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Abstract— In this paper we present a methodology to control
ground robots under malicious attack on sensors. Within the
term attack we intend any malicious disturbance injection on
sensors, actuators, and controller that would compromise the
safety of a robot. In order to guarantee resilience against
attacks, we use a control-level technique implemented within a
recursive algorithm that takes advantage of redundancy in the
information received by the controller. We use the case study
of a vehicle cruise-control, however, the strategy we present in
this work is general for several applications. Our methodology
relays on redundancy in the sensor measurements: specifically
we consider N velocity measurements and use a recursive
filtering technique that estimates the state of the system while
being resilient against sensor attacks by acting on the variance
of the measurements noise. Finally, we move our focus on
hardware validation demonstrating our algorithm through
extensive outdoor experiments conducted on two unmanned
ground robots.

I. INTRODUCTION

Modern vehicular and robotic systems are equipped with
several sensors and Electronic Control Units (ECUs) that
interact with each other over a complex network. This
availability of technology and especially networking has led
to an overall higher comfort of driving, an increase of the
safety of the driver and passengers, and the introduction of
new services such as remote diagnosis and vehicle-to-vehicle
communication. However, this increase in functionality and
communication may introduce security vulnerability and
compromise the integrity of the system. For instance an
attacker who is able to spoof the GPS could mislead the
vehicle to unsafe regions [1]; similarly if a vehicle is in
cruise control and an attacker compromises the speedometer
reading, the vehicle speed could change drastically inducing
an higher probability of collisions and accidents. These risks
increase even more with the new generation of unmanned
ground vehicles (UGVs) and self driving cars.

To address these issues, we have introduced a design
framework for development of high-confidence vehicular
control systems that can be used in adversarial environments
[2]. The framework employs system design techniques that
guarantee that the vehicle will maintain control, possibly at
a reduced efficiency, under several classes of attacks. In this
paper we focus primarily on estimation design schemes and
address attacks on sensors for autonomous ground vehicles
(Fig. 1). We utilize a security-aware attack-resilient estimator
that identifies an attack and allows the controller to pursue
a mitigation strategy.

The contribution of this paper is threefold: i) we develop
an estimator that is easy to implement by using a recursive
approach, ii) we compare it with other techniques, and iii) we
run extensive hardware evaluations to validate the proposed
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technique. Specifically our framework is inspired by the
Linear Quadratic Estimator in which together with the update
and predict steps we add a shield procedure to cancel the
effects due to possible attacks on sensors. Our technique
adds an extra weighted variance to the measurement error
whenever there is a mismatch between the updated state and
the measurement from each of the sensors. By using this
technique all sensors are always considered, however the one
that contains a corrupted measurement will have a large error
variance and thus will count less when estimating the desired
state.

Fig. 1. The LandShark robot [3]: one of the platforms used to study
malicious attacks on sensors.

A. Related Work
The study of high assurance vehicular systems is a recent

topic that is attracting several researchers in both the control
and computer science communities. Malicious attacks are
defined as adversarial actions conducted against a system
or part of it and with the intent of compromising the
performance, operability, integrity, and safety of the system.
The main difference between failure and malicious attack is
that the former is usually not coordinated while an attack is
usually camouflaged or stealthy and behaves and produces
results similar or expectable by the dynamics of the systems.
Attack vectors can be classified in the following groups: i)
attacks on the vehicle’s sensors and actuators; ii) attacks on
RF communication and over the local network (i.e., shared
bus); iii) attacks on the system’s maintenance mechanisms
and physical interfaces. The focus of this paper is on control-
level defenses (i.e., the first group of attacks). These attacks
include attacks on sensors measurements transmitted over
a common bus (network) to other system components, and
injection of malformed data from corrupted system compo-
nents with access to the bus or a faulty sensor. The ability to
attack sensors in vehicles was demonstrated in [1] in which a
GPS was spoofed misguiding a yacht off route. Similarly in
[4], the authors presented the steps and equipment necessary
to spoof a GPS. A more general assessment on car security
was recently performed by authors in [5] in which under
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some circumstances it was demonstrated how to attack
steering, braking, acceleration, and display on two vehicles.

Even though this area of study is still at an early stage,
some preliminary work on vehicular security was performed
in [6] in which the authors showed through intensive ex-
periments on common cars, that an attacker could take
over a vehicle and compromise its safety. Specifically it
was shown that the CAN bus system is unprotected and
several functionality of a car can be controller and accessed
by different devices in the vehicle. The main attacks on
sensors in ground vehicles generally involve the speedometer
and GPS. In our work we will present experimental results
dealing with attacks on these sensors.

Standing from a control perspective, authors in [7] propose
a resilient consensus algorithm based on receding-horizon
control to deal with replay attacks between an operator and
a remotely controlled unmanned ground vehicle. In [8] the
authors use plant models for attack detection and monitor in
cyber-physical systems. In [9] the authors consider wireless
sensor networks and the problem of attacks on state estima-
tion performed by a Kalman Filter. An ellipsoidal algorithm
is proposed to estimate the resilience of the system against
such attacks. Our work in this paper is motivated by the
previous results in [10] in which a strategy for resilient attack
detection is formulated based on redundancy in the sensor
measurements. During the experimental implementation we
use the Robot Operating System (ROS) by Willow Garage
[11] on different UGVs. It is worth mentioning that a
preliminary study and assessment about the security of ROS
was performed in [12]. The authors showed that a key
security issue is that messages are not authenticated and can
be easily decipher and spoofed. In our work we do not solve
this problem and use it as a motivation and to create attacks
that compromise the sensors.

The remainder of this paper is organized as follows.
In Section II we open our discussion with the problem
formulation. In Section III we present the recursive estimator
algorithm. In Section IV we show the architecture and model
used for the vehicles under analysis followed by simulations
in Section V. Hardware/software implementations on two
ground robots are presented in VI and finally we draw
conclusions in Section VII.

II. PROBLEM STATEMENT & PRELIMINARIES

Within this work we are interested in finding a strategy
to guarantee that a robot under malicious attack can reach a
desired state without being hijacked.

We assume that the robotic system is a discrete-time linear
time-invariant (LTI) of the following form

xk+1 = Axk + wk +Buk,
zk = Cxk + νk,
yk = zk + λk,

(1)

with xk ∈ Rn and uk ∈ Rm are the state vector and
control inputs at time k respectively. zk is the set of
measurements without the effects of attack while yk =
[yk,1, yk,2 . . . yk,N ] ∈ RN is the sensor measurements vector
with attack where yk,i ∈ R is the measurement taken by the
ith sensor at time k. λk is the attack vector in which each term
represents attack of magnitude ‖λk,i‖. The attack vector is
assumed to be arbitrary, i.e., we assume no prior knowledge
of statistical properties of bounds on the values of the attack
vector. Finally, both the process noise wk = N (0,W ) and

the sensor measurement noise νk = N (0, V ) are expressed
as Gaussian random variables.

Specifically we are interested in designing a linear re-
cursive estimator consisting of the following prediction and
update steps:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1,
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
.

(2)

We define ŷk|k−1 = Cx̂k|k−1 + λk and such that ŷk|k−1 =
z̄k+sk where z̄k is an unknown minimum mean square error
(MMSE) estimate of zk corresponding to a known covariance
matrix Σ̂k

1. sk = C(x̄k − x̂k) + λk is the deviation of the
actual measurement estimate from the MMSE estimate and
it is caused by potential attacks, previous attacks residuals,
and counter measurements. Ideally we would choose Kk

such that KkCsk = 0. However this require mixed integer
programming as demonstrated in [13]. Thus as a relaxation,
in this work we use a recursive implementation and address
the following problem

Problem 2.1: Bounding the Attack Innovation Given sk
the effect of the attack on the system and ζ a constant small
positive value, find the optimal gain value Kk such that the
following inequality holds:

E
[
‖Kksk‖2

]
≤ ζ, (3)

where E[·] is the expected value and Kksk is the attack
innovation.

Through out this work we use the following assumption
on the maximum number of sensors under attack.

Assumption 2.2: Attack Feasibility The maximum toler-
able number of sensors under malicious attack is less than
N/2.

III. DESIGN OF A RESILIENT CONTROL SCHEME

A. Resilient Recursive Adaptive Estimator (RAE)

Most of the techniques available in the current literature
are very efficient in detecting and removing sensors under
attacks if we consider deterministic systems with bounded
small noise or time invariant sensor models [7], [10]. How-
ever, in real world applications the sensor noise profile is not
always fixed and variations due to non-attack effects such as
biases and environmental effects, can occur. Secondly, often
some sensors, even if under attack or compromised, can be
still used and fused to obtain useful information and improve
the state estimation. Instead of using a binary selection
criterium, we propose a strategy that assigns weights to each
sensor based on how close each measurement is from the
estimated state.

Before showing our algorithm we introduce an oracle
estimation to consider the optimal solution in the case that
everything was known a priori, including the attack vector.

1) Oracle Estimator: In the literature [14], [15] we find
that the Linear Quadratic Estimator has been widely used
in engineering applications because it combines measure-
ments of the same variable but from different sensors and
it combines inexact forecast of a system’s state with an
inexact measurement of the state. However, an adversarial
attack could destabilize the system and drive the vehicle to
undesired states. If we are always able to predict a priori

1Σ̂k is known despite z̄k being unknown since it only depends on the
number of sensors
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when and where an attack will happen (e.g., an oracle), the
prediction step takes the following form:

x̂ok|k−1 = Ax̂ok−1|k−1 +Buk−1, (4)

where we have use the upper script o to represent the oracle
estimation parameters. The predicted estimate covariance
follows as

P ok|k−1 = AP ok−1|k−1A
T +W. (5)

The oracle update will take then the following form

x̂ok|k = x̂k|k−1 +Ko
k

(
yk − Cx̂k|k−1

)
, (6)

P ok|k = (I −Ko
kC)Pk|k−1, (7)

with

Ko
k = Pk|k−1CQ

(
QT

(
CPk|k−1C

T + V
)
Q
)−1

QT , (8)

where Q ∈ {Q|QQT = I,Qi,j ∈ {0, 1}} is the selection
matrix given by the oracle, where I is the identity matrix
and Qyk are the non-attacked measurements.

Clearly in a realistic scenario we will not have an oracle;
thus, next we propose a strategy that attempts to solve this
problem by implementing a recursive filter in which, together
with updating and predicting the state of the vehicle, we
introduce a resilience step (called Shield) to consider and
isolate attacks on sensors. The oracle presented above will
be used later on to prove property of the developed recursive
resilient state estimator.

2) Resilient Adaptive Estimator: Our recursive algo-
rithm is motivated by the well established results found in
the Linear Quadratic Estimator implementation with some
modifications to accommodate the possible presence of an
attack in one of the sensors.

The generalized form of our resilient filter is

• PREDICT. The predicted state estimate becomes

x̂k|k−1 = Axk−1|k−1 +Buk−1, (9)

and the predicted estimate covariance follows

Pk|k−1 = APk−1|k−1A
T +W. (10)

• UPDATE. In the update phase, we introduce the follow-
ing modified gain

K̂k = Pk|k−1C
T
(
CPk|k−1C

T + V +Dk

)−1
, (11)

where D is the Shielding Gain matrix (described below)
introduced to consider and remove attacks on the sensor
measurements.
The updated state and covariance become

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (12)

Pk|k = (I −KkC)Pk|k−1. (13)

• SHIELD. If an attack is present and such that one of
the measurements is corrupted, the goal is to remove
it or mitigate its effect. Since the attack vector is
generally unknown, one strategy we can implement is
to change the covariance matrix associated with the
measurement error in order to increase the uncertainty
where the measurement is different from the predicted
state estimate. To this end, let us define the Shielding
Gain Dk = diag{dk,1, dk,2, . . . , dk,N} as a positive

semidefinite diagonal matrix, then we can write

dk,j = dk−1,j + ηk,j

(∣∣∣∣∣∣∣∣yk,j − Cjx̂k|k−1

σk,j

∣∣∣∣∣∣∣∣2 − 1

)
,

(14)
with σk,j = CjPk|k−1C

T
j + Vjj ,

where ηk,j is a gain factor of the measurement error.
We call dk,j the shielding factor since its purpose is
to increase the covariance of the measurement noise
associated with the sensor under attack, thus “shielding”
the malicious effects on the system. Notice that we
impose (14) to be always positive semidefinite. In fact, a
negative value would imply that we are able to improve
the performance of a sensor (which is not possible).

We are now interested to show that the proposed strategy
is guaranteed to satisfy Problem 2.1 if we choose correctly
η in (14). Before showing this, we introduce the attack-to-
noise ratio, a new measure which relates the sensor noise to
the attack effects on the robotic agent, as follow:

Definition 3.1: Attack-to-noise Ratio (ANR) We define
the attack-to-noise ratio τ as a measure that compares the
attack effects to the noise level of a sensor. In formula:

τ = ANR = ((Σy +Dk)−1sk)2, (15)

where Σy = CPk|k−1C
T +V (see (11)) and sk is as defined

in Section II.

Theorem 3.2: The ANR is bounded For some ζ ≥ 0,
there exists a η in (14) independent of sk such that the
expected value of ANR E[‖τ‖] ≤ ζ.

Proof: To prove Theorem 3.2 we start by considering
the average ANR for the worst case scenario, and then
calculate its boundaries with respect to η. Let’s consider the
expression for ANR in (15):

‖τ‖ =
∣∣∣∣((Σy +Dk)−1sk)2

∣∣∣∣ ≤ ∣∣∣∣((σ2
minI +Dk)−1sk)2

∣∣∣∣
=

N∑
j=1

s2
k,j

(σ2
min + dk,j)2

. (16)

Thus, bounding E

[(
sk,j

(σ2
min+dk,j)

)2
]

implies E[‖τ‖] is

bounded.

To this end, by Jensen’s inequality, we have that

E

[(
sk,j

(σmin + dk,j)

)2
]
≤
[

sk,j
E [σ2

min + dk,j ]

]2

. (17)

Now we observe that[
sk,j

E [σ2
min + dk,j ]

]2

=

=

 sk,j

E
[
σ2

min + dk−1,j + ηk,j

(
(yk,j−Cj x̂k|k−1)2

σ2
k,j

)
− 1
]


2

=

 sk,j

E
[
σ2

min + dk−1,j + ηk,j

(
(zk,j−z̄k+sk,j)2

σ2
k,j

)
− 1
]


2
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=

 sk,j

(σ2
min + dk−1,j + ηk,j

(
σ̄2
k,j

σ2
k,j

+
s2k,j

σ2
k,j
− 1
)


2

= f(s),

(18)
where σ̄2

k,j = E[zk,j − z̄k].
If we now take the derivative of f(s) with respect to s(
d
dsf(s) = 0

)
we obtain a maximum at

s2
k,j =

σ2
k,j

ηj

(
σ2

min + dk−1,j + ηk,j

(
σ̄2
k,j

σ2
k,j

− 1

))
. (19)

Now substituting s2
k,j in (17) we obtain

E

[
s2
k,j

(σ2
min + dk,j)2

]
≤

σ2
k,j

4ηk,j

(
σ2

min + dk−1,j + ηk,j

(
σ̄2
k,j

σ2
k,j
− 1
))

(20)
which does not depend on sk,j , concluding the proof.
Thus, Theorem 3.2 and the proof above show that there exists
an upper bound on the ANR that depends on ηk,j in the
recursive adaptive estimator defined in (9) - (14).

We are now ready to show that Problem 2.1 holds, given
the bounds calculated on the ANR in Theorem 3.2.

Lemma 3.3: Bounded Attack Innovation Given the re-
cursive adaptive estimator outlined in (9) - (14) there exists
a η ≥ 0 such that

E
[
‖Kksk‖2

]
≤ ζ (21)

Proof: Given Σy = (CPk|k−1C
T + V ) and

Σxy = Pk|k−1C
T ,

E
[
‖Kksk‖2

]
=E

[
‖Σxy(Σy +Dk)−1sk‖2

]
≤‖Σxy‖2E

[
‖(Σy +Dk)−1sk‖2

]
=‖Σxy‖2E[τ ], (22)

where we notice that the second part of equation (22) is the
ANR, τ = ((Σy +Dk)−1sk)2.

Given that
ηj =

σ2
min + dk−1,j

1− σ̄k,j

σ2
k,j

(23)

is substituted into (20) and summed over all the sensors, then
(21) is satisfied when

ζ ≥ Tr
[
(σmin2I +Dk−1)

−1
(Σ̂k − Σ̄k) (σmin2I +Dk−1)

−1
]
.

(24)

If (24) is not satisfied, then we need to reset the estimator
by assigning Σ̂k = Σ̄k.

B. Properties of the Shielding Gain

In the following lines we present some other properties of
the proposed recursive algorithm focusing primarily on the
existence, expectation, and evolution of the shielding factors.

Lemma 3.4: Existence of the Shielding Gain Given the
recursive implementation composed of the prediction, shield,
and update steps of (9) - (14), there exists a shielding gain
such that the estimated state is equivalent to the oracle one.
In formula

∃Dk s.t. ∀Pk|k−1, K̂k = Ko
k . (25)

Proof: Given K̂ defined in (11) and assuming Ko in
(8) is the optimal gain, we would like to show that there is

a Dk such that the following equality is satisfied

Q
(
QT

(
CPk|k−1C

T + V
)
Q
)−1

QT =

=
(
CPk|k−1C

T + V +Dk

)−1
. (26)

Let

Py = (CPk|k−1C
T + V ) =

(
Pn Pnd
PTnd Pd

)
, (27)

then the left hand side of (26) becomes

Q(QTPyQ)−1QT =

(
P−1
n 0
0 0

)
. (28)

Now for the right hand side, let us select

Dk =

(
0 0
0 rI

)
, (29)

with r a constant. Then it follows that

(Py +D)−1 =

(
Pn Pnd
PTnd Pd + rI

)−1

=

=

(
P−1
n − P−1

n PndΨ
−1PTndP

−1
n −Ψ−1PndP

−1
n

−P−1
n PTndΨ

−1 Ψ−1,

)
(30)

where Ψ = Pd + rI .
Choosing r very large is equivalent to unselecting the

sensors that are under attack, thus leaving us with only the
correct measurements. Therefore, as r goes to infinity we
obtain

lim
r→∞

(Py +D)−1 =

(
P−1
n 0
0 0

)
, (31)

which is equivalent to the left hand side in (28).
Lemma 3.5: Expectation of the Shielding Gain Given

the recursive algorithm described in (9) - (14), if the mag-
nitude of the attacks is always non-zero, then the expected
value of the shield factor is always non-negative and non-
decreasing. In formula, given Nλ the number of sensors
under attack and j = 1, . . . Nλ

∀ Nλ ≤ N/2, if ‖λk,j‖ > 0 then E[Dk] ≥ Dk−1. (32)

Proof: The proof is straightforward. In the presence of
an attack:

E[Dk|attack] = Dk−1 + η

(
1 +

∣∣∣∣∣∣∣∣ skσk,j
∣∣∣∣∣∣∣∣2 − 1

)
=

= Dk−1 + η

(∣∣∣∣∣∣∣∣ skσk,j
∣∣∣∣∣∣∣∣2
)
≥ Dk−1, (33)

proving the statement of the lemma.
Lemma 3.6: Probabilistic Evolution of the Shielding

Factors Given an attack λj , by using the recursive algorithm
(9)-(14), the probability P that dk ≥ dk−1 increases by
increasing η.

Proof: To prove Lemma 3.6 we show that the proba-
bility that dk ≤ dk−1 under attack depends on η in (14).

P [dk−1 ≥ dk|attack] ≤ E
[
dk−1

dk

]
= dk−1E [1/dk] ≤

≤ dk−1

E [dk]
=

1

1 + η
dk−1
‖ sk
σk,j
‖2
. (34)
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(34) demonstrates that the probability that dk−1 ≥ dk
under attack is inversely proportional to η. In particular, we
notice that for η → ∞ the probability in (34) goes to 0,
which, in turns, means that the probability of increasing dk
at every step converges to 1.

In the following sections we discuss simulation results and
experimental implementations on ground wheeled robots.
First we give an overview of the architecture of our control
system and the robots dynamical model used during the
simulations and hardware implementations.

IV. SYSTEM ARCHITECTURE

Our formulation is hierarchical and use feedback to control
the motion of the vehicle and achieve the desired state.
Fig. 2 shows a block diagram representing all the control
components used in our framework.

Fig. 2. Block diagram representing the control system architecture employed
for secure cruise control.

A. Dynamical Model
We illustrate the development framework on a design

of secure cruise control of two fully electric unmanned
ground vehicles (UGV): the Black-I LandShark [3] shown
in Fig. 1, and a custom made robot built at the University of
Pennsylvania (UPenn) which we call MiniShrak, shown in
Fig. 3(a). Both vehicles are equipped with encoders, IMUs,
GPS, and vision sensors. From a computation perspective,
both UGVs are equipped with quad-core processors running
Ubuntu with ROS.

To obtain a dynamical model of the vehicle we have used
the standard differential drive vehicle model (Fig. 3(b)) [16].
Here, Fl and Fr denote forces on the left and right set of
wheels respectively and Br is the mechanical resistance of
the wheels to rolling. The vehicle position is specified by
its px and py coordinates, θ denotes the heading angle of
the vehicle measured from the x axis, while v is the speed
of the vehicle in this direction. Both the vehicles in our
testbed employs skid steering, meaning that in order to make
a turn it is necessary to generate enough torque to overcome
the sticking force Sl. Consequently, if we assume that the
wheels do not slip, the dynamical model of the vehicle can
be specified as:

v̇ =

{
1
m (Fl + Fr − (Bs +Br)v, if turning
1
m (Fl + Fr −Brv, if not turning

ω̇ =

{
1
Jt

(B2 (Fl − Fr)−Blω, if turning
0, if not turning

θ̇ = ω

ṗx = v sin(θ), ṗy = v cos(θ)
(35)

Also, w = 0 if the vehicle is not turning. Finally, to estimate
the state of the vehicle for cruise control (i.e., its speed) we
use three sensors: typically the wheel encoders on both sets
of wheel, inertial sensors such as the IMU, and the GPS.
We have also derived a 6-state linear model of the low-level
electromechanical system, which is then used to derive a
local controller that provides the desired Fl, Fr levels.

(a) (b)

Fig. 3. Skid-steering ground vehicle; (a) The MiniShark unmanned ground
vehicle; (b) Coordinate system and variables used to derive the model.

V. SIMULATION RESULTS

In this section we show simulation results for the resilient
adaptive estimator discussed in Section III in comparison
with a well established resilient state estimator presented in
[17], [18].

A. Overview of the Resilient State Estimator (RSE)
To illustrate our development framework we compare our

technique with the work from [17], [18], where recent results
on error correction over the reals and compressed sensing are
used to derive a technique to develop secure state estimators
when system sensors or actuators are under attack.

In [17] it is shown that for linear systems the state estimate
can be obtained from the previous N sensor measurements
and actuator inputs as the minimization argument of the
following optimization problem:

min
x∈Rn

‖Y N − ΦNx‖l1/l2 . (36)

Here, for a matrix M ∈ Rp×N , ‖M‖l1/l2 denotes
the sum of l2 norms of the rows of the matrix, and
ΦN =

[
Cx|CAx| . . . |CAxN−1

]
. Furthermore, Y N =

[ỹk−N+1|ỹk−N+2| . . . |ỹk] aggregates the sensor measure-
ments while taking into account applied inputs – i.e., ỹk =
yk −

∑k
i=k−N+1 CA

iBuk−1−i.

B. Software Implementations
For ease of discussion we abbreviate the resilient adaptive

estimator as RAE and the resilient state estimator in [17],
[18] as RSE. In all simulations presented in this section the
robot is set to first maintain a cruise control speed of 4 m/s
and after 50 seconds to switch to 10 m/s. The state space
representation of the vehicle has been deduced from careful
measurements on the real robot.

Following the architecture and the dynamical model for
skid-steering vehicles described in Section IV we developed
a ROS based simulator that emulates the same electro-
mechanical and dynamical behavior of the real robot. The top
subfigure in Fig. 4 displays the normalized voltage supplied
to the motors. The middle plot shows the true velocity of
the simulated robot, and finally on the bottom of Fig. 4
the three sensor measurements with applied an attack on the
GPS measurement are displayed. The attack in this case is
modeled as a 10 Hz pulse with pick amplitude of 5 m/s.
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Fig. 4. Rqt-plot of the results from the ROS Simulator with GPS data
corrupted.

The developed ROS simulator was used in debugging
phase before using the real robot. Notice that both the
simulator and the real robots use exactly the same ROS code.

We now show a comparison between the RAE and the
RSE, with simulations run in Matlab/Simulink. The same
simulation of Fig. 4 was run with the RSE. In Fig. 5 we report
the error between reference and true velocity values for both
strategies. Each strategy behaves correctly converging to 0
every time we select a new reference velocity.

Fig. 5. Comparison between RSE and RAE state estimation errors for low
noise situation.

Fig. 6 displays the state estimation error comparison
between RSE and RAE when the sensor noise is increased
(σ = 1 m/s). The attack on the GPS is modeled as a pulse
with amplitude alternating between 3 m/s and 0 m/s every
10 s. Again we notice that both estimators errors converge
to 0 within the noise profile of the sensors. The RAE has
slightly less oscillations than the RSE.

Fig. 6. Comparison between RSE and RAE state estimation errors for noisy
measurements with large attacks

Finally, in the simulation displayed in Fig. 7 we increase
the noise of each sensor to σ = 2 m/s. In this case we hide
the attack within the noise profile of the GPS measurement
but keep it around the boundary of the noise, that is, the
attack is a pulse with magnitude alternating between 2 m/s

and 0 m/s every 10 s. Because the noise is large and the
attack is within the noise profile and on its boundary, we see
that the error grows when an attack is inserted and decreases
when it is removed creating oscillation in the velocity.

Fig. 7. Comparison between RSE and RAE state estimation errors for large
noisy measurements with attacks within the noise profile.

Table I shows numerical results that compare four different
strategies: an Oracle estimator (Oracle), a Kalman Filter
(KF), the Resilent State Estimator (RSE) of [17], [18], and
the Resilient Adaptive Estimator (RAE) proposed in this
paper. We use the same three case studies run above within
Figs. 5-7. Each entry on the table contains two values: the
upper number is the average error between estimated and
true state, while the lower number is the ratio between the
estimated and the oracle errors. As expected, the Kalman
Filter approach is not able to deal with attacks whose value
exceeds the noise profile of the sensor measurements, while it
can be used in the case that the attack is camouflaged within
the error noise of the sensor (last column of the table). As
already discussed, the RAE behaves slightly better than the
RSE with a maximum recorded error of 18% against the 21%
of the RSE in the case of noisy measurements with attack
vector outside the noise profile (second column of the table).

TABLE I
STATE ESTIMATE ERROR UNDER ATTACK

σ = 0.01 σ = 1 σ = 2Approach
λ = 5 λ = 3 λ = 2

0.005 0.13 0.18Oracle
1.00 1.00 1.00
1.67 0.99 0.35KF
334 7.62 1.94

0.005 0.21 0.32RSE
1.00 1.62 1.78

0.005 0.18 0.28RAE
1.00 1.38 1.56

VI. HARDWARE/SOFTWARE IMPLEMENTATION

The resilient state estimator and the recursive adaptive
estimator strategies have been implemented through several
experiments on the two robots described in Section IV-A and
on different types of surfaces. To facilitate the experimental
evaluation, we have built a remote User Interface (UI) (see
subfigures inside Figs. 8 and 9) which allows us to start/stop
processes, attack each sensor, read/save data, and visualize
plots of important information such as the speed calculated
from the sensor measurements and the input sent to the
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actuators. For these hardware implementations we decided
to use GPS and the left and right encoders to obtain three
independent speed measurements.

In Fig. 8 it is shown a snapshot of a cruise control
experiment run on the LandShark on a tiled pathway inside
the UPenn campus. As noted from the UI, the robot can
reach and maintain the desired reference speed even when
one of the sensors is under attack. Next experiment in
Fig. 9(a) displays the MiniShark running with the resilient
state estimator described in Section V-A. Finally in Fig. 9(b)
we present a snapshot of the implementation of the recursive
estimator derived in Section III-A, showing similar results as
with the LandShark in Fig. 8. Once an attack is injected in
one of the sensors, a weight is added to the noise variance
of the corrupted measurement decreasing its trustworthiness.
All experimental results show that the two methods can be
used to efficiently estimate the state of the system, although
the RAE is computationally more efficient and does not
require a history of measurements and control inputs.

Fig. 8. Experimental result. Snapshot of the deployment of the LandShark
on a tiled pathway inside the University of Pennsylvania. The picture in the
picture displays the user interface used during the experiments.

(a) (b)

Fig. 9. Snapshots of the deployment of the MiniShark UGV on a grass field
inside the University of Pennsylvania. The robot is in cruise control and
one by one each sensor is compromised with a constant attack. Figure (a)
shows the implementation of the RSE, while (b) depicts the RAE strategy.

VII. CONCLUSION & FUTURE WORK

In this paper we have presented a method to estimate the
state of a system under malicious attack on the sensors on
a vehicle. The proposed recursive state estimator compares
the estimated state with redundant measurements coming
from different sources and returns a higher variance of
the measurement noise if a sensor is under attack. This
strategy allows to consider noisy measurements to estimate
the correct state of the system and can be used for attacks that
act outside the noise profile of the sensors. However there
are few limitations: the algorithm needs an accurate selection
of the noise profile and weights in order to converge to the

correct state. A too small bound on the error noise implies
that the estimator may reject most of the measurements while
a too large bound on the error can lead more attacks going
through the system because within the error noise profile. In
real applications these boundaries on the noise profiles are
usually given or can be calculated through hardware testing.

Future work will be centered on: i) implementing the
proposed strategies on unstable systems (e.g., quadrotors)
and more evolved experiments involving obstacle avoidance
and way-point navigation; ii) running more complex coordi-
nated attacks, and iii) developing supervisory capabilities to
alternate between different strategies.
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