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Abstract
Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality

of healthcare. These systems introduce major challenges to safety analysis because the patient’s physiology is complex,

nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may

exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring tech-

nique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The pro-

posed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the

technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm

achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

Category: Smart and intelligent computing

Keywords: Medical cyber-physical systems; Data-driven approach; Computational Virtual Subjects; Safety
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I. INTRODUCTION

Medical cyber-physical systems (MCPS) introduce

new design and verification challenges due to their

increasing complexity and life-critical nature [1]. Physio-

logical closed-loop systems are an important class of

MCPS and can improve both patient safety and effective-

ness of healthcare. From a control perspective, modern

healthcare involves many concurrent feedback loops in

which patients are the plants. Current medical workflow

relies on human caregivers to make all control decisions

where patient safety can be compromised by human

errors and miscalculations. An automatic controller can

be used to partially close the loops by performing normal

control actions when patients’ conditions are stable.

Caregivers can therefore concentrate on making import-

ant decisions and will be alerted by the controller in the

presence of adverse events. Such closed-loop systems

can ultimately improve patient safety and also the quality

of care since computers are good at carrying out compli-

cated calculations that enable individualized clinical

decision support. However, physiological closed-loop

systems share a few key characteristics that present major

safety challenges:

• Models contain unobservable states. Physiological

modeling involves a trade-off between accuracy and

controllability. Coarse-grain models with a few state
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variables abstract away a lot of complicated plant

dynamics, which could result in inaccuracy. On the

other hand, high dimensional models capture the

plant behavior at a fine-grained level but usually

include many physiological state variables that are

not observable by current technologies. For example,

diabetes control has been extensively studied for

decades. This research has resulted in a variety of

physiological models. A comprehensive review on

this subject can be found in [2]. The glucose physio-

logic models are broadly classified into two catego-

ries: 1) the coarse-grain, minimal models that describe

the key dynamics using a compact set of state vari-

ables and parameters [3, 4]; 2) the fine-grain, maxi-

mal models that characterize the glucose metabolism

using high-dimensional nonlinear equations and many

patient-dependent parameters [2, 5-8]. The maximal

models include variables such as total insulin mass in

liver and insulin signals governing glucose consump-

tion in interstitial fluids, none of which can be directly

measured.

• Unidentifiable model parameters. Every patient

responds to medications differently. The difference

manifests itself as notable model parameter variances

across patients. Although the parameters are subject

to physiological limits and it is possible to estimate

population-wide distributions, it is in general very

hard or prohibitively costly to identify the parameters

for each individual [2]. For example, maximal glu-

cose models contain multiple rate parameters describ-

ing the transportation of glucose and insulin between

body compartments (organs and tissues), and they

can only be measured for individuals by advanced

isotope marker tracking technologies in a tightly-con-

trol experimental environment, which is too resource

and time consuming to perform on all patients.

• Unidentifiable short-term physiological variance.

In certain clinical scenarios, e.g., surgical glucose con-

trol, patients can suffer from stress-induced hypergly-

cemia during surgeries, which can lead to elevated

infection risk [9-11]. From a modeling perspective,

those transient changes in the physiology can mani-

fest as temporal fluctuations in certain physiological

parameters, e.g., insulin sensitivity. Coping with such

short-term changes of physiological parameters is an

especially challenging problem considering that most

parameters cannot be directly measured, and there

currently lacks quantitative clinical understanding on

how the parameters may change over short periods.

In this paper, we present a run-time safety monitoring

technique that leverages physiological models to track

transient changes in patient’s physiology. We apply the

technique to a surgical glucose control application. The

monitor predicts safety-critical events by online training

of a computational virtual subject (CVS) set using real-

time glucose measurements. Specifically, the monitor

predicts when glucose levels deviate from a specified

region in a near future time window. This data driven

approach and several related research thrusts are dis-

cussed in [12].

To the best of our knowledge, the idea of using CVS

for data-driven adaptive safety monitoring has not been

explored before. An implementation of the proposed

methodology is evaluated on retrospective real patient

data, and the results illustrate that our prediction algo-

rithm achieves 96% sensitivity with an average false

alarm rate of 0.5 false alarm per surgery. The proposed

system is designed to provide clinical decision and sup-

port—the 96% detection rate and 0.5 false alarms per sur-

gery are significantly better than most safety critical

threshold monitors used in surgery today, e.g., pulse

oximeters [13].

II. PROBLEM DESCRIPTION

In this paper, we consider the glucose control for surgi-

cal patients, who need insulin infusion for blood glucose

level (BGL) regulation, either because they are diabetics

or they are non-diabetics but may be at risk of surgery-

induced hyperglycemia. Here are a few assumptions for

surgical glucose control:

• The BGL is measured and the control input (insulin)

is updated at check points separated by a fixed time

interval T. For example, according to the Hospital of

the University of Pennsylvania Cardiac ICU Intraop-

erative Insulin Protocol (HUP IIP), BGL should be

measured and the insulin dosage should be updated

every 30 minutes.

• The past BGL readings and insulin rates are docu-

mented and accessible by the safety monitor. 

• Patients do not eat during surgeries, i.e., no meal dis-

turbances need to be considered.

• Insulin is only given by intravenous (i.v.) infusion.

Fig. 1 shows the overall system architecture. BGL sen-

sor readings are passed to both the controller (ICU proto-

col or other control algorithm implemented by caregivers)

and the safety monitor. The controller calculates an insu-

lin dosage based on certain algorithms. The safety moni-

tor (details are explained in subsequent sections) predicts

the range of the next BGL reading, assuming the sug-

gested insulin dosage is given. If the predicted range is

safe, then the suggested dosage is passed to the actuator

(pumps). Otherwise, the safety monitor raises an alarm of

possible unsafe insulin dosage and feed the information

back to caregivers for further assessment.

We use the maximal glucose metabolism model that

has been introduced in [6, 14], which is the model that the

FDA-accepted T1DM Simulator is based on [15]. Given
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the assumptions listed above, we can trim certain compo-

nents from the original model (e.g., the meal absorption

process and subcutaneous insulin dynamics). We rewrite

the model consisting of insulin and glucose sub-systems

as follows, using states and parameters listed in Tables 1

and 2. More details of the model can be found in [6, 14].

(1a)

(1b)

(1c)

(1d)

. (1e)

The glucose system:

(2a)

(2b)

The only observable input and output to the system are

u (insulin infusion rate in pmol/min) and y = Gp/Vg

(plasma BGL in mg/dL). The connection between the

insulin and glucose subsystems is that the states X' and Id
of the insulin sub-system affect the glucose dynamics.

The glucose subsystem contains nonlinear terms: max

(0, kp1 – kp2 * Gp – kp3 * Id) for endogenous glucose pro-

duction, max (0, ke1 * (Gp – ke2)) for renal glucose clearance,

and  for insulin’s impact on glucose

consumption.

In the rest of the paper, we use X to denote the 7-

dimensional state vector X = [Ip, X', I1, Id, Il, Gp, Gt]
т, y and

u to denote the model output and control input, respec-

tively, and P to denote the 20-dimensional parameter vec-

tor (see Table 2). The complete model can be written in

an abstract form = f (X, P, u), y = X(6)/Vg.

A “virtual subject” is an instantiation of P. The param-

eters are subject to physiological limits, and their distri-

butions, nominal values, and bounds have been studied

I·p t( ) m2 m4+( )Ip t( ) m1Il t( ) u t( )*10
2 BW⁄+ +–=

X· ′ t( ) P2U ViIp t( )⁄ P2UX t( ) P2U*Ib––=

I·1 t( ) ki ViIp t( )⁄ kiI1 t( )–=

I·d t( ) kiI1 t( ) kiId t( )–=

I·l t( ) m2*Ip t( ) m1 m3+( )Il t( )–=

G· p t( ) k1*Gp t( ) k2*Gt t( )+–=

+max 0, kp1 kp2*Gp t( )– kp3*Id t( )–( )

1 max 0, ke1* Gp t( ) ke2–( )( )––

G· t t( )
Vm0 Vmx*X ′ t( )+( )*Gt t( )

Km0 Gt t( )+
------------------------------------------------------ k1*Gp t( ) k2*Gt t( )–+–=

Vm0 Vmx* X ′ Ib–( )+( )*Gt

Km0 Gt+
-------------------------------------------------------–

X·

Fig. 1. Architecture of safety monitor for surgical glucose control.

Table 1. State variables

State variable Meaning

Ip Plasma insulin mass

X’ Remote insulin signal

I1 Delayed insulin signal auxiliary variable

Id Delayed insulin signal

Il Liver insulin mass

Gp Plasma glucose mass

Gt Tissue glucose mass

Table 2. Parameters

Parameters Meaning

m1 Rate parameter

m2 Rate parameter

m3 Rate parameter

m4 Rate parameter

ki Rate parameter

ke1 Glomerular filtration rate

ke2 Renal threshold of glucose

P2u Rate parameter

Vi Insulin volume

Vm0 Model parameter

Vmx Model parameter

Ib Basal insulin level

BW Body weight

Km0 Model parameter

k1 Rate parameter

k2 Rate parameter

kp1 Extrapolated EGP

kp2 Liver glucose effectiveness

kp3 Insulin action on liver

Vg Glucose volume
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clinically [6, 14]. In this paper, we assume upper and

lower bounds of the parameters are given, i.e., a parame-

ter Pi is drawn from the interval [MINPi
, MAXPi

].

The safety property is derived from the clinical require-

ment, i.e., the BGL should not drop below a critical

threshold. This is the most important safety requirement

for BGL regulation [16].

The problem can be formulated as follows: for an indi-

vidual patient, at any check point N, given the past

sequences of BGL measurements and insulin rates (i.e.,

y1, ..., yN−1 and u1, ..., uN−1, respectively), current BGL yN,

and suggested control input uN, is uN safe for the patient,

that is, for a given uN, is it possible that yN+1 < L?

III. SAFETY MONITOR DESIGN

In this section we present our safety monitor algo-

rithm. The algorithm consists of two phases.

1. In Phase A, we generate a set of CVS (called the

covering set [CS]) by randomly sampling parameter

vectors from the bounding hypercube and we show

that the CS gives predictions of BGL that cover a

large possible range with certain degree of unifor-

mity.

2. In Phase B, we use the CS for predictive safety mon-

itoring. At each check point, we use the CS to simu-

late a patient’s past BGL sequence and compute the

prediction error of each CVS. The CVS in the CS

are then ordered by how well their predictions match

the true past BGL. Then we take the suggested con-

trol input and use the sorted CVS to predict the

range of the patient’s next BGL. If the predicted

range is unsafe, then an alarm is raised to notify

caregivers.

In the rest of this section, we explain the technical

details of the two phases of our method.

Covering set generation and validation. As mentioned

before, a fundamental challenge of using maximal mod-

els in glucose control is that most elements of the param-

eter vector cannot be identified given the currently

available clinical data. Suppose the patient is at a certain

state (X0, y0) and has a true parameter vector PT, and we

know nothing yet about PT except that PT is bounded in a

20-dimension hypercube HP. But we know that each vec-

tor Pk ∈ HP will “drive” the physiological process Ẋ =

f (X, P, u) from the initial state (X0, y0) to another state

( , ) after one sample interval T, assuming u0 is given

during the interval. The first question we consider is: if

we only know that PT is somewhere in HP, what is the

distribution of { } and which vectors Pk will drive  to

a specific range?

This question has an intuitive interpretation in glucose

control: assuming the patient’s current BGL is at y0 and

he/she is given a certain amount of insulin u0, what is the

BGL after a time interval T?

The second question we consider is as follows: given a

certain initial state (X0, y0), can we pick a set of parameter

vectors PCS so that the corresponding predictions { }

“cover” the range of possible BGLs? PCS is called the

covering set (CS) and the vectors in it are computational

virtual subjects (CVS). The first question is a CS genera-

tion problem and the second one is a CS validation problem.

We cannot use the existing physiological virtual sub-

jects (PVS) in the T1DM Simulator as the CS for two rea-

sons. First, the size of the PVS set is quite limited (300),

and we need a much larger set of virtual subjects to gen-

erate a good covering range of BGL, which is essential

for the safety monitor. Second, the PVS were derived

from experimental clinical data such that they can mimic

a group of real human patients, but there is no guarantee

that those PVS cover all patients.

The details of the Phase A are explained as follows.

A.1 CS generation

• A.1.1 Choosing the initial condition (X0, y0). The

quality of CS will be related to how (X0, y0) is cho-

sen. The difficulty is that the model is unobservable,

i.e., for a given y0, there are infinitely many corre-

sponding X0’s. Inspired by the idea that an “insulin

sensitivity test” tries to stabilize the patient’s physio-

logical states before the test starts, we tackle the dif-

ficulty in the following way: the academic version of

T1DM Simulator includes 10 PVS that are drawn in

the same way as the FDA approved PVS population,

we run the 10 PVS on the simulator and obtained the

initial states generated by the simulator. To fully

excite the dynamics and explore a large range of

{ }, we choose a high initial BGL y0 = 250 mg/dL

and let u be the “250 mg/dL BGL” action item defined

in the previously mentioned HUP IIP, which is 10 U/hr

infusion for T = 30 minutes and 10 U insulin bolus

given immediately. We experiment with the 10 PVS’

X0’s given by the T1DM Simulator and pick the one

that gives the largest distribution range of { }.

• A.1.2 Given the (X0, y0, u0) and T, we randomly sam-

ple PCS from the bounding hypercube HP (Due to the

lack of accessible clinical knowledge of how the

physiological parameters are correlated statistically,

the sampling process does not assume any prior cor-

relation between different parameters. One of the

current limitations of this work is the lack of statisti-

cal guarantee that the sampled virtual population suf-

ficiently represent all real patients), simulate the

model on each vector Pk ∈ CS, and get the corre-

sponding  after T. We collect a large set (1.5 mil-

lion in our implementation) of sample vectors Pk so

that the distribution of { } covers a sufficiently

large range. The sufficiency can be justified by clini-
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cal knowledge of how fast human BGL can drop: the

BGL decline/rise rate is subject to physiological lim-

its, e.g., it is written in HUP Glycemic Control Proto-

col for cardiac surgical patients that “the average rate

of decline should be no more than 50 mg/dL per

hour”.

• A.1.3 From the large set of randomly sampled {Pk}

and the corresponding { }, we select a subset of

{Pk} as the CS, such that the corresponding { }

uniformly cover the entire range of { }. The CS is

not constrained by clinical data and can be much

larger than the FDA-accepted 300 PVS (in the imple-

mentation we have 10,000 CVS in the CS).

A.2 CS validation

In Step A.1.3, the CS is selected to uniformly cover

{ } given the (X0, y0, u0) picked in Step A.1.1 We cannot

simply conjecture that CS will generate a uniformly dis-

tributed predictions of yN+1 for any previous state and

input tuple (XN, yN, uN). Therefore, we need to validate CS

for different tuples (XN, yN, uN) and test the coverage of

predicted {yN+1}. The validation algorithm works as follows:

• A.2.1 First, we generate a set of test cases to validate

the CS. Each test case is a four-value tuple (XN, yN,

uN, yN+1). Ideally, such test cases should be from real

clinical data, but as mentioned before, it is impossi-

ble to fully measure XN directly from patients. So

instead, we run a real hospital protocol (the HUP IIP)

on the T1DM Simulator (with its 10 PVS) starting at

different initial conditions, and we obtain a large set

of simulated patient BGL trajectories.

• A.2.2 We then test the entire CS on every single test

case obtained in the previous step. Specifically, for

each test case (XN, yN, uN, yN+1), we simulate the

model on every Pk ∈ PCS for one sample interval,

starting from (XN, yN) and using uN as the control

input. At the end of the interval, we get a  which

is the prediction of the true value yN+1. We then mea-

sure the quality of coverage of all the predictions

{ } by two criteria: 1) { } should contain yN+1,

i.e., yN+1 ∈ [min{ }, max{ }]; 2) { } is dis-

tributed around yN+1 with a certain degree of unifor-

mity, which will be defined in the next step.

• A.2.3 In Step A.1.3, the CS is selected such that the

{ } has a uniform distribution. However, due to the

nonlinear nature of the model, it should not be

expected that the same CS will generate { } that

have the same near-uniform distribution starting

from any initial state (XN, yN, uN, yN+1). In addition, for

the safety prediction purpose, we do not need a per-

fectly uniform distribution. Instead, what we need is

that there are enough candidate predictions in { }

that fill a neighboring region of yN+1. The uniformity

metric we use to test the coverage of { } is there-

fore defined as follows:

– We first determine the neighboring region of yN+1.

Again, the size of the region depends on the size of

the maximum prediction range in the control step,

which is set to 60 mg/dL, i.e., the [max (yN+1 – 30,

30), yN+1 + 30] neighboring region. The lower bound

saturates at 30 because BGL < 30 mg/dL is clinically

considered to be life-threatening (extreme hypogly-

cemia). Also, 30 mg/dL is significantly lower than

the commonly-used hypoglycemia alarming thresh-

old, which is typically in the range of 70–110 mg/dL.

– Next, we test the minimum density of predicted BGL

values in { } that fall into the neighboring region.

The density is defined as the average number of val-

ues in { } that fall into a unit length (1 mg/dL)

BGL interval. The density is computed by a binning

algorithm: put the values in { } that are in the

neighboring region into small-sized (5 mg/dL) bins

and find a bin with the minimum counts to calculate

the minimum density. If the “density” is no less than

1 counts per mg/dL, then the CS passes the coverage

test on the case (XN, yN, uN, yN+1). For extra redun-

dancy, our algorithm actually achieves minimum

density of 8 counts per mg/dL.

Data-driven adaptive safety monitoring. The Phase B

is repeated at each check point. We use the identified and

validated CS to predict a patient’s BGL one sample inter-

val ahead, given only the past BGL readings and insulin

inputs. This is a challenging problem. Existing model-

predictive control (MPC) approaches for glucose control

either use a simple linear model to approximate the non-

linear dynamics, or require parameter pre-tuning. It is

known that there is a fundamental analytical limitation of

parameter identification on high-dimension unobservable

nonlinear glucose models: it is not possible to uniquely

identify all unknown parameters given only the limited

single input and single output data [2]. Instead of directly

identifying PT, we propose a data driven technique to

adaptively train CS on past sequence (y, u) (the past

sequence gets updated each step as new measurements

and control actions are taken), and then use the trained

CS to predict the range of next BGL reading. The pre-

dicted range is then used for the safety monitoring. 

B.1 CS Training

The training set is a sequence of past BGL and control

actions, {(yi, ui), ..., (yN−1, uN−1), (yN)}. N is the current

check point and yN is the current BGL. The training set

contains the latest N – i + 1 BGL and N – i control actions

(a control action is effective for an interval between two

y’s so there is one less control action than the number of

y’s). Initially i = 1. These records are accessible in ICUs,

e.g., at HUP, the BGL readings, control information, and

patient-related information are recorded electronically.

The CS is trained as follows:
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• B.1.1 We simulate the model on the CS, starting from

yi. Each Pk ∈ PCS generates a corresponding simulated

trace { , ..., }.

• B.1.2 The simulated traces are compared to the true

trace {yi, …, yN}, and L-2 norm errors are calculated for

each trace.

• B.1.3 We sort the CS by the non-decreasing order of

the prediction errors.

B.2 Range prediction

To predict the range of the next BGL yN+1, we initialize

a set RN+1 as empty.

• B.2.1 We start from the top of the trained CS, retrieve

a vector Pk, extend the simulation , ...,  by one step

(assuming the suggested control input uN is given at

check point N), put the predicted  into RN+1, move

onto the next vector in the trained CS, and repeat the pro-

cess.

• B.2.2 RN+1 holds predictions of yN+1 of a top subset of

CVS in the trained CS. The minimum and maximal val-

ues of RN+1 are the predicted range for yN+1. We put pre-

dictions  into RN+1 until at least one of the following

two stopping conditions becomes true:

• The predicted range exceeds a pre-defined window

size. This window size directly affects the RN+1 and

the performance of the prediction algorithm. We

develop a double-zone strategy to determine it. If

min (RN+1) > Wb, i.e., min (RN+1) is above some thresh-

old Wb, then the stop condition is

(max (RN+1) – min (RN+1)) > WH,

where WH is the maximum window size of the “high”

zone. If 

min (RN+1) ≤ Wb,

then the stop condition is 

(max (RN+1) – min (RN+1)) > WL,

where WL is the maximum window size of the “low”

zone. The idea is that when the predicted BGL in

RN+1 are relatively high (above Wb), we allow a larger

prediction window. And when some predicted BGL

in RN+1 are in the low zone, we narrow down the pre-

diction window because now the predicted BGL are

closer to the unsafe region and a narrower window

can reduce the false positive rate.

• The bottom of the trained CS is reached; i.e., all pre-

dictions by the CS have been put into RN+1. 

The predicted range of yN+1 is given by [min (RN+1),

max (RN+1)].

B.3 Robust safety monitoring

Using the predicted range 

[min (RN+1), max (RN+1)],

if min (RN+1) is less than the pre-defined safety limit L,

then it implies the suggested control input uN may drive

yN+1 into the unsafe region, and an alarm is to be raised

and fed back to caregivers. This is currently a binary clas-

sification alarm, but one can also use [min (RN+1), max

(RN+1)] to generate a more informative, fuzzy-logic alarms:

for example, generating alarms with different levels of

urgency depending on how much [min (RN+1), max (RN+1)]

intersects with the unsafe region.

B.4 Adaptive training window adjustment

The training sequence grows as more BGL readings

are collected. Sometimes the real BGL trajectory could

exhibit unpredicted fluctuations (In the patient data, we

have seen some BGL changes that cannot be well

explained by models: for example, when the BGL tends

to stabilize around a certain level and insulin infusion rate

does not change for a while, there are sometimes sudden

BGL increases, i.e., the patient appears to be more resis-

tant to insulin for a short period. Anesthesiologists at

HUP are interested in such scenario when we replayed

the retrospect BGL data and specifically pointed out a

few such “turns”. Their medical opinions are that there

are some other factors, e.g., body temperature and sur-

gery-induced stress level, that they believe also change

patients’ insulin sensitivity, but those effects are not mod-

eled by even the state-of-the-art maximal models. The

doctors think it would be useful if we can compare the

model-predicted BGL with the true BGL in real time and

alert them when such “turns” happen (which can be done

with our framework) as they believe these events could

suggest some physiological state changes that they con-

cern.). An interesting phenomenon is that the unmodeled

dynamics not only causes prediction errors at the “turns”,

but also affects subsequent predictions after the “turns”

even when the patient’s physiological states stabilize

again. This is because in the learning step, the CS is

trained by prediction errors calculated over the entire

training window. If there are unpredicted “turns” in the

window and we keep them for future predictions, then the

CS will always try to learn the “turns” because they dom-

inate the prediction error.

To cope with such cascading error issue, we dynami-

cally adjust the training window in real time. Whenever a

true reading yN+1 lands outside the predicted range, we

remove all past readings before yN and the new training

sequence starts from yN for future predictions (we need to

keep yN because we need at least one interval, i.e., two

past readings, for training when predicting yN+2). The

rationality is that a BGL “turn” indicates a possible

change in the patient’s physiological parameters, so the

safety monitor should also be reset to match such change,

instead of keeping old past readings and still trying to

learn the “turns” starting from old initial states.
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k yN

k

yi

k yN

k

yN 1+

k

yN 1+
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IV. EVALUATION

We implement the complete safety monitoring algo-

rithm and evaluate it on de-identified, retrospective

patient glucose data collected from the Hospital of the

University of Pennsylvania (with the Institutional Review

Board approval). In this section, we present the results of

the implementation and the evaluation using real patient

data. We also discuss several design trade-offs regarding

how to configure our algorithm according to different

clinical needs.

CS generation and validation. Starting from y0 =

250 mg/dL, u0 = 10 U/hr infusion plus 10 U insulin bolus

and setting the sampling interval T to be 30 minutes, we

explore the distribution of predicted { } given ran-

domly sampled CVS. To fully explore the possible distri-

bution of { }, we sample 1,500,000 CVS in the

bounding hypercube HP and the distribution of { } is

shown in Fig. 2.

The distribution covers a large range from 20 mg/dL to

as high as 400 mg/dL. Hospital protocols consider 50 mg/dL

per hour a dangerously high BGL decline rate. The low-

est predicted BGL after 30 minutes is 20 mg/dL, which

translates into a 460 mg/dL per hour drop rate, more than

9 times larger than what the protocols consider danger-

ous. On the highest end, the highest predicted BGL is

around 400 mg/dL. Clinicians consider 10 U/hr to be a

very high insulin dose, and it is very unlikely that a

patient’s BGL can even increase from 250 mg/dL to

400 mg/dL in 30 minutes given such a high insulin rate.

The simulated {y1} clearly covers a sufficiently large

BGL range. From the 1.5 million candidate CVS, we

select 10,000 CVS into the CS such that the {y1} cover-

age of the CS is uniformly distributed, as shown in Fig. 3.

To validate the coverage of { } produced by the CS

given any starting state, we extract test cases from the

simulated BGL trajectories that are obtained by running

the T1DM Simulator together with the HUP IIP protocol

controller at different initial conditions. We simulate the

10 PVS included in the T1DM simulator starting from 18

different initial BGLs ranging from 70 mg/dL to 240 mg/dL

(sampled every 10 mg/dL) and obtain 180 simulated

BGL trajectories. A test case is extracted at each 30 min-

utes check point of a trajectory, and for each trajectory

we extract test cases from the first 24 check points (time

0 to 12 hour), because after 12 hours the simulated BGL

trajectories are oscillating around an equilibrium (the ini-

tial transient response fades away). Therefore we get

4,320 (10*18*24) test cases. For each test case, we calcu-

late the minimum density of CVS in the neighboring win-

dow of yN+1.

Fig. 4 shows the distribution of the minimum density

values of CVS in all test cases. The overall minimum

density value in all 4,320 test cases is 8.6 counts per mg/dL,

which is greater than the required 1 per mg/dL, i.e., the

generated CS passes all 4,320 coverage tests.

Safety monitor evaluation. We use the generated CS to

test our safety monitor. For safety and regulatory reasons,

we cannot directly test this newly designed monitor tech-

nique on human patients without extensive offline exper-

iments. We demonstrate the validity of our approach by

replaying retrospective patient BGL data on the safety

monitor, which, from a computational perspective, is the

same as if the safety monitor is tested in the real clinical

environment. The data is collected from 51 de-identified

type 1 diabetic patients who received cardiac surgery and

were on the HUP IIP (so insulin inputs are known). As

defined by the protocol, the BGL readings were taken

y1

k

y1

k

y1

k

yN 1+

k

Fig. 2. Distribution of 1,500,000 simulated y1’s.

Fig. 3. Distribution of the simulated y1’s of the 10,000 CVS
chosen by CS.

Fig. 4. Distribution of minimum density of CVS in 4,320 test
cases.
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every 30 minutes.

The evaluation algorithm works as follows. We retro-

actively run the HUP IIP and our safety monitor on the

real BGL data. At each real BGL reading, the safety mon-

itor computes the range of the next BGL reading given

the control input determined by the HUP IIP and predicts

whether or not the next BGL reading will be safe. Then

we move on to the next BGL reading, check it against the

predicted range, and repeat the process.

CS training and range prediction. For each patient,

we start prediction on y3 (y1 and y2 are used as the initial

training set) and proceed until the end of each data trace.

Fig. 5 illustrates how the adaptive learning algorithm

works on a patient’s data trace. At each check point, the

algorithm predicts yN+1 one interval ahead by picking

those CVS that achieve lowest prediction errors on the

past sequence (yi, …, yN). As shown in Fig. 5, our algo-

rithm adaptively tracks the true BGL trend. At N = 3

there are only 2 history readings and 1 interval in the

training set. The training set is so small at that point that

it cannot fully separate the large CS. That is why the pre-

dicted values of y3 cluster around the true y3 but the BGL

trajectories are further apart in the future. The algorithm

only needs to predict one step ahead at a time, so future

divergences are irrelevant (as Fig. 5 shows, the predicted

range converges as the monitor moves to N = 4 and 5).

We test the monitor on 51 patients’ data. Overall there

are 246 BGL readings, among which 144 BGL readings

can be used to test the prediction algorithm (the first two

readings of each patient are needed for initial training and

cannot be predicted by the monitor). The performance of

the safety monitoring algorithm can be tuned by setting

the threshold L and window sizes differently. In practice,

those parameters should be set according to clinical

needs. According to the IIP, clinicians consider BGLs

less than 60 mg/dL as critical condition and start to take

precautions when the BGL drops below 100 mg/dL.

Therefore, we set the alarming threshold L to be 100 mg/dL.

Table 3 reports the performance matrices of the monitor

(the parameters are set as follows: Wb = 110, WH = 60,

and WL = 30). The result shows that the monitor achieves

96% sensitivity (24 out of 25 unsafe events are correctly

identified) with less than 0.5 false alarms per surgery on

average (24 false alarms on 51 patients and each patient’s

data is collected during one surgery).

V. CONCLUSION

In this paper, we have developed a data-driven safety

Fig. 5. Prediction snapshots at (a) N = 3, (b) N = 4, and (c) N = 5 on a sample patient.

Table 3. Evaluation results on 51 patients’ data (144 prediction
points) when L is set to 100 mg/dL

L = 100

Safe (true) Unsafe (true)

Safe (predicted) 95 1

Unsafe (predicted) 24 24
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monitoring technique to adaptively track real-time physi-

ological changes and predictively alert caregivers to

future critical events. We applied the technique to a surgi-

cal glucose control application and developed a novel

CVS-based approach for robust safety monitoring. Eval-

uation on a clinical dataset shows that the proposed safety

monitor achieves high sensitivity with a low false alarm rate.
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