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Parameter-Invariant Detection of Unknown Inputs in Networked Systems
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Abstract—This work considers the problem of detecting
unknown inputs in networked systems whose dynamics are
governed by time-varying unknown parameters. We propose
a strategy in opposition to the commonly employed approach
of first estimating the unknown parameters and then using
the estimates as the true parameter values for detection,
e.g. maximum-likelihood approaches. The suggested detection
scheme employs test statistics that are invariant to the unknown
parameters and do not rely on parameter estimation. We
specifically consider the case of severe lack of prior knowledge,
i.e., the problem of detecting unknown inputs when nothing is
known of the system but some primitive structural properties,
namely that the system is a linear network, subject to Gaussian
noise, and that a certain input signal is either present or not.
The aim is thus to analyze the structure and performances of
invariant tests in a limiting case, specifically where the amount
of prior information is minimal. The developed test is proven
to be maximally invariant to the unknown parameters and
Uniformly Most Powerful Invariant (UMPI). Simulation results
indicate that for arbitrary networked systems the parameter-
invariant detector achieves a specified probability of false alarm
while ensuring that the probability of detection is maximized.

Index Terms— hypothesis testing, invariant tests, linear sys-
tems, time varying systems, networked systems

I. INTRODUCTION

Many applications, including environmental monitor-
ing [1], building automation [2], wireless communica-
tions [3] and power grids [4], have networked dynamics
that exploit multitudes of sensors and actuators. As the
number of devices increases, so do the possibility of faults.
When undetected, these faults can lead to several flavors
of detriments: from mild inconveniences in HVAC systems
(poor air quality) to disruptive ripple effects in power systems
(extended blackouts).

While fault detection algorithms undoubtedly benefit from
the knowledge of accurate models, these models are of-
ten parametrized by unknown time-varying environmental
variables. For instance, in power transmission networks the
resistance of the transmission lines varies with temperature
and icing conditions, while in building automation the heat
transfer between air-masses varies with the humidity, ex-
ternal temperature, and the opening or closing of windows
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and doors. Under these uncertain conditions, it iS common
to perform fault detection cascading parameter-estimation
algorithms with hypothesis testing ones. These maximum
likelihood approaches can yield significantly varying results,
based on the accuracy of the estimated parameters, see, e.g.,
[5, Example 1, page 46].

An alternative approach is to design hypothesis tests that
are invariant to the unknown model parameters. The benefit
of invariant testing approaches comes in that the detector can
be designed to have a specified performance independent of
the unknown time-varying parameters [6]. It is then natural
to ask, "how much the lack of prior knowledge affects
the performance of these invariant tests?" This question
motivates this work, that queries the limits of invariant testing
techniques when the problem is to detect the presence of
unknown Gaussian inputs (or faults) in linear time-varying
networked systems governed by unknown parameters. More
specifically, we propose a maximally-invariant detector when
all the model parameters are unknown that maximizes the
probability of correct detection for a specified probability of
false alarm.

Literature review: we start by noticing that classical
methods for fault detection in the presence of unknown
model parameters exploit Generalized Likelihood Ratio
(GLR) strategies [7], summarized as: obtain the Maximum
Likelihood (ML) estimates of the parameters under the each
hypothesis, then test the likelihood ratio of these estimates.
ML solutions are common in almost all problems containing
unknown parameters (e.g. indirect adaptive control [8], blind
identification and equalization of communication channels
[9], machine learning [10], and in fault detection and iden-
tification [11]). The primary drawback of ML approaches
arises when the parameter estimates converge to a value other
than the true parameter value, as a direct consequence of
the parameters varying with time and/or the input signal not
being suitable for parameter estimation (or system identifi-
cation) [8]. As a corollary, and as noted in [12], Maximally
Invariant (MI) tests also outperform GLR approaches when
small data sets are available. However, when the parameter
estimation is unbiased, and as the Signal to Noise Ratio
(SNR) tends to infinity (e.g., when the number of measure-
ments approaches infinity, see [13]), the performance of the
GLR and UMPI strategies are asymptotically equivalent.

The desire to detect faults for arbitrary inputs in systems
with unknown parameters motivates the abundant space
reserved to invariant strategies in classical textbooks, e.g., [6,
Sec. 4.8], [14, Chap. 6], and the usage in several applications
as the detection of structural changes in linear regression
models [15], or in spectral properties of disturbances [16].

The parameter-invariant literature focuses mainly in find-
ing invariant methods in known linear models with unknown
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or partially known covariance matrices [17], [18], [19], [20],
[21], and do not consider linear models with unknown time-
varying dynamics driven by noise. However, all parameter-
invariant efforts generally focus on identifying tests that
exploit maximally invariant statistics and establish conditions
that ensure Constant False Alarm Rate (CFAR) properties.

Statement of contributions: In this work, and beyond
the previous work, we assume the knowledge of just the fact
that the system dynamics are networked, linear with Gaussian
driving noises plus a weak knowledge on the structure of
the fault. Under these assumptions, we develop a test that
is maximally invariant to the unknown system parameters
and show the test to be Uniformly Most Powerful Invariant
(UMPI) and have a CFAR property. To the best of the
authors’ knowledge, the developed test herein is the one
requiring the smallest amount of prior information among
all the detectors proposed in literature for time-varying
networked systems. Characterization of the detector thus
identifies the best achievable performances when the amount
of prior information is minimal.

Structure of the paper: Section II reports the needed
basic results and definitions for invariant hypothesis testing.
Section III mathematically formulates the hypothesis testing
problem. We propose our testing technique along with its
statistical characterization in Section IV. Section V numer-
ically compares the performance of the proposed detector
against the performance of strategies endowed with more
prior information and no prior information for different
operating points and systems. Finally Section VI reports
some concluding remarks and proposes future extensions.
For ease of readability all the proofs are collected in the
appendix.

II. NOTATION AND PRELIMINARIES

In this section, and commiserate with [6], we introduce
the notation, definitions, and methodology employed in de-
signing UMPI tests.

A. Notation

In this subsection, we illustrate the various variable no-
tations using varying fonts and capitalization of the letter
z:

o plain upper case italic fonts — constant, Z;

o plain lower case italic fonts — scalar (or function with

scalar range), z;
o bold lower case italic fonts — vector (or function with
vectorial range), z;
o bold lower case italic fonts with overhead vector —
vector of concatenated vectors, 2
¢ bold upper case italic fonts — matrix, Z.
o bold upper case italic fonts with overhead vector —
matrix of concatenated matrices, Z.
For vectors we write z; to denote the ¢-th position of z.
Similarly, For vectors of vectors we write Z; to denote the i-
th sub-vector. Lastly, for matrices we write Z; to be the i-th
column of Z. We also use ® to denote Kronecker products,
In to be the identity matrix of dimension' N, 0 and 1 to

I'The subscript is omitted when the dimension is implicit.

be a vector of all zeros and all ones, respectively, and e;
to denote the elementary vector consisting of all zeros with
a single unit entry in the j-th position. For arbitrary Z, we
define the following matrices:

Py:=2(2"2)"'Z"

Py :=1- Py

Uz =U|UU"' =Pz, U'U=1
Uy =U|UU"'=P;, U'U=1

(D

where Pz and PZl denote projections onto the space of Z
and its orthogonal space, respectively, and Uz and Uz are
the eigenvectors of Py and P, respectively, corresponding
to the unit eigenvalues. Additionally, we define the following
matrix sets:

D,:={Z | ZeD, Zy;>0, Yi#j}
L,={I-Z 'L | ZeD, Z;;=z;, 1'L=0}.

We note that D corresponds to the set of all diagonal
matrices, while D, represents all positive definite diagonal
matrices. £, is the set of all matrices having 1 as a left
eigenvalue. Lastly, we employ the notation Pr[z|y] and
E [z|y] to denote the probability of = given y and the
expected value of = given y, respectively, where x and y
are random variables.

B. Hypothesis Testing Preliminaries

Let y be a rv. with probability density f(y; d,d)
parametrized in d, 4. We define d to be the set of test
parameters, and d to be the set of nuisance parameters, which
induce a transformation group G, i.e., a set of endomor-
phisms g on the space of the realizations y [6, Sec. 4.8].
This group of transformations partitions the measurement
space into equivalence classes (or orbits) where points are
considered equal if there exist g, g’ € G mapping the first
into the second and vice versa.

Definition 1 (Maximally Invariant Statistic [6]): A statis-
tic t[y] is said to be maximally invariant w.r.t. a transfor-
mation group G if it is:

invariant: t[g(y)] = tly], Vg€ G

maximal: t[y] =t[y] =y =9(y), 3g€g

A statistical test ¢ based on an invariant statistic can be
said to be an invariant test:

Definition 2 (Invariant Test [6, Sec. 4.8]): Let G be a
transformation group, ¢[y] a statistic, and ¢(-) a hypothesis
test. ¢ is said to be invariant w.r.t. G if

o (tlg(y)]) = ¢(t[y]) )

for every g € G.

4380



The statistical performance of an invariant test ¢ is mea-
sured in terms of its size and power (see Definition 3).
Invariant tests are desired to be Uniformly Most Powerful
Invariant (UMPI):

Definition 3 (Uniformly = Most  Powerful Invariant
(UMPI) Test [6, Sec. 4.8]): Let G be a transformation
group corresponding to 4, t[y] a statistic and ¢(-) a test
for deciding between Hy : d = dy and H; : d = d; that is
invariant w.r.t. G. Then ¢(t[y]) is said to be an uniformly
most powerful invariant (UMPI) test of size « if for every
competing invariant test ¢’ (¢[y]) it holds that

Pr (b(t[y]) =H | do,é} =aq;
(size) -

Pr _¢'(t['y]) = H, | do,(s} <o

Prlo(tly]) = Hr | v, 8] >
(power) -

Pr[(b’(t[y]) = H | dl,a].

As a remark, thanks to the Karlin-Rubin theorem [6,
Sec. 4.7, page 124], a scalar maximally invariant statistic
whose likelihood ratio is monotone can be used to construct
an UMPI test.

III. PROBLEM FORMULATION

Consider the networked discrete-time linear dynamics
x(k+1) = A(k)x(k) + Bd(k) + w(k)

y(k) = (k) + v(k) ®

where

o x(k) € RM denotes the state of the M-node network;

o A(k) € L, is the time-varying network dynamics be-
tween the M nodes, assuming a time-invariant network
weighting vector, p 2,

e B € D represents the time-invariant input matrix;

e y(k),d(k) € RM are the node measurements and node
inputs, respectively;

o w(k),v(k) € RM are respectively the i.i.d. Gaussian
process noise and Gaussian measurement noise, with
moments:

Elw(k)] =w,  Ev(k)] =7,

Cov [w(k)] = A, Cov [v(k)] =T.

having a weighted process-to-measurement noise ratio:

p Ap

p'Tp
We assume that the node inputs are composed of a known test
signal and an unknown nuisance signal, and wish to test for
the existence of the test signal. More formally, let [0, ..., T
be the time interval for which we have measurements. We

2This work holds for any time-varying linear system having dynamics
with at least one known eigenvector and corresponding eigenvalue. This
property is satisfied for systems having linear networked dynamics.

can then write the tinTle-concatenated measurements as ¢ :=

[y"(0),...,y"(T)] . Additionally, we define the class of

input signals considered in this manuscript by writing the

time-series concatenation of the j-th node input, d; :=
T

[d;(0),...,d;(T)] , as

—

d; = S;0; + i, )

where
. T . .
o w; = [u;(0),...,u;(T)] is the test input signal;
o p; €{0,1} is a constant test parameter;
o S; € R™Ni is a nuisance signal subspace;
e« 0; c RY5 is a constant nuisance parameter.

For the system and input described in (3) and (4), we classify
the information as either available or unavailable for testing
as follows:

Assumption 1 (Available Information):

o the time-series measurements y(0), ...
o the test input signals iy, ..., Un;

o the nuisance subspaces Si, ..., Su;

« the network weighting vector, p;

« the weighted noise ratio, o;

,y(T)

Assumption 2 (Unavailable Information): For all k €
{0,...,T}%,
o the matrices A(k) and B;
o the noise moments w, v, 3, A, I';
o the parameters 01,...,0,; and pq,. ..
« the initial condition z(0);

» UM

Under these assumptions, our binary hypothesis testing
problem is formulated as testing whether p; = 0 or p; = 1:

Assumption 3 (Hypothesis Test): p; satisfies either one
of the two following hypotheses:
H; o (null hypothesis):
Hj 1 (alternative hypothesis):

pj =0
pi =1

_ In words, both hypotheses assume the actual node inputs,

d; to be unknown, since 6; is unknown, but with a fixed
and known functional structure. H;; additionally assumes
the presence of a test input ;.

Our aim is the following: develop a test that considers
a specific node input ¢ € {1,..., M}, and decides among
the hypotheses Hyqo vs. Hyq in Assumption 3 using only
the information in Assumption 1 and, at the same time,
being maximally invariant to the unavailable information in
Assumption 2.

More precisely, we aim to find a test that detects whether
node ¢ has a fault independently of whether a fault exists
at any other node j # { (fault isolation) and maximizes
the probability of detection (power) for any probability of
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false alarm (size), i.e., we require the detector to be UMPI.
Formally, thus, we aim to solve the following:

Problem 1

1) find a statistic ¢[y] that satisfies Definition 1 (maximal
invariance) w.r.t. the transformation group induced by
nuisances parameters in Assumption 2;

2) find a test ¢(t[y]) that satisfies Definition 3 (UMPI
test) w.r.t. to the class of tests based on the previously
introduced maximal invariant statistic ¢[%].

IV. THE UMPI TEST

Following the methodology introduced in Section II, in
this section we solve Problem 1 and provide the primary
contribution of this work. To solve Problem 1 requires
identifying the group of transformations induced by the
unavailable information in Assumption 2. To identify this
group, we begin by defining the invertible matrix

Iy
Iy Iy

C = c {071}T]\1><TM

Iy Iy

and recall that any invertible mapping of the measurements
preserves maximal invariance [6] such that the time-series
measurements can be written as 2 = Cyj, such that

x(0)

d(0) + w(0) v(0)
Z= (IT]\/I + E) . + C , (5)
d(T— 1) +w(T — 1) v(T)
where
E = [Ez }
E; = { (A(Z -1) - IM) Hi;? A(t) ifj > z >1
0 otherwise.

We observe that p is an eigenvector of ET corresponding
to the zero eigenvalue, E'p = 0. The transformed mea-
surements (5) can thus be written, for some real € of the
appropriate dimension and ¢ € R, as

Z=He+cfipe+ (Ir@Up)n

(6)
where
Hy = [(Ir®Uy,) 272Gy, (Ir 2 UZ) ]
Gy := [1_1:1 con Upoq, Upsy --. Upg, 5_;1 §M, 1, 61]
1 -1
-1 240 -1
3= . .
-1 240 -1
—1 240

fo:= Py (Ir @ Up) =240,

and n is a zero-mean Gaussian random variable with identity
covariance. The transformed measurements in (6) utilize
nuisance parameters €, to represent the composed effects of
the unknown model parameters. In (6), it is clear that the
test signal affects the measurements in the direction of fy;
however, the nuisance parameters can affect the measure-
ments in the space of H,>. Thus, we define the groups of
transformations induced by the nuisance parameters in the
following lemma.

Lemma 1 (Nuisance Parameter Transformations): The
group of transformations induced by the nuisance parame-
ters is

Go:={g ‘ g(%) =cZ + Un,e, € ¢ RH) cc R}
(N

In words, the group of transformations induced on the
time-series measurements, 2, by the nuisance parameters in
Assumption 2 results in two transformations:

« an unknown bias in the space of Hy, induced by the
unknown input signals, initial condition, and dynamics;

o an unknown scaling of the measurements, induced by
the unknown magnitude of the measurement noise co-
variance.

We now introduce a statistic ¢y[¢] that is maximally invariant
for the group of transformations G, introduced in Lemma 1:

Theorem 1 (Maximally Invariant Statistic): A statistic
that is maximally invariant to G, and solves Problem 1-
1is

Z' Pg; Py, Py Z
tel#] = — 2 LA ®)
sTpl pl >
N, 1% Py, Pj, Py, z
with
Ny =T — rank (Hy)
Proof: A proof is provided in the appendix. [ ]

We observe that the maximally invariant statistic in (8) can
be equivalently written as a ratio of independent chi-square
random variables. This particular ratio is known to follow
an F'-distribution, which is monotone. Thus, by applying the
Karlin-Rubin theorem [6], the following corollary results:

Corollary 1 (UMPI Test): A UMPI test w.r.t. G, of size
« that solves Problem 1-2 is

Hpo if t[2] < Fyy,_q(@)

B(tel]) = { Hy 1 otherwise. ©)

3To reduce the notational overhead in the remainder of this work, we
pre-filter the test input, u, through the null space of H, and write f; such
that no signal remains in the nuisance parameter space of H.
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A;j,Bj; ~U[-0.5,0.5]
wj,v; ~ N(O, 1)

my ~ u[l, 2]
L, Aj; ~U[0.1,1]

TABLE I
RANDOM EXTRACTION MECHANISMS FOR THE GENERATION OF THE
SYSTEMS (3). A/ INDICATES GAUSSIAN DISTRIBUTIONS, {/ UNIFORM
DISTRIBUTIONS. ALL THE QUANTITIES ARE EXTRACTED
INDEPENDENTLY.

where F, L (a) is the inverse central cumulative F-

distribution of dimensions n and m.

V. NUMERICAL EXAMPLES

We evaluate the test in (9) performing three Monte-Carlo
characterization as follows:

1) we fixed a desired probability of false alarms « (0.01,
0.1 and 0.25);

2) we randomly generated 500 stable time-invariant net-
worked systems having M = 25 nodes, like (3), as
described in Table I (i.e., we discarded the unstable
realizations). All unspecified terms are assumed to be
Zero.;

3) for each of the 500 systems (3) we generated exactly
one realization y;(1),...,y;(500), j =1,...,25;

4) foreachT'=1,...,500 and each of the 500 systems (3)
we executed the following three tests, all with the same
desired probability of false alarms a:

a) full information test: assume the perfect knowledge
of the networked dynamics A and B; the moments
of the process and measurement noises w, v, I', A;
the parameters @;; the initial conditions x;(0) (j =
1,...,25). Then design the Uniformly Most Powerful
(UMP) test for testing Hyo vs. Hyq given all this
information;
b) UMPI test: our test (9);
¢) no information test: perform a weighted coin flip s.t.
the desired probability of false alarms « is met.
The outcomes are then summarized in the following
Figures 1, 2 and 3, that plot for each test and each T
the average correct detection rate reached over the 500
considered realizations of system 3.

1+
o full information
5 087 — UMPI
g 0.6 + - - no informatio
504
€02+
0 ‘ Ay
100 101 102
time step T’

Fig. 1. Monte-Carlo characterization of the detection tests given o = 0.01.

1+
° full informatio
5 087 —— UMPI
£ 06| - - no information
5041
3 0.2 |
0 1 1
10° 10t 102
time step T’

Fig. 2. Monte-Carlo characterization of the detection tests given o = 0.1.

1+
° full informati
5087 —— UMPI
£ 06| - - no information
504
SR
0 . .
10° 10t 102
time step 1’

Fig. 3. Monte-Carlo characterization of the detection tests given o = 0.25.

From the graphics we draw the following conclusions.
All three tests, the full information UMP test, the UMPI
test described in this work, and the random coin flip test
all yield the same probability of false alarm (by design),
but have varying probability of detection. Specifically, we
note that the performance of the full-information UMP test
is always better than the UMPI test and the coin flip. Before
the number of measurements passes the threshold N, = 25
(independent of the chosen «) the UMPI test is equivalent
to a coin flipping. This results from the fact that when there
are few measurements, all possible measurements can be
explained by the unknown parameters. Only after N, mea-
surements is there enough information to begin testing better
than random chance. Once the threshold is exceeded, the test
starts increasing its correct detection rate, discerning better
and better. Eventually it approaches the same performance of
the full information-based test, i.e., the best one might desire
(with different speeds, depending on the selected probability
of false alarms). As expected, the convergence rate of the
UMPI test to a high probability of detection decreases as
the probability of false alarm decreases. Indicating that to
achieve high detection rates with a low probability of false
alarm requires, in general, more measurements.

VI. DISCUSSION AND FUTURE WORKS

We considered a hypothesis testing problem defined over
networked linear time-varying Gaussian systems, and then
derived an Uniformly Most Powerful Invariant detector with
Constant False Alarm Rate properties that is tailored for
situations where the prior information available is little.
Despite the high degree of uncertainty on the system, the
offered testing strategy has some power, i.e., it is able to
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actually detect faults also when the number of measurements
is limited.

Clearly the detector’s performance, in terms of false pos-
itives / negatives rates, is worse than the performance of
tests that exploit deeper knowledge of the system (see the
numerical results provided in Section V). This accords with
the intuition that one should always derive tests that exploit
all the information available.

Nonetheless the considered strategy has the valuable prop-
erty of providing a lower bound on the performance that can
be achieved in absence of prior information on a broad class
of networked systems. This claim derives from the fact that
the derived test has two optimality properties: it is based
on a maximally invariant statistic and it is uniformly most
powerful. Paraphrasing, every other invariant fault detector
defined over the same hypothesis testing problem will have
at best the same performance of the here proposed strategy
(again in terms of false positives / negatives rates). Moreover,
to have the same performance, it must be essentially based
on the same statistic considered here.

The offered strategy raises also an important and inter-
esting research direction. Namely, how should the scheme
be compared with strategies that initially estimate the pa-
rameters with system identification or Maximum Likelihood
approaches and then in cascade perform classical and non-
invariant tests. The mathematical problem is in fact to un-
derstand if there are conditions for which one of the various
strategies is ensured to perform better or worse than the
other ones, and why. This is undoubtedly useful in practical
scenarios, where one always aim to exploit the best available
detector.
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APPENDIX
This appendix provides a proof for Theorem 1.
Proof:
Invariance: Observing that
Pﬁ[g(z_') :cP}lIz_’
then
2" Pg Py, Ph 7

1 25T pL 1lpl >
N.—1¢* PHeszPHez

t[g(2)] = = t[Z]

Maximality: let
ry = P§ Z
7 = Py 2
such that
t [2} —t[7]
reTPﬂ Ty

1  TIpl, 1 - Tpla
Ne,f"e Pferz Ne*lr@ Pflrl

Tp
) (Pch N A AU f‘f”) Fo =0

;T .
Ty szr

r/ry
—7p =cry,dc € R

L 2_ pl >
—Pp, 2 = cPy, 2

—sF=cZ+ Py, (Z — cZ)
—Z=cZ+ Ug, €, Je € Rrank(He)
—Z=g(2),9g € G
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