT results in an aggregate source detector that assumes

each source con possibly become active at time k = KH . Just as in the aggregate source

detection, the test results in one of three decisions : gather another observation, accept

the null hypothesis (φ(RK) = H0), or reject the null hypothesis (φ(RK) = ¬H0).

If it is decided to obtain another observation, the process proceeds as described in

Section 3.1. The time k is incremented, a system model is formulated, DSS is performed,

an observation is gathered, and the hypothesis testing problem continues.

As shown in Fig. 3.2, if the test accepts the null hypothesis, then we assume there

were no sources active at time k = KH and before any new observations are gathered,

KH is incremented, and a new binary hypothesis testing problem is formulated for the

new value of KH . This process of incrementing KH and retesting occurs until either the
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null hypothesis is rejected or more information is needed to decide between the null and

event hypotheses. This process results in a multiple hypothesis testing problem between

the null hypothesis and the J elementary event hypotheses assuming the smallest KH until

a decision to accept or reject the null hypothesis is reached.

If the SPRT rejects the null hypothesis for KH at the current time, k, we denote the time

of decision as KD(KH) = k. At time KD(KH), active source identification and verification

are performed. Active source verification (performed by physical inspection) guarantees

that if a source is determined to be active, then it is in fact active. This is important when

dynamic bk are considered since claiming an inactive source as an active source results

in an incorrect model under all hypotheses. Since active source verification occurs at the

current time (k = KD(KH) > KH) and the emergent sources are known to be persistent,

any sources verified to be inactive at time k = KD(KH) are also known to be inactive for

all time k ≤ KD(KH). Similarly, and sources verified to be active at time k = KD(KH) are

known to be active for all time k ≥ KD(KH). Applying this knowledge, KH is incremented

and the problem is reformulated, where the verified inactive(active) sources are now known

to be inactive(active) and are no longer tested as part of the hypothesis testing problem.

It is noted that if after source verification, bKD
≡ 1 (all sources are active), then there is

no reason to perform MSD and the IPSPRT terminates; however, this is unlikely to occur

in most applications.

To illustrate the sequential behavior of the IPSPRT for emergent sources, we consider

a fictitious MSD problem with 4 sources where source 3 becomes active at time k = 14,

source 4 becomes active at time k = 16, source 2 becomes active at time k = 28, and

source 1 remains inactive. The values used in this example were chosen (not calculated)

to illustrate different aspects of the IPSPRT. We graphically display the sequential testing

results in Fig. 3.3. In Fig. 3.3, the horizontal axis represents the time when the MSD

procedure made a decision, KD(KH) for the test indicated by the vertical axis, KH . For
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Figure 3.3: Hypothesized time vs. decision time vs. decision.
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example, the MSD procedure made a decision for KH = 0 at time k = 10. In Fig. 3.3,

hollow circles represent a decision to accept the null hypothesis, while circles with a star

indicate a decision to reject the null hypothesis. In this example, the first decision (for

KH = 0) was made at time k = 10. At the same time, a decision to accept the null

hypothesis was also made for the tests starting at KH = 1 and KH = 2; however, a

decision for the test starting at KH = 3 could not be made at time k = 10. Thus, the

time was incremented and another observation gathered at time k = 11. After gathering

the observation at time k = 11, a decision to accept the null hypothesis was made for the

tests starting at KH = 3 and KH = 4. This iterative process of gather observations and

accepting the null hypothesis until time k = 15 when the null hypothesis is rejected for

the test starting at time KH = 8.

At k = 15, the test starting at time KH = 8 accepts that sources 2 and 3 are active.

After performing source verification, it is discovered that only source 3 is active. These

results are shown in Fig. 3.4, where the values are chosen (not calculated) in this example

to demonstrate different aspects of the IPSPRT. In Fig. 3.4, the horizontal axis represents

time and the vertical axis denotes the source (either 1, 2, 3, or 4). A circle represents a

source verified to be inactive, a circle with a star represents when a source (verified to be

active) is assumed to have switched from inactive to active, and a square represents when

a source actually became active. At time k = 15, two sources were assumed to be active.

Source 3 was in fact active, while source 2 was inactive. Since sources are persistent, we

know that since source 2 was inactive at time k = 15, that source 2 is also inactive for

8 ≤ k ≤ 15. In fact, it is known that source 2 is inactive for all time k ≤ 15, but all the

decisions prior to KH = 8 had already accepted the null hypothesis, thus we do not plot

source 2 as inactive for k < 8. Similarly, since source 3 is verified to be active and known

to be persistent, we conclude that source 3 is active for all time k ≥ 15. In Fig. 3.4, source

3 is assumed to become active at time k = 8, when it actual became active at time k = 14
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Figure 3.4: Potential active sources vs. hypothesis start time.
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(as denoted by the square for the third source). Accepting a source as active prior to when

it actually becomes active is an unavoidable consequence of evaluating a sequential MSD

problem one step at a time.

3.3 Simulation Results

The IPSPRT for MSD introduced in this chapter was simulated using the diffusive system

described in Appendix C. This example assumes a grid of N by N sensors that are co-

located with the potential sources. The diffusion example is simulated using the following

parameters

• Qk = I (select all sensors)

• N = 10 (100 potential sources and sensors)

The results in this section are divided into two subsections: detection results and localiza-

tion results, respectively.

3.3.1 Detection results

To evaluate the IPSPRT proposed in this chapter, the IPSPRT is compared to two other

feasible tests for large-scale MSD. The first test, which we refer to as the naive test, assumes

a sensor is located at each potential source. A source is declared active in the naive test

if the corresponding sensor observation exceeds an a priori specified threshold. If after an

a priori specified period of time (known as the time-to-decision), no sensor observation

exceeds the threshold, then the null hypothesis is accepted. The naive test is the simplest

of all the tests used for comparison, and assumes no knowledge of the underlying dynamics.

The second test used for comparison is motivated by the work of Jones and Willsky

[73]. In their test, source magnitudes are assumed to be parameters (not random vari-

ables) and a generalized likelihood ratio test (GLRT) is used to detect active sources in

linear dynamic systems. To perform the GLRT, a maximum likelihood estimate of the

source magnitude under each event hypothesis is generated for a pre-specified number of
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observations. The pre-specified number of observations is selected to bound the probabil-

ity of a miss and defines the time-to-decision for the GLRT. For each event hypothesis,

the estimated source magnitude is assumed to be the actual source magnitude, and the

corresponding likelihood ratio test is performed with respect to the null hypothesis using a

Neyman-Pearson test threshold chosen for a specified probability of false alarm. The test

accepts the null hypothesis if all the likelihood ratio tests result in a decision to accept the

null hypothesis. Otherwise, the event hypothesis corresponding to the maximum likelihood

ratio is accepted. Since their test requires estimating the source magnitudes under every

hypothesis, directly applying the test of Jones and Willsky is impractical for large-scale

MSD. By observing that inactive sources are essentially active sources of zero magnitude,

we can estimate the source magnitudes by assuming all the sources are active. The test

then reduces to a test between a null hypothesis (assuming no active sources) and a single

event hypothesis (assuming all active sources). We refer to this test as the estimation test.

All three of the tests (the naive test, the estimation test, and the IPSPRT) have advan-

tages and drawbacks. The naive test is the easiest to implement, but comes at the cost of

ignoring the underlying dynamics. The estimation test is more complex than the naive test

and considers the underlying dynamics, but requires a fixed number of observations, which

defines the time-to-decision. Lastly, the IPSPRT is the most complex test, but decisions

are made such that the probability of false alarm and probability of miss are bounded, and

the time-to-decision is not pre-specified.

For comparison, we evaluate the performance of the three tests in terms of time-to-

decision, probability of false alarm, and probability of miss. For both the naive and esti-

mation tests, 10, 000 Monte Carlo tests were performed using the diffusive system assuming

4000 thresholds ranging from −2 to 2 and time-to-decision ranging from 1 to 35 time steps.

A false alarm occurs when, for a specific threshold and time-to-decision, the null hypoth-

esis is rejected and no source was active for the entire monitoring period (as determined

55



Figure 3.5: Probability of miss vs. time-to-decision for probability of false alarm = 0.10

by the time step when the test was initiated plus the time-to-decision). Similarly, a miss

occurs when the null hypothesis is accepted and a source was active for the entire mon-

itoring period. For the IPSPRT, the probability of false alarm and miss are parameters

and the average time-to-decision calculated over 100 different runs of the advection system

for all combinations of α, β ∈ {0.01, 0.02, 0.05, 0.10, 0.20, 0.50} (where α is the maximum

probability of false alarm, and β is the maximum probability of miss). Figure 3.5 shows

the expected probability of miss vs. the time-to-decision for each test when the maximum

probability of false alarm is assumed to be 0.10 (α = 0.10). In Fig. 3.5 the dotted line,

dashed line, and solid line represent the naive test, the estimation test, and the IPSPRT,

respectively. A specific test is preferred over the other tests if for a given probability of
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miss, it results in the smallest time-to-decision. Under this criterion, Fig. 3.5 suggests that

if a probability of miss above 0.094 is acceptable, then the naive test is the best option

because it requires fewer time steps to make a decision (as denoted by the dotted line being

below both the dashed and solid line). If the desired probability of miss is between 0.094

and 0.018, Fig. 3.5 illustrates that the estimation test is preferred. Only when a probability

of miss below 0.018 is required should the IPSPRT be employed. The reason the IPSPRT

does not always perform better than the other strategies is due to the conservative decision

thresholds obtained through Wald’s approximation [65]. The results in Fig. 3.5 illustrate

that the complexity of the IPSPRT test pays dividends as the desired probability of miss

decreases.

Figure 3.6 provides the results for when the maximum probability of false alarm is

decreased to 0.01. As in Fig. 3.5, the dotted line, dashed line, and solid line represent

the naive test, the estimation test, and the IPSPRT respectively in Fig. 3.6. Similar to

the results in Fig. 3.5, the results in Fig. 3.6 indicate the naive test is preferred for tests

where the acceptable probability of miss is above 0.14, the estimation test is preferred

for tests accepting a probability of miss between 0.14 and 0.038, and the IPSPRT test is

preferred when the maximum probability of miss below 0.038. Comparing the results in

Fig. 3.6 to the results in Fig. 3.5, we find that when the maximum probability of false

alarm is decreased, the range of desired probability of miss where the IPSPRT is preferred

increases.

The results in both Figs. 3.5 and 3.6 suggest that as the acceptable probability of

miss decreases, the number of time steps required by the naive and estimation tests grows

exponentially when compared to the IPSPRT. To illustrate this point, Fig. 3.7 shows a

graph of the probability of false alarm versus the probability of miss for each test, known as

the receiver-operator characteristic (ROC). In Fig. 3.7, the underlying shaded contour plot

represents integer values of the average time-to-decision for the proposed MSD strategy,
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Figure 3.6: Probability of miss vs. time-to-decision for probability of false alarm = 0.01
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Figure 3.7: Receiver operator characteristic vs. time-to-decision.
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ranging from 8 to 15 for probability of false alarm and probability of miss ranging from

0.01 to 0.10. The color bar on the right and the integer values on the plot indicate the

IPSPRT time-to-decision. The dotted and dashed lines in Fig. 3.7 represent the naive and

estimation tests, respectively, where the upper dotted and dashed lines correspond to a

time-to-decision of 16, while the lower ones represent a time-to-decision of 35. To relate

the results in Fig. 3.7 to the results in Fig. 3.5, in Fig. 3.5, the upper dotted and dashed

lines (corresponding to a time-to-decision of 16) represent all combinations of probability

of false alarm and probability of miss where a time-to-decision of 16 can be achieved for

achieved respectively for the naive and estimation tests. When the probability of false

alarm equals 0.10, the probability of miss that can be achieved is 0.048 for the naive test

and 0.022 for the estimation test. In Fig. 3.5, these values correspond to the probability of

miss attainable by each strategy when the time-to-decision is 16. A similar relation can be

made between the results in Figs. 3.7 and 3.6 when the probability of false alarm equals

0.01 and the time-to-decision equals 16. In Fig. 3.7, the results for a time-to-decision of 35

are plotted to illustrate the marginal savings in time-to-decision for the proposed test when

compared to the naive and estimation tests. To achieve a maximum probability of false

alarm of 0.02 while also achieving a maximum probability of miss of 0.02, the estimation

test requires aa time-to-decision of 35 while the IPSPRT averages a time-to-decision of

13.5 (the naive test requires a time-to-decision much greater than 35). As expected, for

all three tests, as the probability of false alarm and probability of miss decrease, the time-

to-decision increases. This suggests that more observations are needed to make a more

accurate decision.

When a source becomes active at a time later than the hypothesized time (K > KH),

the proposed strategy often detects the source. To illustrate this phenomenon, we write
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Figure 3.8: Test statistic values for KH = 4, 20, 21.

the test statistic for the test starting at time k = KH at time k = K as

TKH
(RK) = sup

b∈Be
K,KH

fb(RK)

f0(RK)
(3.29)

where Be
K,KH

is the set of time propagations of persistent elementary sources at time K

assuming sources can only become active at time KH . The test statistic ensures that to

accept the null hypothesis requires that every elementary hypothesis be less likely than

the null while to reject the null hypothesis only requires that one elementary hypothesis

be more likely. Figure 3.8 illustrates the test statistic value for a tests beginning at times,

KH = 4, 20, and 21, denoted by the circles, squares, and diamonds, respectively.
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In Fig. 3.8, the upper and lower horizontal dashed lines represent the thresholds for

rejecting and accepting the null hypothesis, and the vertical dashed line denotes that a

source became active at time k = 40. Fig. 3.8 illustrates that more observations are needed

to accept the null hypothesis than to reject the null hypothesis. This can be concluded

from Fig. 3.8 by observing that once a source became active at time k = 40, the null

hypothesis is rejected at the next time step, k = 41, while to accept the null hypothesis

(when no source is active) takes over 20 time steps. Thus, a change in the threshold to

accept the null hypothesis, ηβ will have more of an effect on the average time-to-decision as

compared to the same change in the threshold to reject the null hypothesis, ηα. Recalling

(3.5), the thresholds to accept the null hypothesis, ηβ, and reject the null hypothesis ηα

are

ηα =
1− β
α

and ηβ =
β

1− α
. (3.30)

We observe that for small α and β, ηβ is more affected by a change in β than by a change

in α. Therefore, the average time-to-decision of the proposed test is more affected by the

change in the maximum probability of miss, β, as opposed to the maximum probability of

false alarm, α. These results are illustrated in Fig. 3.7 by the shaded contour plot. For

a change in the maximum probability of miss from 0.10 to 0.01, the time-to-decision (for

α = 0.01) increases by 5 time steps. For a change in the maximum probability of false

alarm from 0.10 to 0.01, the time-to-decision (for β = 0.01) increases by only 3 time steps.

3.3.2 Source identification results

The source identification method proposed in this chapter is evaluated using the same

diffusion example as above. Upon detecting an active source in the detection simulations,

a localization simulation was performed assuming 100 different values of the maximum

probability of a type III error ranging from 0 to 1. The percentage of the combined

prominent and secondary sources that were actually active is plotted against each value

of the maximum probability of type III error in Figs. 3.9 and 3.10. As a comparison, an
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Figure 3.9: Percentage of identified sources that are active vs. probability of type III error
vs. probability of miss.

estimation based strategy is also included that estimates the source magnitudes assuming

all active sources (just as in the estimation test described in the previous subsection), and

a threshold applied to the source estimate.

In Fig 3.9, the percentage of identified sources that are actually active is plotted against

the maximum probability of type III miss for tests assuming a constant value of the max-

imum probability of false alarm and varying values of the maximum probability of a miss,

where we recall that the maximum probability of false alarm and maximum probability

of miss are the parameters used by the proposed strategy to accept or reject the null hy-

pothesis. In Fig 3.9, the percentage of identified sources that are active increases as the

probability of a type III error is increased and as the maximum probability of a miss de-
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Figure 3.10: Percentage of identified sources that are active vs. probability of type III
error vs. probability of false alarm.
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creases. These results suggest that percentage of identified sources that are active is not

significantly affected by changes in the probability of a miss. This is a direct result of the

threshold for rejecting the hypothesis, ηα in (3.30), not being significantly affected by small

changes in β (the maximum probability of miss).

Similar to Fig. 3.9, the results in Fig. 3.10 plot the percentage of identified sources that

are actually active against the maximum probability of type III error for tests assuming

a constant value of the maximum probability of miss and varying values of the maximum

probability of a false alarm. The results in Fig. 3.10 suggest that the percentage of

identified sources that are active can be increased by reducing the probability of a miss.

Comparing the results in Figs. 3.10 and 3.9, we observe that a change in the maximum

probability of false alarm has a more significant effect on the percentage of identified

sources that are active as compared to the same change in the maximum probability of a

false alarm. Similar to the discussion in the previous subsection, this effect is a direct result

of the threshold for rejecting the null hypothesis (and performing source identification) and

is dominated by the maximum probability of false alarm, α.
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Chapter 4

Wireless Sensor Network Considerations

In this chapter, we consider the resource constraints imposed by performing large-scale

multiple source detection (MSD) using wireless sensor networks (WSNs). There are sce-

narios in MSD problems where choosing fewer sensors can be beneficial. For instance, if

there are many sensors within communication range of one another, having all the sensors

communicate at once will result in increased observation loss due to a lack of sufficient

communication bandwidth. In the MSD applications of interest, we assume that the sen-

sor sampling rate is significantly greater than the time required to gather the observations

through a WSN. Thus, we claim that observation loss due to communication bandwidth

constraints (known as packet collisions) can be mitigated. A more important consideration

is extending the network lifetime [24, 48]. Extending the WSN lifetime can be accomplished

in many ways such as reducing the sampling rate, reducing the transmission power, and

performing dynamic sensor selection (DSS). DSS is the process of selecting fewer sensors

to return their observations at each time step such that the network lifetime is extended.

In MSD applications, DSS is used to extend the network lifetime at a cost of the time-

to-decision. In the following, we propose a dynamic sensor selection (DSS) strategy for

the iterative partial sequential probability ratio test (IPSPRT) introduced in Chapter 3

and is referred to as the GLRDSS. The GLRDSS is a generalized likelihood ratio (GLR)

based dynamic sensor selection (DSS) strategy that extends the lifetime of a wireless sen-
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sor network (WSN) by choosing fewer sensors to report at each time step which can be

implemented in large-scale long-term monitoring applications.

The following section introduces preliminary notation useful for discussing DSS. Section

4.2 motivates and introduces the GLRDSS. Section 4.3 presents a conservative approxima-

tion for the GLRDSS that can be solved using convex optimization techniques. The final

section provides an evaluation of the GLRDSS through simulation results.

4.1 DSS preliminary notation

This section reviews and introduces notation and properties that prove useful in the fol-

lowing DSS discussion. Assuming the IPSPRT, introduced in Chapter 3, is used for MSD,

we recall the condition for accepting the null hypothesis as

Λ̂G(Rk) ≤ ηβ, (4.1)

where

Λ̂G(Rk) =
supb∈Be

k
fb(Rk)

f0(Rk)
. (4.2)

is the generalized likelihood ratio over the single-active-source hypotheses and the threshold

ηβ ∈ [0, 1] is determined according to the maximum probability of false alarm and maximum

probability of miss. Equivalently, the IPSPRT test for accepting the null hypothesis is

written as

sup
b∈Be

k

lb(Rk) ≥ ln ηβ, (4.3)

where

lb(Rk) = lb(Rk−1)− ln f0(Rk) + ln fb(Rk), (4.4)

is the log-likelihood ratio (LLR) between the null hypothesis and the event hypothesis, Hb.

Since the observations are modeled as a linear dynamic system in (2.6) from Chapter 2,
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the LLR is recursively calculated as

lb(Rk) =lb(Rk−1) +
1

2
(rk −m0,k|k−1)TQT

kQkS
−1
0,k|k−1Q

T
kQk(rk −m0,k|k−1)

− 1

2
(rk −mb,k|k−1)QT

kQkS
−1
b,k|k−1Q

T
kQk(rk −mb,k|k−1)

+
1

2
ln(det(QkS

−1
b,k|k−1Q

T
kQkS0,k|k−1Q

T
k ))

, (4.5)

where Qk is the sensor selection matrix at time k as defined in (2.4) from Chapter 2, and

mb,k|k−1 and Sb,k|k−1 are the residual mean and covariance of the observations at time k

generated by a Kalman filter assuming the linear dynamic model under hypothesis Hb. By

applying the results in [43], the expected value of the LLR under the null hypothesis, given

the observations Rk−1 (i.e. given all the observations until time k − 1), is written as:

EH0 [lb(Rk)] =lb(Rk−1) +
1

2
Tr(QT

kQk)

−1

2

(
m0,k|k−1 −mb,k|k−1

)T
QT
kQkS

−1
b,k|k−1Q

T
kQk

(
m0,k|k−1 −mb,k|k−1

)
− 1

2
Tr
(
QkS

−1
b,k|k−1Q

T
kQkS0,k|k−1Q

T
k

)
+

1

2
ln(det(QkS

−1
b,k|k−1Q

T
kQkS0,k|k−1Q

T
k ))

,

(4.6)

where the trace of QT
kQk is equivalent to the number of sensors selected at time k. In the

following and consistent with the system model formulation in Chapter 2, Q represents the

set of all possible sensor selection matrices, Qk = ∅ denotes that no sensors are selected,

and Qk = I represents that all the sensors are selected. Additionally, we write qk to be the

sensor selection vector, where qk = diag
(
QT
kQk

)
. From (4.6), we observe that the expected

value under the null hypothesis of the LLR at time k, EH0 [lb(Rk)], when no sensors are

selected (Qk = ∅) is exactly the previous value of the LLR, lb(Rk−1). We refer to this

property as null-constant.
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Definition 4. A function, f(Rk), is null-constant if

EH0 [f(Rk)|Qk = ∅] = f(Rk−1) (4.7)

We note that since received observations, Rk, are a function of the sensor selection matrix,

Qk, then any function containing Rk is also a function of Qk. For each elementary event,

b ∈ Be
k, we introduce

∆(k, k′, b) =
ln ηβ − lb(Rk−1)

KH + κD − k′ + 1
(4.8)

to denote the average change needed to meet the desired time-to-decision at time k assum-

ing the current time is k′, where κD is the desired time-to-decision and KH is the time when

the test began. The numerator of (4.8) represents the difference between the threshold for

accepting the null hypothesis and the LLR corresponding to event b. This difference rep-

resents the change in the LLR needed to accept the null hypothesis. The denominator of

(4.8) represents the number of time steps left until the desired time-to-decision is reached.

Thus, ∆(k, k′, b) represents the average change in the LLR required at each time step to

accept the null hypothesis within the desired time-to-decision. In the following, it is shown

how ∆(k, k′, b) is employed to formulate a set of constraints for selecting sensors using the

GLRDSS. Using the notation introduced above, the following subsection introduces the

GLRDSS.

4.2 GLRDSS for MSD

This section formulates the GLRDSS as a 1-step DSS strategy for the IPSPRT, intro-

duced in Chapter 3, that reduces the number of sensors selected subject to achieving an

approximate time-to-decision. Solving a DSS problem that minimizes the number of sen-

sors selected subject to bounding the desired time-to-decision requires identifying a sensor
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selection schedule until the desired decision time is reached. In real-world applications,

solving a sensor scheduling problem requires knowledge of future dynamics and future ob-

servations, both of which can only be estimated. Furthermore, finding the optimal solution

for any sensor selection problem requires solving a 0-1 integer programming problem [25],

known to be NP-hard [27], and results in an exhaustive search of all possible strategies

[31, 38]. Since this work concerns large-scale long-term monitoring applications where the

dynamics may vary significantly over time, received observations are dependant on the

varying dynamics as well as the WSN channel reliability, and the number of potential sen-

sors and desired time-to-decision are large, solving a long-term sensor scheduling problem

is computationally infeasible. When events are unlikely (as in many long-term monitor-

ing applications) the null hypothesis is most likely to best describe the monitored process

at any given time. Thus, we propose a 1-step approximate DSS strategy that minimizes

the number of sensors selected at the current time subject to a constraint reflecting the

approximate time-to-decision under the assumption that the null hypothesis is true.

We introduce the GLRDSS as a 1-step approximate DSS strategy, problem consist-

ing of three parts: feasibility check, minimization, and verification. The feasibility check

ensures the GLRDSS is feasible; the minimization part selects the minimum number of

sensors such that the change in the LLR is more than the average change needed to meet

the approximate time-to-decision; and the verification part selects the sensors from the

minimization if the change in the LLR is less than the average change needed to meet the

specified time to decision minus one time step. The GLRDSS is outlined as follows:

• Feasibility check :

if : EH0 [lb(Rk)− lb(Rk−1)|Qk = I] ≤ ∆(k, k, b) ∀b ∈ Be
k

then : go to minimization

else : Qk = I

(4.9)
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• Minimization : (identify Q̂ ∈ Q, then go to verification)

Q̂ =arg min
Qk∈Q

trace(QT
kQk)

s.t. EH0 [lb(Rk)− lb(Rk−1)] ≤ ∆(k, k, b) ∀b ∈ Be
k

(4.10)

• Verification :

Qk =

 ∅ if EH0

[
lb(Rk)− lb(Rk−1)|Qk = Q̂

]
< ∆(k, k + 1, b) ∀b ∈ Be

k

Q̂ otherwise

(4.11)

The GLRDSS selects a minimal number of sensors such that a constraint on an approximate

measure of the expected time to decision is achieved. While the formulation above does

not consider the energy remaining in the batteries of each sensor, we note that any of the

energy cost functions in [74] could be incorporated in the minimization objective in 4.10.

The intuition behind the GLRDSS is that at each time step, sensors are selected such that

the expected value of the LLR approaches the threshold for accepting the null hypothesis.

To better explain the GLRDSS, an illustrative example is sequentially developed and

referenced throughout the following subsections. For this example, we assume there is a

single constant source which is not known to be active or inactive. Since only a single

potentially active source is considered, a single event hypothesis exists and results in a

sequential binary hypothesis testing problem. Thus, in the discussion pertaining to the

example, we refer to l(Rk) to be the LLR and ∆(k, k′) to be ∆(k, k′, b) since only one

potential event exists. In this example, we assume the desired time-to-decision is four

time steps (κD = 4) and the threshold for accepting the null hypothesis is ln ηβ = −2.

To demonstrate the how each part of the GLRDSS is performed, the example assumes

there are two sensors, resulting in four potential sensor selection matrices at each time k,

corresponding to selecting no sensors (Qk = ∅), selecting only the first sensor (Qk = [1, 0]),
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selecting only the second sensor (Qk = [01]), and selecting both sensors (Qk = I). For

this scenario, the null hypothesis is true, and the example begins at time k = 1, where

the value of the LLR at time zero (after gathering observations at time zero) is l(R0) = 2.

Although the expected value of the LLR and the actual value of the LLR are normally

calculated according to (4.6) and (4.4), respectively, for this example, these values are

chosen (not calculated) to illustrate the different aspects of the GLRDSS; however, the

value of ∆(k, k) is calculated as part of this example. The following subsections employ

the example described above to discuss each step of the GLRDSS and provides a discussion

of the GLRDSS for rejecting the null hypothesis.

4.2.1 Feasibility check

The feasibility check of the GLRDSS in (4.9) exists to ensure the minimization problem is

feasible. To check the feasibility, a sufficient test is

EH0 [lb(Rk)− lb(Rk−1)|Qk = I] ≤ ∆(k, k, b) ∀b ∈ Be
k, (4.12)

where the minimization problem is feasible if the expected decrease in the LLR is larger

than the required change when selecting all the sensors (i.e. Qk = I) as indicated by (4.9).

Although this constraint is not a necessary condition, intuition suggests that when the null

hypothesis is true, the LLR decreases as more observations are gathered. When (4.12) is

false, then the GLRDSS assumes that the minimization problem is not feasible and selects

all the sensors (Qk = I). When (4.12) is true, then the GLRDSS proceeds to minimization.

We note that when the desired decision time is exceed (k > KH + κD), no sensor selection

matrix, Qk, satisfies the sufficient condition, and the feasibility check ensures that all the

sensors are selected in hopes of achieving the quickest time-to-decision.

To illustrate the feasibility check, we recall the small example described previously,

where our discussion begins at time k = 1. Before observations can be acquired at time
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Figure 4.1: GLRDSS : feasibility check at k = 1.

k = 1, the GLRDSS must specify which sensors should report measurements. As discussed

above, the first step in the GLRDSS is to verify the minimization problem is feasible.

Figure 4.1 illustrates the feasibility check of the GLRDSS at time k = 1. In Fig. 4.1

and consistent with the previous description of the example, the solid circle at time k = 0

denotes the value of the LLR (l(R0) = 2). Similarly, the hollow circle at k = 1 denotes

the expected value of the LLR when all the sensors are selected, EH0 [l(R1)|Q1 = I] = 1.5,

which is chosen (not calculated) in this example for illustrative purposes. The shaded

region denotes where the minimization problem is feasible, namely when EH0 [l(R1)|Q1 =

I] ≤ l(R0) + ∆(1, 1) = 2 + −2−2
0+4−1+1

= 1. From Fig. 4.1, we observe that the minimization

problem is not feasible since EH0 [l(R1)|Q1 = I] is not less than 1. This result implies the

maximum expected change in the LLR will not be large enough to meet the desired time-

to-decision. Thus, the feasibility check of the GLRDSS selects all the sensors at time k = 1,

corresponding to the assumed maximum expected decrease in the LLR. The GLRDSS then

proceeds to time k = 2.

After gathering the observation at time k = 1, the LLR at time k = 1, l(R1), is

determined to be 1 (again, we recall the values of l(Rk) and EH0 [l(Rk)] are not calculated,

but rather chosen to illustrate different aspects of the GLRDSS). Figure 4.1 illustrates the
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Figure 4.2: GLRDSS : feasibility check at k = 2.

feasibility check at time k = 2. In Fig. 4.2, the solid circle at time k = 1 denotes the

value of the LLR, l(R1) = 1, which results from selecting all the sensors at time k = 1

(Q1 = I). Consistent with Fig. 4.1, the hollow circle at k = 2 is the expected value of the

LLR when all the sensors are selected, EH0 [l(R2)|Q2 = I] = −1, and the shaded region

denotes where the minimization problem is feasible, namely when EH0 [l(R2)|Q2 = I] ≤

l(R1)+∆(2, 2) = 1+ −2−1
0+4−2+1

= 0. In Fig. 4.2, EH0 [l(R2)|Q2 = I] is less than the threshold

of 0, which indicates the minimization problem is feasible, thus the GLRDSS proceeds to

minimization, as described in the following subsection.

4.2.2 Minimization

The minimization part of GLRDSS in (4.10) minimizes the number of sensors selected

while ensuring the expected change in the LLR, EH0 [l(Rk)]− l(Rk−1), is greater than the

average change needed to achieve the desired time-to-decision, ∆(k, k). In essence, the

minimization part throttles the rate at which the expected value of the LLR approaches

the decision threshold under the assumption that the null hypothesis is correct. When

either the difference between the LLR and the threshold is large or the decision time draws

near, more change in the LLR is required.
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Figure 4.3: GLRDSS : Part 1, k = 2.

To illustrate the minimization part, we continue the example from the previous sub-

section assuming the current time is k = 2 and the feasibility check has been passed

(As illustrated in Fig. 4.2). Figure 4.3 shows the minimization part of the GLRDSS at

time k = 2, where the only difference between Fig. 4.2 and Fig. 4.3 is the inclusion

of the expected values of the test function assuming all possible combinations of sensor

selection matrices, EH0 [l(R2)|Q2 = ∅], EH0 [l(R2)|Q2 = [0, 1]], EH0 [l(R2)|Q2 = [1, 0]], and

EH0 [l(R2)|Q2 = I]. In Fig. 4.3, EH0 [l(R2)|Q2 = ∅] is exactly l(R1) = 1 since the LLR is

null-constant (see Definition 4). The other conditional expectations of the LLR are chosen

(not calcualted) to help describe the minimization part of the GLRDSS. According to Fig.

4.3, the number of sensors is minimized subject to the constraint being satisfied (denoted

by the shaded region) when Q2 = [1, 0]. This is because when Q2 = [0, 1], the minimization

constraint is not met and Q2 = I selects more sensors than Q2 = [1, 0]. Thus, the mini-

mization part of the GLRDSS at time k = 2 selects only one sensor, namely Q̂ = [1, 0].

The GLRDSS then proceeds to verification, described in the following subsection.
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4.2.3 Verification

While the minimization part discussed in the previous subsection ensures a steady change in

the test function, the minimization constraint always requires a negative change, ∆(k, k) ≤

0, for all times less than the desired decision time (KH + κD). Thus, the minimization

part is constrained to always select at least one sensor since the LLR is null-constant. For

applications with a large desired time-to-decision, it is probable that selecting even one

sensor at each time step will result in a time-to-decision significantly less than the desired

time-to-decision. Thus, the verification part of the GLRDSS is employed to guard against

a preemptive decision.

The verification part of the GLRDSS in (4.11) establishes a lower bound on the expected

value of the test function to guard against a decision occurring prematurely. This is

accomplished by selecting either all or none of the sensors specified by the minimization

part. No sensors are selected if the expected change in the test function, EH0 [l(Rk)] −

l(Rk−1), is less than the required change under the assumption that the desired decision

time was one step closer, ∆(k, k+1). While the minimization part selects sensors such that

the LLR approaches the decision threshold, the verification part prevents early decisions

by ensuring the change in the test function is not too large.

To illustrate the verification part of the GLRDSS, we revisit the example discussed in

the previous two subsections and assume the minimization part at time k = 2 has been

completed and decided Q̂ = [1, 0] (as described in the previous subsection). Figure 4.4

illustrates the verification part of the GLRDSS at time k = 2, where the shaded region

represents the region where verification accepts the sensors specified by the minimization

part, namely EH0 [l(R2)|Q2 = [1, 0]] ≥ l(R1) + ∆(2, 3) = 1 + −2−1
0+4−3+1

= −0.5. Here we

observe that the constraint for accepting the minimized sensors involves ∆(2, 3), where

∆(k, k + 1) denotes the average change in the LLR needed to accept the null hypothesis

one step earlier. In Fig. 4.4, since the sensors specified by the minimization result in
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Figure 4.4: GLRDSS : Part 2, k = 2.

an expected value of the LLR, EH0 [l(R2)|Q2 = [1, 0]], outside the acceptance region of

the verification part, no sensors are selected at time k = 2, namely Q2 = ∅ as indicated

in (4.11). Since no sensors are selected at time k = 2 (Q2 = ∅) and the LLR is null-

constant, the value of the LLR remains constant from k = 1 to k = 2, as shown in Fig.

4.5. Figure 4.5 represents the combination of the feasibility check, minimization, and

verification parts of the GLRDSS at time k = 3, where the shaded region denotes where

the minimization problem is feasible and the verification part accepts the sensors specified

by the minimization. The upper bound on this region is exactly the bound calculated by

the feasibility check at time k = 3, l(R2) + ∆(3, 3) = 1 + −2−1
0+4−3+1

= −1, while the lower

bound is specified by the verification part and is l(R2)+∆(3, 4) = 1+ −2−1
0+4−4+1

= −2. Thus

the GLRDSS selects the combination of sensors over the region defined of Fig. 4.5 that

minimizes the number of sensors selected. As shown in Fig. 4.5, the selection matrix that

satisfies both the feasibility and verification constraints is Q3 = [1, 0]. Therefore, at time

k = 3 these sensors are selected.

We observe from Fig. 4.5 that the lower bound on the acceptable expected value of

the test function is exactly the lower bound for accepting H0 at time k = 3. Recalling the

desired decision time for this test is k = KH + κD = 0 + 4 = 4, we note that at the time
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Figure 4.5: GLRDSS : k = 3.

step before the desired decision time, the GLRDSS allows the expected test function to get

arbitrarily close to the value for accepting the null hypothesis. After gathering the data at

time k = 3, Fig. 4.6 illustrates that the LLR at time k = 3 is l(R3) = −1. Since the LLR

value is not below the threshold to accept the null hypothesis, the test continues to time

k = 4, which corresponds to the desired decision time.

The GLRDSS at time k = 4 is shown in Fig. 4.6. Consistent with Fig. 4.5, Fig.

4.6 represents the combination of feasibility check, minimization, and verification of the

GLRDSS at time k = 4, and the shaded region in denotes when both the minimization

problem is feasible and the sensors specified by the minimization part are accepted by

verification. The upper bound is calculated according to the feasibility check at time

k = 4, l(R3) + ∆(4, 4) = −1 + −2+1
0+4−4+1

= −2, while the lower bound is the determined by

the verification condition, l(R3) + ∆(4, 5) = 1 + −2+1
0+4−5+1

= −∞. These bounds indicate

that at the desired decision time, k = KH + κD = 0 + 4 = 4, the region for accepting the

sensors specified by verification is exactly the region where H0 is accepted. Thus, according

to the example in Fig. 4.6, the sensors selected at time k = 4 are Q4 = [0, 1], since this

combination is expected to result in a decision to accept the null hypothesis (assuming the
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Figure 4.6: GLRDSS : k = 4.

null hypothesis is true) and selects the fewest sensors. If the time-to-decision is exceeded,

k > KH + κD = 0 + 4 = 4, we recall from the description of the feasibility check that all

the sensors are then selected.

4.2.4 Rejecting the null hypothesis

The GLRDSS is tailored to accepting the null hypothesis, which is assumed to be much

more likely than any event hypothesis. When the null hypothesis is rejected (an event

hypothesis is accepted), the IPSPRT performs active source identification to localize the

active sources. From the results and discussion in Chapter 3, we recall that localization

accuracy increases with the number of sensor observations. Thus, when the null hypothesis

is rejected, we prefer the DSS strategy to select more sensors such that source localization

is improved. The number of sensors selected in the minimization part of the GLRDSS

increases as the difference between the threshold for accepting the null hypothesis and the

individual likelihood ratios increase. This is due to the numerator of ∆(k, k′) becoming

more negative as the difference increases between the LLR and the threshold for accepting

the null hypothesis. When an event is true, it is expected that the corresponding LLR

increases. As the LLR increases, more sensors are selected and the localization accuracy
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improves assuming the null hypothesis is rejected.

This section formulates the GLRDSS for the IPSPRT in Chapter 3. The GLRDSS

minimizes the number of sensors selected at each time step subject to a constraint on the

expected decrease in the LLR assuming the null hypothesis is true. While the proposed

DSS strategy does not guarantee the desired time-to-decision, it does select sensors such

that a decision is likely to occur near the desired decision time. This is accomplished

by selecting sensors such that the decrease in the LLR is large enough to accept the

null hypothesis within the desired time-to-decision, but not so large that a preemptive

decision is likely to occur. The GLRDSS is a 1-step approach to sensor selection, that

is, the GLRDSS only selects sensors at the current time step and does not establish a

sensor selection schedule over multiple time steps. The following section discusses the

implementation of the GLRDSS for large-scale MSD using a conservative approximation

and a relaxation-abstraction approach.

4.3 Implementing the GLRDSS

The GLRDSS introduced in the previous section requires both evaluating the expected

decrease in the likelihood ratio (a non-linear function of the sensor selection) and solving

a 0-1 integer programming problem. This is computationally infeasible for systems with

large numbers of sensors (as in large-scale monitoring applications). In the following, we

present a conservative approximation for the GLRDSS, then employ the same relaxation-

abstraction technique as [25, 70, 74] coupled with affine approximations of the minimization

constraints to relax the 0-1 integer programming problem into a convex programming

problem.

4.3.1 Conservative GLRDSS

This section motivates and introduces a conservative-quadratic approximation for the min-

imization constraint in the GLRDSS. We begin by recalling the expected value of the LLR
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in (4.6) is employed by the GLRDSS as a minimization constraint. By applying the re-

sults of Lemma 5 in Appendix D, the change in the expected value of the LLR due to the

observations gathered at time k can be written as:

EH0 [lb(Rk)− lb(Rk−1)] =− 1

2
qTk

(
S−1
b,k|k−1 ◦ m̂b,k|k−1m̂

T
b,k|k−1

)
qk

− 1

2
qTk

(
S−1
b,k|k−1 ◦ S0,k|k−1

)
qk + qTk qk

+
1

2
ln(det(QkS

−1
b,k|k−1Q

T
kQkS0,kQ

T
k ))

, (4.13)

where m̂b,k|k−1 = m0,k|k−1 −mb,k|k−1, A ◦ B denotes the Hadamard product (element-wise

product) of matrices A and B, and qk is the sensor selection vector, defined in Section 4.1

to be the diagonal elements of QT
kQk. From (4.13), the expected decrease in the likelihood

ratio, E0 [lb(Rk)− lb(Rk−1)], is a complicated non-linear function of the sensor selection

vector (and matrix). To simplify the calculations, we directly apply the results of Lemma

7 in Appendix D, and bound the expected decrease in the LLR under the null hypothesis

according to

EH0 [lb(RK)− lb(RK−1)] ≤ −1

2
qTK

(
S−1
b,K|K−1 ◦ m̂b,k|k−1m̂

T
b,k|k−1

)
qK , (4.14)

where the expected decrease is bounded by a quadratic function of the sensor selection

vector, qk.

Applying the conservative approximation in (4.14) to the GLRDSS in (4.9) - (4.11)

results in more sensors being selected at each time step such that the minimization con-

straint can be met. Conveniently, the upper bound in (4.14) is a quadratic function of

the sensor selection term qK ; however, this still requires solving a 0-1 integer programming

problem. The following subsection discusses a relaxation-abstraction approach for solving

the GLRDSS using the conservative constraint.
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4.3.2 Relaxed Conservative GLRDSS

The conservative 1-step DSS strategy in the previous subsection is a quadratic function

of the sensor selection term qK ; however the conservative approach still requires solving

a 0-1 integer programming problem, known to be NP-hard [27], and results (in the worst

case) in an exhaustive search of all possible strategies [31, 38]. For applications with many

sensors, this approach is known to be infeasible. Applying the same relaxation approach

as in [25, 70, 74], we replace the constraint on the sensor selection term from qK ∈ {0, 1} to

0 ≤ qK ≤ 1. Applying this relaxation, to the conservative constraint in (4.14) results in a

concave function of qK , not a convex function. Since (4.14) is applied to the GLRDSS, the

minimization part is non-convex as well. We propose to approximate the resulting concave

constraint in (4.10) using an affine approximation.

An affine approximation of the quadratic constraint in (4.10) is generated such that

the approximation is conservative and equals to the quadratic constraint at the point

where the quadratic constraint intersects vector 1 (corresponding to all the elements of the

vector equalling 1). Directly applying the results of Lemma 8 in Appendix D, we write the

approximate affine constraints as:

pTb,kqk ≤∆(k, k, b) ∀b ∈ Be
k
, (4.15)

where

pb,k = −1

2

√√√√ ∆(k, k, b)

1T
(
S−1
b,k|k−1 ◦ m̂b,k|k−1m̂T

b,k|k−1

)
1

(
S−1
b,k|k−1 ◦ m̂b,k|k−1m̂

T
b,k|k−1

)
1. (4.16)

Using these approximations, the GLRDSS minimization constraints become affine functions

of the sensor selection vector. The resulting convex minimization problem becomes a linear

programming problem, which can be solved using the CVX toolbox [15].
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The result of the minimization part of the GLRDSS yields a sensor selection vector with

values ranging between 0 and 1. To identify a binary sensor selection vector, we assign a

value of one to any element of qk that equals one and similarly, we assign a value of zero

to any element of qk that equals zero. The remaining elements are ranked from largest

to smallest and iteratively included in the selected sensors (by setting the corresponding

element of qk to 1) until the original non-relaxed minimization constraint in (4.10) is

satisfied. The conservative constraint is used by the minimization to effectively rank the

sensors for selection, where selection is actually performed using the original criteria. The

GLRDSS then proceeds to verification as described in Section 4.2.

4.4 Simulation Results

The GLRDSS is simulated using a scaled down version of the diffusion example in Ap-

pendix C. This system contains 49 sensors and has 49 potential sources corresponding to

49 elementary event hypotheses being compared to the null hypothesis. The MSD algo-

rithm from Chapter 3 is used to perform detection on the elementary hypotheses using the

following parameters:

• α = 0.01 (maximum probability of false alarm)

• β = 0.05 (maximum probability of miss)

The 20 simulations were performed at 35 different desired time-to-decision values ranging

from 1 to 69.

The results for number of sensors selected versus the desired time-to-decision are shown

in Fig. 4.7, where each ‘x’ represents the average number of sensors selected for a single

simulation assuming a specific desired time-to-decision. Each vertical band contains 20

simulations (and thus 20 ‘x’ marks). As Figure 4.7 illustrates, when the time-to-decision is

small, the number of sensors selected is large and vice versa. For this application, there is

a significant difference in the average number of sensors selected. This difference changes

rapidly for tests assuming a time-to-decision between 9 and 23 time steps. During this time
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Figure 4.7: Average energy consumed (number of sensors selected) vs desired time-to-
decision (in sampling periods).
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Figure 4.8: Actual time-to-decision vs. desired time-to-decision.

period, DSS is very useful because a small change in the desired time-to-decision can result

in a significant difference in the number of sensors selected. Equivalently, over this range

of desired time-to-decisions, the incremental energy savings is the greatest. As the desired

time-to-decision increases, the difference in the number of sensors selected from test to test

decreases significantly. This is due to the fact that only a few sensors are being selected

and as the desired time-to-decision increases, it has a decreasing effect on the number of

sensors selected.

The results for the average time-to-decision versus the desired time-to-decision for each

test is shown in Fig. 4.7, where each ‘x’ represents the average time-to-decision for a

single simulation assuming a specific desired time-to-decision. The dashed line represents
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when the average time-to-decision matches the desired time-to-decision. For small time-to-

decisions, Fig. 4.8 illustrates that the average time-to-decision is greater than the desired

time-to-decision when the desired time-to-decisions less than 11. This occurs because the

desired time-to-decision is not feasible for values less than 11. Once the desired time-to-

decision becomes feasible, the GLRDSS performs well at maintaining the desired time-to-

decision. The GLRDSS gives the user the ability to specify a desired time-to-decision to

reduce the energy used to perform detection in large-scale MSD applications.

A comparison of the GLRDSS to other proposed strategies is difficult to formulate. Pre-

vious work on sensor selection is primarily concerned with estimation [74] [70] [25]. In these

approaches, the number of sensors selected is minimized with respect to a bound on some

measure of estimation accuracy, such as the mean-squared-error or the log-determinant of

the error covariance matrix, while the GLRDSS minimizes the number of selected sensors

subject to a constraint on the time-to-decision. Comparing the estimation-tailored sensor

selection strategies to the GLRDSS requires relating the estimation accuracy to time-to-

decision, which may vary significantly with different dynamic process. Thus, there is no

way to identify the estimation accuracy needed to meet the desired time-to-decision prior

to performing sensor selection. A sensor selection strategy that minimizes the number of

sensors selected subject to a constraint on the expected time-to-decision is described in

[58]. In their approach, the multiple hypothesis testing problem is defined to be Baysian

and does not directly extend to the non-Baysian multiple hypothesis testing problems

considered in this dissertation.
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Chapter 5

Case Study, Implementation, and Evaluation

This chapter examines the performance of the multiple source detection (MSD) procedure

using a wireless sensor network (WSN) through a case study implementation and eval-

uation of the CO2 sequestration site monitoring problem described in Chapter 1. The

following section describes a wireless sensor network test bed for evaluating the detection

and localization strategies using an actual network. Section 5.2 introduces a linear lumped-

parameter model for an advection-diffusion process. Section 5.3 evaluates the performance

and robustness of the IPSPRT and GLRDSS, introduced in Chapters 3 and 4, using a wire-

less sensor network for the CO2 sequestration site monitoring application and discusses the

results.

5.1 Implementation

The test bed consists of 22 firefly sensor nodes [33] as shown in Fig. 5.1. Each firefly node

in Fig. 5.1 runs the Nano-RK operating system [10], contains a light intensity sensor, and

is connected to a unique programming board that supplies power to the firefly nodes and

allows for quick reprogramming of the entire network and background monitoring through

a wired network. A flow chart describing the functionality of the test bed is shown in

Fig. 5.2. In addition to the 22 firefly nodes and programming boards, the complete

test bed incorporates 2 computers (named Ramathorn and Coolstore in Fig. 5.2), and a
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Figure 5.1: 22 Wireless sensor test bed.

90



Figure 5.2: Test bed architecture

light projector. Coolstore is a Linux machine that operates as a network manager, and

Ramathorn is a Windows XP machine that executes the IPSPRT and GLRDSS routines

and simulates the environment, which is projected onto the 22 firefly nodes as different

light intensities ranging from 0 to 255. The light sensor on each firefly node outputs a

light intensity value ranging from 0 to 1023 corresponding to bright and dark, respectively.

A second-order least squares approximation is used to convert the firefly light intensity

value to the environment variable used for detection and localization, calibrated using 15

different light intensities.

At each sampling instant, Ramathorn first updates the environmental data and projects

the corresponding light data onto the sensor network. Ramathorn then performs the

GLRDSS and sends a request via socket communication to the network manager (cool-

store) specifying which sensors should be sampled. The network manager gathers the

requested light sensor observations using the SAMPL [49] data acquisition protocol. After

91



data acquisition is complete, the network manager relays the collected light sensor obser-

vations to Ramathorn. Ramathorn then executes IPSPRT routine. When the IPSPRT

routine are complete, the time step is incremented and the procedure repeats.

5.2 Advection-diffusion model

Models describing the dispersion of a gas in air originate from the continuous-time partial

differential equation (PDE) describing an advection-diffusion process [53]:

δc(p, t)

δt
+ φ(p, t)

∂c(p, t)

∂p
= α(p, t)

∂2c(p, t)

∂p2 , (5.1)

where c(p, t) denotes the concentration of CO2 in part per million (PPM) as a function of

space and time, p = [x, y, z] is the location vector, t is time, φ(p, t) = [φx(p, t), φy(p, t), φz(p, t)]
T

and α(p, t) = [αx(p, t), αy(p, t), αz(p, t)]
T are the advection and dispersion coefficients, re-

spectively in units of m
s

and m2

s
. The surface boundary condition is

(
φz(p, t)c(p, t)− αz(p, t)

δc(p, t)

δz

)
|p=(x,y,0)= λ(x, y, t),

where λ(x, y, t) represents the CO2 leak strength. The leak strength, in words, is the

normalized concentration (in PPM) of a source assuming the leak rate is 1m
s

.

Modeling the dispersion of gases in air is still a heavily researched field (see [2, 19,

54, 62] and citations within). While the advection parameter in (5.1) is simply the wind

speed and direction, in the physical world, determining this parameter typically requires

approximation since the wind is continuously changing. Moreover, the eddy diffusion

parameters are characterized by the crosswind intensity, vertical Gaussian plume, and the

wind speed, all of which vary [45]. A study of the eddy diffusion parameters is given

in [54]. In our evaluation, we assume that as the wind speed increases, the crosswind

intensity decreases. We also apply the same assumption as [54] and claim that in stable

wind with speeds above 2m
s

, the effects of eddy diffusion is insignificant when compared

92



to advection. For simplicity in evaluation of the detection and localization strategy we

neglect the vertical effects of diffusion, since it is a secondary effect when compared to the

horizontal effects of advection and diffusion [55]. Applying these assumptions, we write

the PDE in (5.1) in the plane z = 0 as the 2-d advection diffusion model as:

δc(x, y, 0, t)

δt
+ φx(t)

∂c(x, y, 0, t)

∂x
+ φy(t)

∂c(x, y, 0, t)

∂y
+ λ(x, y, t)

= αx(t)
∂2c(x, y, 0, t)

∂x2 + αy(t)
∂2c(x, y, 0, t)

∂y2 ,

(5.2)

where λ(x, y, t) represents the CO2 leak strength (in units of PPM
s

) at the surface, and only

takes a non-zero value at the leak location. φx(t) andφy(t) are the x and y components of

the wind vector respectively (assumed to be constant over the the monitoring region), and

the diffusion parameters are:

αx(t) =
10

|φy(t)|+ 1

αy(t) =
10

|φx(t)|+ 1
,

(5.3)

which represents decreasing eddy diffusion parameter values as the wind speed increases in

the orthogonal direction. Assuming a desired spatial discretization granularity of ∆, and

applying a spatial Euler’s approximation as in [19] to (5.4), the continuous-time advection

diffusion model is written as

δc(x, y, 0, t)

δt
= αx(t)

(
c(x+ ∆, y, 0, t)− 2c(x, y, 0, t) + c(x−∆, y, 0, t)

∆2

)
+ αy(t)

(
c(x, y + ∆, 0, t)− 2c(x, y, 0, t) + c(x, y −∆, 0, t)

∆2

)
− φx(t)

(
cx − c(x, y, 0, t)

∆

)
− φy(t)

(
cy − c(x, y, 0, t)

∆

)
+ λ(x, y, t)

(5.4)
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where

cx =

 c(x+ ∆, y, 0, t) if φx(t) > 0

c(x−∆, y, 0, t) if φx(t) < 0

cy =

 c(x, y + ∆, 0, t) if φy(t) > 0

c(x, y −∆, 0, t) if φy(t) < 0

(5.5)

By applying the same process as [19], the advection-diffusion process can be written in a

continuous-time state-space model as:

δx(t)

δt
= A(t)x(t) +Bu(t), (5.6)

where x(t) is the row-by-column concatenation of the planar monitoring area (this method-

ology is explained in Appendix C), A(t) and B are the lumped parameter models governing

the time evolution of x(t), and u(t) is the vector of source leak rates at time t. The contin-

uous state-space model in (5.6) is discretized according to the sampling period, resulting

in a discrete-time state space model for the advection diffusion process.

As an example, the system in (5.4) is simulated assuming a spatial discretization of

∆ = 50m and a temporal discretization of 1 minute. This example considers a single

source with strength of 200 PPM per second located at (.15 Km, .25 Km) when the wind

is blowing according to the vector (2,2) (i.e. 2Km
hr

in both the x and y direction). The

concentration values in percent CO2 are shown in Figure 5.3 at 2, 5, 10, and 20 minutes

after the source becomes active.

The subplots within Fig. 5.3 represent different temporal snapshots of the surface CO2

concentrations, and illustrate how the concentration levels change over space and time with

respect to an active source. The model developed in this section is used by the following

section to evaluate the IPSPRT and GLRDSS introduced in this dissertation.
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Figure 5.3: CO2 concentrations in %CO2 at t = 2, 5, 10, and 20 minutes.
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5.3 Evaluation

This section presents an evaluation of the IPSPRT for MSD for the CO2 monitoring appli-

cation. The following subsection empirically compares the performance of the alternative

tests and the IPSPRT for MSD described in Chapter 3 for the CO2 monitoring application.

In the final subsection, the robustness of the IPSPRT and GLRDSS is evaluated empiri-

cally in the presence of common errors and failures using the test bed described in Section

5.1.

5.3.1 Performance evaluation

This section presents a performance evaluation, in terms of time-to-decision, of different

feasible detection and localization strategies for the CO2 monitoring application described

in Section 5.2. We assume a sensor network of 22 sensors and 49 potential sources, dis-

tributed as in Fig. 5.4, where a square denotes a sensor location and a dot represents a

potential source location. 1, 000 simulations were performed, each lasting for 1200 time

Figure 5.4: Sensor and potential source locations.

steps with a randomly located single source becoming active at time step 600. We assume
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the wind is always blowing in the direction (1, 1) and tested 6 different wind intensities

ranging from 0Km
hr

to 8.5Km
hr

. For this evaluation, we do not apply the GLRDSS, rather,

at each time step, all the sensors are selected. For detection evaluation, we assume the

probability of false alarm is .01 and the probability of miss is .05, and evaluate the time-to-

decision of the naive test, estimation test and the IPSPRT (introduced in Chapter 3).1 For

localization evaluation, we assume the IPSPRT is used for detection, and upon correctly

rejecting the null hypothesis, an estimation-based approach to localization is compared to

the IPSPRT in terms of the percentage of sources identified to be active that are actually

active when the maximum probability of a type III error is .10.

Fig. 5.5 illustrates the detection results for deciding whether some source or no source is

active, using the naive approach, estimation approach, and the proposed approach in terms

of time-to-decision versus the wind speed. In Fig. 5.5, the naive and estimation approaches

are denoted by the dotted and dashed lines respectively. The solid line and the dash-dot

line denote the proposed approach when the null hypothesis is accepted (no sources are

active) and when the null hypothesis is rejected (some source is active). Recalling from

the descriptions of each test from chapter 3, the naive and estimation based approaches

must specify a time-to-decision, since the null hypothesis is only accepted when that time

is exceeded; however, the proposed approach accepts or rejects the null hypothesis when

their is enough information to guarantee the required probability of miss or probability

or false alarm is bounded. In the following discussion, we discuss the IPSPRT when the

null hypothesis is accepted and the when the null hypothesis is rejected separately. Unlike

other tests, the IPSPRT does not require a pre-specified number of observations to make

a decision and still bound the probability of error. Separating the IPSPRT results into

tests that accept H0 and tests that reject H0 allows us to discuss the performance (in time-

to-decision) when no event occurs (which is much more likely) in comparison to when

1All the strategies for detection and localization are introduced in Chapter 3, and provides an evaluation
of performance in terms of the probability of false alarm, probability of miss, and probability of type III
error therein.
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Figure 5.5: Time to decision vs. wind speed.
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some event occurs. Since the other feasible tests considered have a fixed time-to-decision

regardless of whether the null hypothesis is accepted or rejected, we do not distinguish

their results by their decision.

The results in Fig. 5.5 illustrate that for low wind speeds, the naive and estimation

approaches have a time-to-decision that is .15 hours (less than 1 time step) better than the

proposed strategy when accepting the null hypothesis and approximately the same when

rejecting the null hypothesis. Observing that the sensors are sampled every ten minutes,

this relates to about a one-time-step delay in decision. As the wind speed increases,

all approaches require longer monitoring periods to achieve the same probability of false

alarm and probability of miss as in lower wind speeds. This is due to the decreased CO2

concentrations being observed since CO2 is dispersed more quickly in larger winds. The

increase in time-to-decision is largest in the naive, estimation approaches, and the IPSPRT

when the resulting decision rejects the null hypothesis, as shown in Fig. 5.5. When the

wind speed is 8km
hr

, the estimation approach requires a time-to-decision of 5.5 hours (330

time steps) and the naive approach was never able to meet the required probability of false

alarm and probability of miss for the maximum detection period considered (10 hours or

600 times steps). The IPSPRT accepts the null hypothesis in an average of .5 hours (3 time

steps), and rejects the null hypothesis is an average of 2.2 hours (about 18 time steps).

Since it is assumed that it is much more likely that no source will be active as opposed

to some source being active, the IPSPRT becomes increasingly superior to both the naive

and estimation approaches as the wind speed increases.

Fig. 5.6 illustrates the localization results in terms of percentage of identified sources

which are active versus wind speed using the estimation-based and IPSPRT approaches.

Both approaches assume the IPSPRT is used for detection. In Fig. 5.6, the solid line

denotes the IPSPRT and the dotted line corresponds to the estimation-based strategy.

When there is no wind, both strategies achieve over a 95% chance that a source identified
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Figure 5.6: Percentage of active sources vs. wind speed.

as active is actually active. As the wind speed increases, both strategies experience a

decrease in the probability that a source identified as active is actually active. When the

wind speed is 8km
hr

, the localization of the IPSPRT achieves a 91% chance that an identified

source is active, while the estimation-based localization only provides a 59% chance. Thus,

the increased computational complexity of the IPSPRT pays dividends as the wind speed

increases.

The results above indicate that as the wind speed increases, the IPSPRT performs

increasingly better than other feasible approaches.

5.3.2 Robustness evaluation

In the previous section, the IPSPRT is shown to perform much better than other feasible

strategies for large-scale CO2 sequestration site monitoring as the wind speed increases.

This section investigates the robustness of the proposed strategy in terms of common

errors/failures associated with environmental monitoring using a WSN through the test bed
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implementation described in Section 5.1. We consider five different error/failure scenarios:

packet loss, model parameter errors, localization errors, and two different types of sensor

failures. To evaluate packet loss, we consider how packet loss affects time-to-decision and

localization accuracy for the sensor and potential source configuration shown in Fig. 5.4.

In the following, we use the packet loss scenario as a control experiment for all other types

of errors since all errors are evaluated using the wireless sensor network test bed and thus

include packet loss.

The second type of error considered occurs when model parameters are different than

the assumed parameters. To simulate this error, the advection-diffusion model used for

simulating the environment assumes a randomly selected value for the wind speed in both

the x and y directions, such that the expected value of the actual wind speed matches

the wind speed assumed by the model used for detection and localization. We assume

the wind speed varies independently in both the x and y directions according to a normal

distribution with unit covariance.

Sensor localization error is the third type of error considered. To simulate this error,

the test bed sensors are moved to the locations specified by the squares in Fig. 5.7 while

the model used for detection and localization of sources still assumes the sensor layout in

Fig. 5.4. The fourth and fifth types of failures considered occur when sensor nodes die

(drop out of the network). The first sensor death considered, henceforth referred to as

sensor failure 1, assumes that the interior sensors denoted by the filled boxes in Fig. 5.8

cannot deliver observations. Similarly, the second sensor death considered, referred to as

sensor failure 2, assumes that the exterior sensors denoted by the filled boxes in Fig. 5.9

are not capable of being sampled.

To evaluate the robustness of the IPSPRT and GLRDSS in the presence of the afore-

mentioned errors/failures, we consider four different active source scenarios

1. Synchronous distributed sources : Two sources located far apart from one another
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Figure 5.7: Sensor localization error layout.

Figure 5.8: Sensor failure 1 (interior sensor failure).
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Figure 5.9: Sensor failure 2 (exterior sensor failure).

that become active at the same time.

2. Synchronous clustered sources : Two sources located near one another that become

active at the same time.

3. Asynchronous distributed sources : Two sources located far apart from one another

that become active at different times.

4. Asynchronous clustered sources : Two sources located near one another that become

active at different times.

Each active source scenario is evaluated in low wind (2.8Km
hr

) and in high wind (8.5Km
hr

).

The test scenarios are described in detail in Appendix E. The desired time-to-decision is

1 hour (6 sampling periods). In the following, the IPSPRT and GLRDSS performance in

terms of time to decision is investigated. The results are classified by the IPSPRT decision

to accept or reject the null hypothesis. For each test decision, the time-to-decision is

investigated in the presence of the errors and failures mentioned above. It is important to

consider the test decision because (as shown in the previous section) the time-to-decision

can differ significantly when accepting versus rejecting the null hypothesis.

103



Table 5.1: Average time-to-decision (in sampling periods) for accepting H0

Wind Control Localization Parameter Sensor Sensor
Speed (Packet Loss) Error Error Failure 1 Failure 2

Synchronous Low 6.79 6.92 7.24 6.89 7.77
Distributed Sources High 7.71 7.69 7.74 7.72 11.68

Synchronous Low 6.81 6.89 7.22 6.90 7.79
Clustered Sources High 7.72 7.67 7.76 7.74 11.72

Asynchronous Low 6.82 6.91 7.23 6.92 7.80
Distributed Sources High 7.72 7.68 7.74 7.75 11.74

Asynchronous Low 6.81 6.91 7.28 6.87 7.79
Clustered Sources High 7.74 7.62 7.81 7.80 11.78

Table 5.1 illustrates the average time-to-decision in sampling steps for deciding that no

sources are active (accepting the null hypothesis). In Table 5.1 the results indicate that

there is not a significant increase in the expected time-to-decision when localization error,

parameter error, or interior sensor failure occurs. The only error that has a significant effect

on the time-to-decision occurs when an exterior sensor fails in high wind situations, where

the increase in the time-to-decision is about 50 percent. There is no significant difference

in the average time-to-decision for each error between the different source scenarios when

deciding no sources are active. This is intuitive since the null hypothesis is rarely accepted

when a source is actually active (because the probability of miss is .05). With the exception

of when an exterior sensor node failed, the expected decision time was within two time

steps of the desired time-to-decision of 6 time steps. The difference between the desired

and actual time-to-decision is apparent in the control case, which suggests that packet loss

is a contributing factor.

Table 5.2 illustrates the average time-to-decision in sampling steps for deciding some

source is active (rejecting the null hypothesis). The results show that an interior sensor

failure has the largest effect on the average time-to-decision, amongst the types of er-

rors/failures considered. Observing from Fig. 5.8 and the description of the descriptions
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Table 5.2: Average time-to-decision (in sampling periods) for rejecting H0

Wind Control Localization Parameter Sensor Sensor
Speed (Packet Loss) Error Error Failure 1 Failure 2

Synchronous Low 1.92 2.68 2.78 3.76 2.61
Distributed Sources High 24.82 25.10 28.76 31.05 25.60

Synchronous Low 1.61 1.92 2.21 2.78 2.01
Clustered Sources High 12.61 12.83 15.34 20.10 12.79

Asynchronous Low 2.01 2.81 2.92 3.91 2.83
Distributed Sources High 24.79 25.11 28.75 31.11 25.52

Asynchronous Low 2.02 2.79 3.11 4.01 2.96
Clustered Sources High 26.61 26.83 30.07 34.58 26.91

of the active source scenarios considered in appendix E, we observe that the interior nodes

which failed were the closest down-wind nodes from the active sources. Thus, in high wind

situations, where the concentration of CO2 is small except for near the source, having nodes

fail in the down-wind proximity can cause a significant increase in the time-to-decision.

The results in Table 5.2 also illustrate that in low wind situations, the null hypothesis

is rejected more quickly than it is accepted, and in high wind situations, the opposite

occurs. This is consistent with the results in Fig. 5.5, where the time-to-decision to accept

the null hypothesis increases at a much slower rate than the decision to reject the null

hypothesis. As shown in all the test scenarios, when sensors observe a significant increase

in the the CO2 concentration level, a detection occurs quickly. As the CO2 concentration

decreases (due to either a decrease in the source magnitude or an increase in the wind

speed), the time-to-decision increases. Intuitively, based on the results for accepting the

null hypothesis in Table 5.1 and rejecting the null hypothesis in Table 5.2, one could

institute a preemptive detection scheme based on the duration of the monitoring period.

As the time-to-decision increases, it becomes more likely (based on the empirical data) that

an active source exists, but can’t be accurately localized yet (since recalling from chapter

3, the localization accuracy depends on the probability of false alarm and probability of
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Table 5.3: Percentage of localized sources that are active

Wind Control Localization Parameter Sensor Sensor
Speed (Packet Loss) Error Error Failure 1 Failure 2

Synchronous Low 95.1 93.0 87.7 86.2 94.8
Distributed Sources High 88.7 80.3 71.4 68.5 88.2

Synchronous Low 96.8 95.2 91.0 91.5 96.6
Clustered Sources High 92.5 85.1 78.1 75.2 89.7

Asynchronous Low 95.3 93.0 87.8 86.9 94.1
Distributed Sources High 88.1 79.5 71.6 68.8 88.9

Asynchronous Low 88.0 86.5 75.2 70.1 84.2
Clustered Sources High 75.1 71.0 57.6 48.6 68.3

miss achieved by the detection procedure).

We observe in Table 5.2 that when two sources become active at the same time and

are near one another, that the time-to-decision is smaller than in any other corresponding

source scenario. This is due to the overall increase in the CO2 concentration at each of

the down-wind sensor nodes. When multiple sources are active in the same proximity, the

results are similar to a single source with a larger leak rate. These multiple proximate

active source scenarios improve the time to detection, but may decrease the localization

accuracy (in terms of the number of sources identified to be active that are actually active).

When comparing the time-to-decision for accepting the null hypothesis (Table 5.1) versus

rejecting the null hypothesis (Table 5.2), we observe that an exterior node sensor failure

significantly increases the time-to-decision for accepting the null hypothesis, while a failure

of down-wind nodes close to the active source(s) has a similar effect when rejecting the

null hypothesis. These observations lead us to believe that sensor failures (nodes dropping

out of the network) are of a key concern when a WSN is used to perform MSD.

Table 5.3 illustrates the localization accuracy in terms of the percentage of sources

identified to be active that are actually active when the null hypothesis is rejected. The

results indicate that for all source scenarios, an interior sensor failure (corresponding to
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a failure of the closest down-wind sensors) and a model parameter error have the largest

effects on the localization accuracy. We note that, while a model parameter error did not

cause a significant error in detection, it does significantly affect localization. This error

is only increased as the model error increases. Moreover, significant model parameter

errors will also significantly affect the detection performance, but the results in Table 5.2

and Table 5.3 suggest that parameter errors affect localization more than detection. This

is intuitive, since detection concerns the broad problem of determining if active sources

exist, while localization concerns the much finer problem of identifying which sources are

active. This result reinforces the benefit of separating the tasks of detection and localization

because detection (deciding whether no or some sources are active) is somewhat robust to

small parameter errors.

An exterior sensor failure and sensor localization error do not have significant effects on

the localization accuracy, due in part to the additional information required to reject the

null hypothesis initially. We note that significant localization errors, can significantly affect

performance, but in the test scenarios considered, the sensor node locations differed from

their assumed locations by 40 meters (less than the spatial discretization of 50 meters)

and performance did not suffer significantly. Although significant localization errors were

not considered (where the nodes are 100s of meters from there assumed location), we

suspect that much like the effect of parameter errors, localization accuracy will be affected

significantly more than detection performance (in terms of time-to-decision).
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Chapter 6

Conclusions and Future Work

Large-scale long-term MSD using WSNs is a rich problem with many research areas pro-

vided by the sheer magnitude of the problem (computational and information processing

issues) and the uncertainty associated with gathering information using a wireless sensor

network. To this end, this dissertation first contributes a scalable heuristic solution to

large-scale persistent MSD called the iterative partial sequential probability ratio test (IP-

SPRT). The second contribution is an empirical evaluation of the IPSPRT in comparison

to other feasible strategies for large-scale MSD. The third contribution of this disserta-

tion is a scalable dynamic sensor selection (DSS) strategy referred to as the GLRDSS that

prolongs the lifetime of a WSN used for large-scale MSD. The final contribution of this dis-

sertation is a physical implementation and evaluation of the robustness of the IPSPRT and

GLRDSS with respect to common sensor networking errors and failures that demonstrates

the effectiveness of both solutions in real-world MSD applications using a WSN.

A scalable two-step heuristic solution to persistent MSD is introduced, that does not

suffer from an explosion of potential hypotheses due to all space-time combinations of

active and inactive sources, whereas other strategies do. The time complexity is avoided

by sequentially testing only hypotheses assuming a specific time when sources become

active. Once a decision is made, the time is incremented and the process repeats, and thus

the strategy does not experience an increase in complexity with time. Space complexity
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is avoided by testing only the hypotheses that assume a single-active source. It is shown

that, in the scalar observation case, testing the single-active source hypotheses is sufficient

for testing all the hypotheses. As a heuristic, this is extended to the multiple-observation

case.

The IPSPRT for MSD is compared empirically to two other common feasible strategies.

One strategy simply thresholds the observations to determine whether an active source is

present, while the other strategy uses a dynamic model to generate an estimate that is

then used in a threshold test. The empirical comparison suggests that as the maximum

probability of false alarm, maximum probability of miss, and maximum probability of

type III error decrease, the IPSPRT performs increasingly better than the other feasible

strategies.

A DSS strategy is introduced that is tailored to the IPSPRT for large-scale MSD. The

GLRDSS selects the fewest number of sensors at each time step such that the expected

time-to-decision is approximately the desired time-to-decision. Empirical results suggest

that significantly fewer sensors can be selected at each time step for an increasing desired

time-to-decision, where selecting fewer sensors at each time step is assumed to increase the

network lifetime.

A test bed is implemented consisting of 22 firefly nodes. The test bed uses light pro-

jection and sensing to emulate environmental monitoring for a carbon sequestration site

monitoring application. The robustness of the IPSPRT and GLRDSS is evaluated in the

presence of common sensor networking errors and failures such as: model parameter errors,

sensor localization errors, sensor death, and packet loss. The test bed results suggest that

under most conditions the MSD and DSS strategies are robust to small parameter errors

and sensor localization errors; however, sensor death can affect performance significantly.

Through the contributions of this dissertation, we recognize several problems which

should be addressed as part of future work on MSD using a WSN. In the current formu-
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lation, we assume knowledge of the state space model and do not address the relationship

between the performance parameters defined for the discrete system and the actual per-

formance in the real world. In regards to generating a discrete state-space system model

for the continuous real world phenomena, issues such as robustness to time and space dis-

cretization [19, 34], identifying parameters in the underlying partial differential equations

[54, 55], and defining the potential source set are problems that should be investigated.

Modeling errors arise when we generate discrete space-time models for continuous dynam-

ics governed by partial differential equations. These modeling errors undoubtedly affect

the overall system performance, especially in terms of detection and localization as seen

by the test bed evaluation.

The robustness results of the detection and localization strategy in the presence of sen-

sor death suggests that sensor deployment can play a significant role in performance. This

work assumed a given sensor deployment. Future work is needed to specify criteria for what

constitutes the best sensor deployment and a method of determining this deployment. This

question of sensor deployment (and more generally sensor selection) has been considered

by many researchers for the problem of providing a minimum mean squared error estimate

[16, 25, 70, 74], but extensions to the MSD problem have not yet been considered. The

test bed robustness results illustrate that sensor placement plays a key role in detection

and localization where some sensor deaths can have a significant effect on performance and

others a marginal effect.

Several wireless networking issues need to be addressed, such as security of information,

maximizing network reliability (through routing protocols), characterization of routing

protocols for channel reliability modeling, and real-time sensor calibration. These wireless

sensor networking issues are of increasing importance due to the sensitivity of large-scale

MSD strategies to inaccurate and missing data. To achieve high performance, guarantees

must be made on the security of the information, the minimum network reliability, and the
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accuracy of the sensed data. Errors such as sensor drift (not considered in the robustness

evaluation) may have a significant effect on the MSD strategy performance if not properly

handled.

Lastly, the current formulation considers only persistent sources. Although the problem

formulation changes significantly with the allowance of intermittent sources, empirical anal-

ysis of the persistent source detector performance in the presence of intermittent sources

for various time-to-decision bounds would give insight to applying this strategy to a much

broader class of MSD problems. While intermittent sources have been considered for small-

scale multiple source detection [72], these approaches do not extend to large-scale problems.

With technological advances in wireless sensor technology, large-scale MSD problems that

were once thought to be impossible due to physical constraints are quickly becoming the

detection problems of today [5, 71].
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Appendix A

Distribution of Observations

We recall the system model in (2.6) from Chapter 2, written as

 xk+1

zk+1

 =

 Ak BkΓkGk

0 Fk


 xk

zk

+

 I BkΓk 0

0 0 I



wk

dk

hk


rk =

[
ΛkQkCk 0

] xk

zk

+ ΛkQkvk.

(A.1)

and the a priori distribution on the process state

x̃0 : N [x̂0,Σ
x
0 ]. (A.2)

Additionally, we recall from the discussion in Chapter 2, when the jth source transitions

from inactive to active at time k = K, the source state is initialized at time k = K

according to:

z̃jK : N
[
ẑj,K ,Σ

z
j,K

]
, (A.3)
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and assumed to be independent of the process state. We also assume the noise terms are

distributed as



w̃k

ṽk

h̃k

d̃k


: N





0

0

0

0


,



W 0 0 0

0 V 0 0

0 0 H 0

0 0 0 D




. (A.4)

Since the system dynamics are linear and the observations, rk, are linear combinations of

the system state, the observation random vector, R̃K , is written as a linear combination of

the process, source, and noise random variables as:

R̃K =Ψx(K)x̃0 +

(
K−1∑
k=0

Ψw(k,K)w̃k

)
+


Λ0Q0ṽ0

...

ΛKQK ṽK


+

(
K−1∑
k=0

J∑
j=1

Ψz(j, k,K)z̃k + Ψh(j, k,K)h̃k + Ψd(j, k,K)d̃k

) (A.5)

where Ψx(k
′), Ψw(k, k′), Ψz(j, k, k

′), Ψd(j, k, k
′), and Ψh(j, k, k

′) are the observation ma-

trices from time 0 to k′ for the initial process state, the process noise, the initialization

source state, source output noise, and the source process noise, respectively. We denote an

observation matrix as a matrix which relates the effect of a signal on the observed values

from time k = 0 to k = K, namely RK . Each block-row of the observation matrices corre-

sponds to the effect of their respective signals on the output at a specific time, rk v RK .

The following subsection defines and discusses each observation matrix in (A.5) and the

final subsection illustrates how the distribution under each hypothesis is determined.
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A.1 Transition Matrices

Each observation matrix in (A.5) represents how a respective random variable affects the

observations, RK . This section defines and discusses each transition matrix.

A.1.1 Ψx(k
′)

Ψx(k
′) is the observation matrix at time k′ corresponding to the process state, xk. Since

the process state evolves according to the process dynamics, the process state at any time

k ≥ 0 is a function of the initial process state. The observation matrix at time k′ for the

initial system state, x0, is written as:

Ψx(k
′) =



Λ0Q0C0

Λ1Q1C1A0

...

Λk′Qk′Ck′
∏k′−1

j=0 Aj


, (A.6)

We note that Ψx(k
′) is independent of whether sources are active or inactive.

A.1.2 Ψw(k, k′)

Ψw(k, k′) is the observation matrix at time k′ corresponding to the process noise at time

k, wk, and is written as:

Ψw(k, k′) =



...

0

Λk+1Qk+1Ck+1

Λk+2Qk+2Ck+2Ak+1

Λk+2Qk+2Ck+2

∏k+2
j=k+1 Aj

...

Λk′Qk′Ck′
∏k′−1

j=k+1Aj



, (A.7)
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We also observe that Ψw(k, k′) is independent of whether sources are active or inactive.

A.1.3 Ψd(k, k
′)

Ψd(j, k, k
′) is the observation matrix at time k′ for source output noise at time k, dk,

corresponding to the jth source and is written as:

Ψd(j, k, k
′) =



...

0

Λk+1Qk+1Ck+1BkΓ
j
k

Λk+2Qk+2Ck+2Ak+1BkΓ
j
k

Λk+2Qk+2Ck+2

(∏k+2
j=k+1 Aj

)
BkΓ

j
k

...

Λk′Qk′Ck′

(∏k′−1
j=k+1Aj

)
BkΓ

j
k



(A.8)

Where Γjk is the matrix (of the same dimension as Γk) that assumes all sources except the

jth source are inactive, and takes the same values as Γk for elements corresponding to the

jth source. We note that

Γk =
J∑
j=1

Γjk. (A.9)

Unlike the previous observation matrices, Ψd(j, k, k
′) is a function of which sources are

active.

A.1.4 Ψz(j, k, k
′)

Ψz(j, k, k
′) is the observation matrix at time k′ corresponding to the jth source state when

the jth source becomes active at time k. Since the jth source state is initialized when the

jth source becomes active at time k and evolves according to the source dynamics (which

are known to be independent of other sources), the jth source state at any time after

initialization is a function of the initial source state (plus the source process noise, which
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will be addressed in the following subsection). We write Ψz(j, k, k
′) as:

Ψz(j, k, k
′) =



...

0

Λk+1Qk+1Ck+1Bk

(
Γjk − Γjk−1

)
Gk

Λk+2Qk+2Ck+2

[
Ak+1Bk

(
Γjk − Γjk−1

)
Gk +Bk+1

(
Γjk − Γjk−1

)
Gk+1Fk

]
Λk+3Qk+3Ck+3

∑k+2
n=k

[(∏k+2
i=n+1Ai

)
Bn

(
Γjk − Γjk−1

)
Gn

(∏n−1
m=k Fm

)]
...

Λk′Qk′Ck′
∑k′−1

n=k

[(∏k′−1
i=n+1 Ai

)
Bn

(
Γjk − Γjk−1

)
Gn

(∏n−1
m=k Fm

)]



,

(A.10)

where Γjk−Γjk−1 is only non-zero when the jth source becomes active time k. Since sources

are persistent, once sources become active, they remain active indefinitely and thus each

source is initialized at most once. We recall that the sources are independent, and thus

(
k′−1∏
i=n+1

Ai

)
Bn (Γk − Γk−1)Gk

(
n−1∏
m=k

Fm

)
=

J∑
j=1

(
k′−1∏
i=n+1

Ai

)
Bn

(
Γjk − Γjk−1

)
Gk

(
n−1∏
m=k

Fm

)
.

(A.11)

A.1.5 Ψh(j, k, k
′)

Ψh(j, k, k
′) is the observation matrix at time k′ corresponding to the source process noise

at time k, hk, associated with the jth source and is written as:
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Ψh(j, k, k
′) =



...

0

0

Λk+2Qk+2Ck+2Bk+1ΓjkGk+1

Λk+3Qk+3Ck+3

[
Ak+2Bk+1ΓjkGk+1 +Bk+2ΓjkGk+2Fk+1

]
Λk+4Qk+4Ck+4

∑k+3
n=k+1

[(∏k+3
i=n+1Ai

)
BjΓ

j
kGn

(∏n−1
m=k Fm

)]
...

Λk′Qk′Ck′
∑k′−1

n=k+1

[(∏k′−1
i=n+1Ai

)
BnΓjkGn

(∏n−1
m=k Fm

)]



(A.12)

Since, the jth source process noise only enters the process state through the corresponding

jth source state and the source state is initialized when sources transition from inactive

to active, the source process noise prior to initialization has no affect on the observations.

Thus, the jth source process noise at time k, hk, only has an effect on the observations if

the corresponding source is active at time k.

A.2 Distribution of RK assuming active sources

We write the observation random variable, R̃K as the sum of a null random variable, R̃0
K ,

and an event random variable, R̃Γ
K , which assumes a time propagation of active sources

(Γk) from k = 0 to k = K. We write the null random variable as

R̃0
K = Ψx(K)x̃0 +

(
K−1∑
k=0

Ψw(k,K)w̃k

)
+


Λ0Q0ṽ0

...

ΛKQK ṽK

 , (A.13)
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and the event random variable as

R̃Γ
K =

K−1∑
k=0

J∑
j=1

(
Ψz(j, k,K)z̃k + Ψh(j, k,K)h̃k + Ψd(j, k,K)d̃k

)
(A.14)

where R̃K = R̃0
K + R̃Γ

K . The null random variable represents the observations when no

sources are active, while the event random variable accounts for active sources. The null

random variable and event random variable are independent since each is a linear combina-

tion of a mutually exclusive set of random variables, each known to be independent of the

rest. Since all the underlying random variables are independent normal random variables,

the null hypothesis is distributed as

R̃0
K : N [m0(K), S0(K)], (A.15)

where

m0(K) = Ψx(K)x̂0

S0(K) = Ψx(K)Σx
0 (Ψx(K))T +

[
K−1∑
k=0

Ψw(k,K)W (Ψw(k,K))T
]

+


Λ0Q0V (Λ0Q0)T

...

ΛKQKV (ΛKQK)T

 .
(A.16)

Similarly, the event hypotheses are distributed as

R̃Γ
K : N

[
J∑
j=1

K∑
k=0

(bjk − b
j
k−1)mj,k(K),

J∑
j=1

K∑
k=0

(bjk − b
j
k−1)Sj,k(K)

]
, (A.17)
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where

mj,k(K) = Ψz(j, k,K)ẑk

Sj,k(K) = Ψz(j, k,K)Σz
k (Ψz(j, k,K))T

+
K∑
k′=k

(
Ψh(j, k

′, K)H (Ψh(j, k
′, K))

T
+ Ψd(j, k

′, K)D (Ψd(j, k
′, K))

T
)
,

(A.18)

and the mean and covariance of the event random variable are written in terms of when

the jth source becomes active (bjk − b
j
k−1 = 1).
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Appendix B

Multiple source detection for constant sources

This appendix contains the theoretical results for Multiple Source Detection (MSD) for

constant sources. The following subsection provides proof of the optimality of testing

only a subset of the potential events instead of all possible events for MSD in the scalar

observation case. The final subsection provides a proof Wald’s test [65].

B.1 Scalar observation MSD proof

Suppose there are J independent noisy signal sources with positive means m1, . . . ,mJ

and variances Σ1, . . . ,ΣJ , respectively. Each source can be active or inactive. The active

sources are indicated by the values of a binary vector b ∈ {0, 1}J , where bj = 1 indicates

source j is active. In the following 1 and 0 denote the binary vectors of all ones and all

zeros, respectively, and ej denotes the elementary binary vector with a single 1 in the jth

component.

A vector of received signals y ∈ RN is the sum of the signals from the active sources

plus an additional independent zero-mean, identity covariance noise signal. Therefore,

the observation vector y is a random variable of dimension N with one of 2J possible

distributions, N [µb, Σb], where N [µ,Σ] denotes the Gaussian distribution with mean µ

and covariance Σ. The mean µb is given by µb =
∑J

j=1 bjmj and the covariance Σb is given

by Σb = I +
∑J

j=1 bjΣj. We denote the normal probability density function (pdf) for a

127



given active source vector b by fb(y).

Let Hb denote the hypothesis that the active source vector is b and let lb(y) denote the

log-likelihood ratio between the hypotheses Hb and H0:

lb(y) = ln

(
fb(y)

f0(y)

)
= ln(fb(y))− ln(f0(y))

= −1

2
(y − µb)T Σ−1

b (y − µb)−
1

2
ln det (Σb) +

1

2
yTy

=
1

2
yT
(
I −Σ−1

b

)
y − µTb Σ−1

b y − 1

2
µTb Σ

−1
b µb −

1

2
ln det (Σb)

(B.1)

We wish to determine if the null hypothesis, H0, is most likely and also identify an Hb′ for

b′ 6= 0 that is in the set of next most likely hypotheses. Given an observation y, the null

hypothesis is most likely when lb(y) < 0 for all b 6= 0, and an alternative hypothesis Hb′ for

some b′ 6= 0 is among the next most likely hypotheses when lb′(y) ≥ lb(y) for all b /∈ {0, b′}.

When only a single observation is received, we denote the distribution on the observation

as N [µb, ςb], where N [µ, ς] denotes the Gaussian distribution with mean µ and variance ς1.

The mean µb can is given by µb = bTm with m , [m1, . . . ,mJ ] and the variance ςb is given

by ςb = 1 + bTσ with σ , [σ1, . . . , σJ ]. For the scalar observation case, the log-likelihood

ratio is written as:

1For notational convenience in this subsection we denote the variance as a parameter that is not squared,
rather than using the standard notation σ2 for the variance.
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lb(y) = ln

(
fb(y)

f0(y)

)
= ln(fb(y))− ln(f0(y))

= −1

2

(y − µb)2

ςb
− 1

2
ln(ςb) +

1

2
y2

=
1

2

[
ςb − 1

ςb
y2 +

2µb
ςb
y − µ2

b

ςb
− ln(ςb)

]
=

1

2

[
J∑
j=1

bj

(
σj
ςb
y2 +

2mj

ςb
y

)]
− 1

2

µ2
b

ςb
− 1

2
ln(ςb)

(B.2)

Lemma 1. Given b ∈ {0, 1}J and σ ≥ 0,

J∑
j=1

(1 + bjσj)ln(1 + bjσj) ≤ (1 + bTσ)ln(1 + bTσ) (B.3)

Proof. Inequality (B.3) is true if and only if

f(σ) =
J∑
j=1

(1 + bjσj)ln(1 + bjσj)− (1 + bTσ)ln(1 + bTσ) ≤ 0. (B.4)

Note that f(0) = 0 and for each j ∈ {1, . . . , J},

∂f(σ)

∂σj
= ln(1 + bjσj) + 1− ln(1 + bTσ)− 1 = ln(1 + bjσj)− ln(1 + bTσ)

≤ 0 for σ ≥ 0.

(B.5)

Therefore, f(σ) ≤ 0 for σ ≥ 0.

Proposition 1. If for some j′ ∈ {1, . . . , J}, lej′ (y) ≥ lej
(y) for all j 6= j′ and m ≥ 0, then

no Hb 6=0 is more likely than Hej′ .
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Proof. From lemma 1 it follows for b ∈ {0, 1}J and σ > 0 that

− (1 + bTσ)ln(1 + bTσ) +
J∑
j=1

(1 + bjσj)ln(1 + bjσj) ≤ 0

↔ −ςbln(ςb) +
J∑
j=1

bjςej
ln(ςej

) ≤ 0

↔ −1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]
≤ 0

(B.6)
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Since lej
≤ lej′ ≤ 0 for all j 6= j′ and m ≥ 0, it follows that

[
J∑
j=1

bj
ςej

ςb
(lej

(y)− lej′ (y))

]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]
− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]
+
bT b− 1

ςb
lej′ (y) ≤ 0

↔

[
J∑
j=1

bj
ςej

ςb
lej

(y)

]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]
− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]

−

(
1− bT b+

∑J
j=1 bjςej

ςb

)
lej′ (y) ≤ 0

↔

[
J∑
j=1

bj
ςej

ςb
lej

(y)

]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]
− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]

−

(
1 +

∑J
j=1 bjσj

ςb

)
lej′ (y) ≤ 0

↔

[
J∑
j=1

bj
ςej

ςb
lej

(y)

]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]
− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]
− lej′ (y) ≤ 0

↔1

2

[
J∑
j=1

bj
ςej

ςb

(
σj
ςej

y2 +
2mj

ςej

y −
m2
j

ςej

− ln(ςej
)

)]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]

− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]
− lej′ (y) ≤ 0

↔1

2

[
J∑
j=1

bj

(
σj
ςb
y2 +

2mj

ςb
y −

m2
j

ςb
−
ςej

ςb
ln(ςej

)

)]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]

− 1

2
ln(ςb) +

1

2

[
J∑
j=1

bj
ςej

ςb
ln(ςej

)

]
− lej′ (y) ≤ 0

↔1

2

[
J∑
j=1

bj

(
σj
ςb
y2 +

2mj

ςb
y −

m2
j

ςb

)]
−

[
J−1∑
i=1

J∑
k=i+1

bibk
mimk

ςb

]
− 1

2
ln(ςb)− lej′ (y) ≤ 0

↔1

2

[
J∑
j=1

bj

(
σj
ςb
y2 +

2mj

ςb
y

)]
− 1

2

µ2
b

ςb
− 1

2
ln(ςb)− lej′ (y) ≤ 0

↔lb(y)− lej′ (y) ≤ 0↔ lb(y) ≤ lej′ (y)

(B.7)

Thus, we conclude that when 0 ≥ lej′ (y) ≥ lej
(y) for all ej 6= ej′ , then no Hb is more likely
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than Hej′ for b /∈ {0, ej′}.

Corollary 1. If for some j′ ∈ {1, . . . , J},0 > lej′ (y) ≥ lej
(y) for all j 6= j′ and m ≥ 0, then

H0 is more likely than any other Hb for b 6= 0.

The results of Corollary 1 state that for the scalar observation case, when the all

the means are positive and the null hypothesis is more likely than all the elementary

hypotheses, then any event hypothesis is no more likely than the most likely elementary

event hypothesis.

B.2 Test bounding error types

This subsection provides proofs for Wald’s test, and closely follow those in [65]. Let there

exists two hypotheses:

HA : x̃ : fA(x)

HB : x̃ : fB(x)

, (B.8)

where fi(x) is the probability density function for the random variable x̃ under hypothesis

Hi. Given a test, φ(x) ∈ {HA, HB} which classifies x, the probability of error for hypothesis

Hi is

∫
φ(x)=Hj

fi(x)dx, (B.9)

and is denoted as P [φ(x) = Hj|Hi]. The following lemmas prove how the likelihood ratio

test bounds the probability of error under both hypotheses.

Lemma 2. Given ε1, ε2 ∈ [0, 1], and φ(x) = HB when

fA(x)

fB(x)
≤ ε1

1− ε2
(B.10)
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then

P [φ(x) = HA|HB] ≤ ε1 and P [φ(x) = HB|HA] ≤ ε2 (B.11)

.

Proof. Let φ(x) = HB when

fA(x)

fB(x)
≤ η ↔ fA(x) ≤ ηfB(x), (B.12)

then it is true that ∫
φ(x)=HB

fA(x)dx ≤ η

∫
φ(x)=HB

fB(x)dx

↔
∫
φ(x)=HB

fA(x)dx ≤ η

(
1−

∫
φ(x)=HA

fB(x)dx

). (B.13)

Thus, for

P [φ(x) = HA|HB] ≤ ε1 and P [φ(x) = HB|HA] ≤ ε2, (B.14)

it must also be true that

ε1 ≤ η(1− ε2)↔ ε1
1− ε2

≤ η, (B.15)

which implies

fA(x)

fB(x)
≤ ε1

1− ε2
. (B.16)

Lemma 3. Given ε1, ε2 ∈ [0, 1], and φ(x) = HA when

fA(x)

fB(x)
≥ 1− ε1

ε2
(B.17)
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then

P [φ(x) = HA|HB] ≤ ε1 and P [φ(x) = HB|HA] ≤ ε2 (B.18)

.

Proof. Let φ(x) = HB when

fA(x)

fB(x)
≥ η ↔ fA(x) ≥ ηfB(x), (B.19)

then it is true that ∫
φ(x)=HA

fA(x)dx ≥ η

∫
φ(x)=HA

fB(x)dx

↔
(

1−
∫
φ(x)=HB

fA(x)dx

)
≥ η

∫
φ(x)=HA

fB(x)dx

. (B.20)

Thus, for

P [φ(x) = HA|HB] ≥ ε1 and P [φ(x) = HB|HA] ≥ ε2, (B.21)

it must also be true that

1− ε1 ≥ ηε2 ↔
1− ε1
ε2

≥ η, (B.22)

which implies

fA(x)

fB(x)
≥ 1− ε1

ε2
. (B.23)
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Appendix C

Diffusion example

This appendix describes the diffusion example used throughout this dissertation to evalu-

ate performance. We assume there exists a monitoring application that relates potential

sources in a 2-D monitoring area to sensor observations through process dynamics accord-

ing to

 xk+1

zk+1

 =

 A BΓk

0 I


 xk

zk

+

 I 0

0 I


 wk

dk


yk =

[
I 0

] xk

zk

+ vk

, (C.1)

where xk ∈ RN2
is the process state, yk ∈ RN2

is the sensor observation vector at time k,

zk ∈ RN2
is the source state, A ∈ RN2×N2

represents the process dynamics, B ∈ RN2×N2

relates the source state to the process state, and Qk is the dynamic sensor selection matrix

at time k. wk, dk, and vk are the process noise, source process noise, and observation noise

respectively and distributed as
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w̃k

ṽk

d̃k

 : N




0

0

0

 ,


10−4I 0 0

0 2(10−3)I 0

0 0 102I


 . (C.2)

The initial distribution on the process state and the source state (for a transition from

inactive to active at any time k = K) is written as

x̃0 : N
(
0, 10−3I

)
z̃jK : N (100, 2500)

. (C.3)

Each element of the process state, xk(N(i−1)+ j), sensor observation vector, rk(N(i−

1)+j), and source state, zk(N(i−1)+j), correspond to a specific spatial location, denoted

by i, j ∈ {1, . . . , N}. Fig. C.1 illustrates the relation between spatial location and the

elements of each vector.

In Fig. C.1, the point when i = j = 1 corresponds to the first element of each vector,

xk, yk, zk. In this example, a sensor is located at each potential source location, since each

point in Fig. C.1 not only represents a potential source (as denoted by z(n)) but also a

potential sensor observation (as denoted by y(n)).

In this example, the dynamics are defined as

A = e300Ac

B = 10−6

∫ 300

0

eAcτ∂τ
(C.4)

where Ac ∈ RN2×N2
represents the continuous time dynamics of ẋt = Acxt and is defined
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h

Figure C.1: Diffusion system for N = 3.

for any i, j ∈ {1, . . . , N} such that

ẋ(N(i− 1) + j) =



0.1x(N(i− 1) + j − 1) + 0.1x(N(i− 2) + j)

− 0.4x(N(i− 1) + j)

+ 0.1x(N(i) + j) + 0.1x(N(i− 1) + j + 1)

if 2 ≤ i, j ≤ N − 1

0.1x(N(i− 1) + j − 1)− 0.3x(N(i− 1)i+ j)

+ 0.1x(N(i) + j) + 0.1x(N(i− 1) + j + 1)
if 2 ≤ j ≤ N − 1, i = 1

0.1x(N(i− 1) + j − 1) + 0.1x(N(i− 2) + j)

− 0.3x(N(i− 1)i+ j) + 0.1x(N(i− 1) + j + 1)
if 2 ≤ j ≤ N − 1, i = N

0.1x(N(i− 2) + j)− 0.3x(N(i− 1) + j)

+ 0.1x(N(i) + j) + 0.1x(N(i− 1) + j + 1)
if 2 ≤ i ≤ N − 1, j = 1

0.1x(N(i− 1) + j − 1) + 0.1x(N(i− 2) + j)

− 0.3x(N(i− 1) + j) + 0.1x(N(i) + j)
if 2 ≤ i ≤ N − 1, j = N

− 0.2x(N(i− 1) + j)

+ 0.1x(N(i) + j) + 0.1x(N(i− 1) + j + 1)
if i = 1, j = 1

0.1x(N(i− 2) + j)− 0.2x(N(i− 1) + j)

+ 0.1x(N(i− 1) + j + 1)
if i = N, j = 1

0.1x(N(i− 1) + j − 1)− 0.2x(N(i− 1) + j)

+ 0.1x(N(i) + j)
if i = 1, j = N

0.1x(N(i− 1) + j − 1) + 0.1x(N(i− 2) + j)

− 0.2x(N(i− 1) + j)
if i = N, j = N

.

(C.5)
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The property in (C.5) ensures the interior elements (2 ≤ i, j ≤ N − 1) are an average

of the 4 surrounding elements. In Fig. C.1, element 5 is the only interior element, and

is a weighted sum of elements 2, 4, 5, 6, and 8. All the other conditions represent edge

elements, where we assume that any element on the exterior is the same value as its closest

neighbor.
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Appendix D

Dynamic Sensor Selection

This appendix contains the theoretical results for the GLRDSS.

Lemma 4. Given a binary matrix Q ∈ {0, 1}M×N such that QQT = IM and q =

diag(QTQ) ∈ {0, 1, }N , and two square symmetric matrices of dimension N , A,B ∈ RN×N ,

then

Tr(QAQTQBQT ) = qT (A ◦B) q, (D.1)

where A ◦B is the Hadamard (element-wise) product of A and B.

Proof. Assuming that Ai,j is the ith row and the jth column element of A and qi is the ith
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element of q, then the left hand side of D.1 is written as

Tr(QAQTQBQT )

↔Tr(AQTQBQTQ)

↔Tr


q1 (q1A1,1B1,1 + · · ·+ qnA1,nB1,n) x x

x
. . . x

x x qn (q1An,1Bn,1 + · · ·+ qnAn,nBn,n)


↔

N∑
i=1

N∑
j=1

qiqjAi,jBi,j

↔qT (A ◦B) q

(D.2)

Lemma 5. Given a binary matrix Q ∈ {0, 1}M×N such that QQT = IM and q =

diag(QTQ) ∈ {0, 1, }N , a vector m1 ∈ RN , a symmetric positive definite matrix Σ1 ∈

RN×N , and a vector of random variables, x, of dimension N and distributed as:

x : N [Qm0, QΣ0Q
T ], (D.3)

then the expected value of the function:

f(x) =
1

2
(x−Qm0)T QΣ−1

0 QT (x−Qm0)− 1

2
(x−Qm1)T QΣ−1

1 QT (x−Qm1), (D.4)

is

E[f(x)] =
1

2

[
M − qT

(
Σ−1

1 ◦ (m0 −m1) (m0 −m1)T
)
q − qT

(
Σ0 ◦ Σ−1

1

)
q
]
. (D.5)
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Proof. Applying the results in [43], the expected value of f(x) is written as:

E[f(x)] =
1

2

[
Tr(QTQ)− (m0 −m1)T QTQΣ−1

1 QTQ (m0 −m1)− Tr
(
QTΣ0Q

TQΣ−1
1 QT

)]
.

(D.6)

By applying the result of lemma 4, it holds that:

E[f(x)] =
1

2

[
M − qT

(
Σ−1

1 ◦ (m0 −m1) (m0 −m1)T
)
q − qT

(
Σ0 ◦ Σ−1

1

)
q
]
. (D.7)

Lemma 6. Given a positive definite matrix A of dimension M , then

ln detA ≤ Tr(A)−M. (D.8)

Proof. Assuming that λm, is an eigenvalue of A for m ∈ {1, . . . ,M}, then

ln detA = ln
M∏
m=1

λm =
M∑
m=1

lnλm ≤
M∑
m=1

(λm − 1) = Tr(A)−M. (D.9)

Lemma 7. Given a binary matrix Q ∈ {0, 1}M×N such that QQT = IM and q =

diag(QTQ) ∈ {0, 1, }N , and 2 symmetric positive definite matrices A,B ∈ RN×N , then:

ln det
(
QAQTQBQT

)
≤ qT (A ◦B) q −M. (D.10)
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Proof. Applying the results of Lemma 6 it is true that

ln det
(
QAQTQBQ

)
≤ Tr

(
QAQTQBQT

)
−M. (D.11)

By applying the results of Lemma 4, it is true that

ln det
(
QAQTQBQ

)
≤ qT (A ◦B) q −M. (D.12)

Lemma 8. Given two functions:

f(q) = −qTAq + c

g(q) = bT q + d

, (D.13)

where A is symmetric positive definite matrix, c is a positive constant, λ =
√

c
1TA1

, b =

−2
√

c
1TA1

A1, and d = 2c, then the following properties are true:

f(λ1) = 0

g(λ1) = 0

d

∂q
g(q)|q=λ1 =

d

∂q
f(q)|q=λ1

(D.14)

Proof. The first property:

f

(√
c

1TA1
1

)
= −

( c

1TA1

)
1TA1 + c = 0. (D.15)

The second property:

g

(√
c

1TA1
1

)
= −2

( c

1TA1

)
1TA1 + 2c = 0. (D.16)
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The derivative of f(q) with respect to q at the point where q =
√

c
1TA1

:

d

∂q
f(q)|q=√ c

1T A1
1 = −2Aq|q=√ c

1T A1
1 = −2

√
c

1TA1
A1 =

d

∂q
g(q)|q=√ c

1T A1
1
. (D.17)
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Appendix E

Test Bed Implementation

This appendix presents the simulation parameters for the results obtain through the test

bed evaluation, where all the advection-diffusion examples in this thesis assume a spatial

discretization of ∆ = 50m and the temporal sampling rate of 10 minutes. All source

strengths (regardless of position) are scalar constants and are taken from from the Gaussian

distribution with an expected value of 200 parts-per-million (PPM) per second with a

variance of 1000 PPM per second.

E.1 Test for synchronous sources

In this subsection, all the sources are considered to start at the same time t = 3 hours,

and are constant. We consider 4 scenarios:

1. Two distributed sources in low wind (Figs. E.1 and E.2).

2. Two distributed sources in high wind (Figs. E.3 and E.4).

3. Two clustered sources in low wind (Figs. E.5 and E.6).

4. Two clustered sources in high wind (Figs. E.7 and E.8).

Where clustered sources are located at positions (.15 Km, .25 Km) and (.2 Km, .2 Km),

while distributed sources are located at positions (.15 Km, .25 Km) and (.30 Km, .10 Km).

We assume the wind direction is the vector (1,1), and the magnitude for low wind is 2.8Km
hr
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Figure E.1: %CO2 at t = 3 hours.

and for high wind is 8.5Km
hr

. The following figures illustrate the CO2 concentration vs.

space and time for sources with a strength of 200 PPM per second for each scenario.

E.2 Tests for asynchronous Sources

In this subsection, sources are assumed to start at different times. The first source begins

at time t = 3 hours, and the second at time t = 6 hours. Both sources are considered

constant once becoming active. We again consider 4 scenarios:

1. Two distributed sources in low wind (Figs. E.9 and E.10).

2. Two distributed sources in high wind (Figs. E.11 and E.12).

3. Two clustered sources in low wind (Figs. E.13 and E.14).

4. Two clustered sources in high wind (Figs. E.15 and E.16).

Where clustered sources are located at positions (.15 Km, .25 Km) and (.2 Km, .2 Km),

while distributed sources are located at positions (.15 Km, .25 Km) and (.30 Km, .10 Km).

The following figures illustrate the CO2 concentration vs. space and time for sources with

strength of 200 PPM per second for each scenario.
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Figure E.2: %CO2 at t = 6 hours.

Figure E.3: %CO2 at t = 3 hours.
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Figure E.4: %CO2 at t = 6 hours.

Figure E.5: %CO2 at t = 3 hours.
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Figure E.6: %CO2 at t = 6 hours.

Figure E.7: %CO2 at t = 3 hours.
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Figure E.8: %CO2 at t = 6 hours.

Figure E.9: %CO2 at t = 3 hours.
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Figure E.10: %CO2 at t = 6 hours.

Figure E.11: %CO2 at t = 3 hours.
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Figure E.12: %CO2 at t = 6 hours.

Figure E.13: %CO2 at t = 3 hours.
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Figure E.14: %CO2 at t = 6 hours.

Figure E.15: %CO2 at t = 3 hours.
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Figure E.16: %CO2 at t = 6 hours.
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