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R
ecent years have wit-
nessed a significant  
increase in the num-
ber of security-
related incidents 

in control systems. These 
include high-profile attacks 
in a wide range of applica-
tion domains, from attacks 
on critical infrastructure, as 
in the case of the Maroochy 
Water breach [1], and indus-
trial systems (such as the 
StuxNet virus attack on an in-
dustrial supervisory control and 
data acquisition system [2], [3] 
and the German Steel Mill cyber-
attack [4], [5]), to attacks on modern 
vehicles [6]–[8]. Even high-assurance 
military systems were shown to be vul-
nerable to attacks, as illustrated in the highly 
publicized downing of the RQ-170 Sentinel U.S. 
drone [9]–[11]. These incidents have greatly raised 
awareness of the need for security in cyberphysical sys-
tems (CPSs), which feature tight coupling of computation and 
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communication substrates with sensing and actuation components. However, the complexity and 
heterogeneity of this next generation of safety-critical, networked, and embedded control systems 
have challenged the existing design methods in which security is usually consider as an afterthought.

This is well illustrated in modern vehicles, which present a complex interaction of a large number 
of embedded electronic control units, communicating over an internal network or multiple networks. 
On the one hand, there is a current shift in vehicle architectures, from isolated control systems to 
more open automotive architectures with services such as remote diagnostics and code updates and 
vehicle-to-vehicle communication. On the other hand, this increasing set of functionalities, network 
interoperability, and system design complexity may introduce security vulnerabilities that are easily 
exploitable. Security guarantees for these systems are usually based on perimeter security where 
internal networks are resource constrained, mostly depending on the security of the gateway and 
external communication channels. Thus, any successful attacks on the gateway or external commu-
nication, or physical attacks on components connected to an internal network, could completely 
compromise the system; using simple methods an attacker can disrupt the operation of a car, even 
taking complete control over it, as shown in [6]–[8].

In general, attacks on a CPS may affect all of its components; computational nodes and com-
munication networks are subject to intrusions, and the physical environment may be mali-

ciously altered. Thus, control-specific CPS security challenges arise from two 
perspectives. On the one hand, conventional information-security approaches can 

be used to prevent intrusions, but attackers can still affect the system noninva-
sively via the physical environment. For instance, noninvasive attacks on 

GPS-based navigation systems [11]–[13] and antilock braking systems 
[14] in vehicles illustrate how an adversarial signal can be injected into 

the control loop using the sensor measurements. This highlights 
limitations of the standard cyber-based security mechanisms 

since, even if employed communication protocols over the 
internal networks ensure data integrity, they alone do not 

guarantee resilience of control systems to attacks on the sys-
tem’s physical components. On the other hand, getting 
access to an internal network would allow the attacker to 
compromise sensors to controller to actuators communica-
tion; from the control perspective, these attacks can also 
be modeled as additional adversary signals introduced 
via the sensors and actuators [15]. Although these types 
of attacks could be addressed with the use of crypto-
graphic tools that guarantee data integrity, resource con-
straints inherent in many CPS domains may prevent 
heavy-duty security approaches from being deployed.

Therefore, it is necessary to address the security chal-
lenge related to the attacks against the control system, where 

the attacker can 1) take over a sensor and supply wrong or 
delayed sensor readings or 2) disrupt actuation. These attacks 

manifest themselves to the controller as malicious interference 
signals, and the defenses against them have to be introduced in 

the control-design phase. Specifically, resilience against these at-
tacks is built into the control algorithm under the assumption that the 

controller itself executes according to its specification. This approach has 
attracted a lot of attention, with several efforts focused on the use of control-

level techniques that exploit a model of the “normal” system behavior, for at-
tack detection and identification in CPS (see, for instance, [15]–[22]). Methods for 

attack detection based on the use of standard residual-probability-based detectors were 
presented in [21]–[24], while the problem of state estimation in the presence of sensors at-

tacks was addressed in [17], [18], [25], and [26].
In contrast, attacks on the execution platform prevent the correct operation of the control system, 

as in the cases where the attacker can disrupt the execution of control tasks. Defense against such 
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attacks cannot rely on the control algorithm, which may not 
be running correctly. Instead, it requires security and perfor-
mance guarantees that the platform components provide to 
the control system, which have to be incorporated into the 
design of control-based security techniques. For example, the 
attacker may try to affect control performance by dramati-
cally slowing down the controller task; one way to achieve 
this is by introducing a higher-priority, computationally 
intensive task into the operating system. The key to address-
ing these types of attacks is to explicitly specify the assump-
tions made about the platform during the control design. 
Real-time issues, such as sampling and actuation jitter, and 
synchronization errors between system components, directly 
affect quality of control and the level of guarantees provided 
by control-based security mechanisms. For instance, execu-
tion timing directly affects the controlled plant’s model that 
should be used for control-level security techniques; control 
engineers may determine that the controller guarantees the 
required resiliency levels (for instance, attack detection) and 
the desired control performance, as long as the worst-case 
execution time of the control task is, for example, 20 ms and 
output jitter is no more than 2 ms.

For attack-resilient control in CPSs, it is necessary to be 
able to capture platform effects on the control-level security 
guarantees by providing robust security-aware control 
methods that can deal with noise and modeling errors. This 
will enable the extraction of system-level requirements 
imposed by control algorithms on the underlaying operat-
ing system (OS) and network and facilitate reasoning about 
attack resilience across different implementation layers.

This article describes efforts on the development of an 
attack-resilient CPS. Specifically, a case study is considered, 
the design of a resilient cruise controller for an autonomous 
ground vehicle, focusing on one component of the system, 
namely an attack-resilient state estimator and the perfor-
mance guarantees in the presence of attacks. The article 
starts by addressing the problem of attack-resilient state es-
timation, before providing robustness guarantees for the 
implemented attack-resilient state estimator (building on 
[25]). It is shown that the maximal performance loss im-
posed by a smart attacker, exploiting the difference between 
the model used for state estimation and the real physical dy-
namics of the system, is bounded and linear with the size of 
the noise and modeling errors. Furthermore, this article de-
scribes how implementation issues such as jitter, latency, 
and synchronization errors can be mapped to parameters of 
the state-estimation procedure, which effectively enables 
mapping control performance requirements to real time 

(that is, timing related) specifications imposed on the un-
derlying platform. Finally, how to construct an assurance 
case for the system that covers both a mathematical model 
of the state estimator and the physical environment is pre-
sented as well as a software implementation of the control-
ler. While the models considered in the case study are 
specific to the control system and its intended deployment 
platform, the modeling, robustness analysis, and assump-
tions encountered on each level in this case study are typical 
of many other CPS control problems.

Attack-Resilient State Estimation  
with Noise and Modeling Errors
The problem of state estimation in the presence of sensor 
and actuator attacks has attracted significant attention in 
recent years. One motivation is that the same controllers can 
be used when there is no attack, provided that the controller 
can obtain a reasonable estimate of the state of the physical 
process even if some of the sensor measurements and actua-
tor commands have been compromised. For deterministic 
(that is, noiseless) linear time-invariant (LTI) systems, the 
correct state estimate in the presence of sensor attacks can 
be obtained as the solution of l0  optimization problems [17], 
[18]. In addition, there are estimation techniques for linear 
[26] and differentially flat systems [27] based on the use of 
satisfiability modulo theories solvers.

However, the initially proposed techniques for state esti-
mation in the presence of attacks focus on noiseless systems 
for which the exact model of the system’s dynamics is 
known. Hence, these techniques have limited applicability 
to real systems since it is unclear what level of resiliency can 
be guaranteed with more realistic sensing, actuation, and 
execution models. Therefore, the focus of this section is on 
attack-resilient state estimation for dynamical systems with 
bounded noise and modeling errors and the derivation of a 
worst-case bound for performance degradation in the pres-
ence of attacks. First, the system model and how some 
implementation effects can be mapped into the model’s 
parameters are presented. Next, the estimator and the pro-
cedure to bound the worst-case estimation error in the pres-
ence of attacks is introduced.

Notation and Terminology
In this article, S  denotes the cardinality (size) of the set .S  
For two sets S  and R , S R  denotes the set of elements in 
S  that are not in .R  For a set ,K S K1 N  specifies the com-
plement set of K  with respect to ,S  that is, .S KK =N

Also, R  is used to denote the set of reals and 1Nl  to denote 

The problem of state estimation in the presence of sensor and actuator 

attacks has attracted significant attention in recent years.
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the row vector of size N  containing all ones. Finally, for any 
sequence of ,  ,i 0i $a  since the sum i0

1
a

-/  contains no ele-
ments, to simplify the notation it is assumed that it is equal 
to zero, that is, .0i0

1
a =

-/
The ith element of a vector xk  is denoted by x ,k i. For 

vector x and matrix ,A  x  and A  denote the vector and 
matrix whose elements are absolute values of the initial 
vector and matrix, respectively. Also, for matrices P and ,Q  
P Q)  is used to specify that the matrix P  is element wise 
smaller than the matrix Q. For a vector ,e Rp!  the support of 
the vector is set

( ) ,e e 0p ! 3= } , , ...,p1 2{ { }sup i i

while the l0  norm of vector e is the size of ( ),epsup  that is, 
( )ep .e l0 = sup  Note that, although l0  is not formally a 

norm, in this article we will abuse the terminology and refer 
to it as a norm to maintain consistency with the terminology 
used in previous work on this topic (for example, [18]). Also, 
for a matrix , , , ...,E e e eRp N

N1 2! #  is used to denote its col-
umns and , , ...,E E Ep1 2l l l  to denote its rows. The row support of 
matrix E is defined as the set

( ) , , ..., .E Ei p0 1 2rowsupp i ! 3= l" ", ,

As for vectors, the l0  norm for a matrix E  is defined as 
p .( )E Esuprowl0 =

System Model
This article considers an LTI system

	
,

x Ax Bu v

y Cx w e
k k k k

k k k k

1 = + +

= + +

+
�

(1)

where x Rn!  and u Rm!  denote the plant’s state and in-
put vectors, respectively, while y Rp!  is the plant’s output 
vector obtained from measurements of p sensors from the 
set , , ..., .p1 2S = " ,  Accordingly, the matrices , ,A B  and C
have suitable dimensions. Furthermore, v Rn!  and 
w Rp!  denote the process and measurement noise vec-
tors, while e Rp!  denotes the attack vector. The set 

, , ..., ,p1 2K 3 " ,  containing sensors under attack, is used to 
model attacks on plant sensors. This means that e 0,k i =  
for all i KC!  and ,k 0$  where ,K S KC=  and therefore 

( )ep K3sup k  for all .k 0$  This work assumes that the 
noise vectors are constrained in certain ways. Further-
more, v and w are used to capture different types of model-
ing errors that may be caused by some implementation 
(such as real-time) issues.

Note that the setup presented in this article can be easily 
extended to include attacks on the system’s actuators. In this 
case, an additional vector eka  is added to the plant input at 
each step k 0$ . As shown in [18], the same technique used 
for resilient-state estimation in the presence of attacks on 
sensors can be used to obtain the plant’s state when subsets 

of the plant’s sensors and actuators are both compromised. 
Consequently, the analysis and results presented here can be 
easily extended to the case when a subset of the actuators is 
also under attack. It is important to highlight that, in cases 
where a small enough subsets of plant actuators and sensors 
are compromised (that is, enabling the resilient state estima-
tion), even with accurate estimates of the plant’s state, stabil-
ity cannot be guaranteed due to attacks on actuators, and the 
attacker could effectively gain complete control over the 
plant. This is consistent with the results from [16].

Attack-Resilient State Estimation  
for Noiseless Dynamical Systems
For linear systems without noise (that is, systems in the 
form (1) where w 0k =  and v 0k = , for all k 0$ ), an l0 -norm-
based method to extract state estimates in the presence of 
attacks is introduced in [18]. To obtain the plant’s state at 
any time-step t  (that is, xt ), the proposed procedure uses 
the previous N  sensor measurement vectors , ...,y yt N t1- +^ h 
and actuator inputs , ...,u ut N t1 1- + -^ h to evaluate the state 
xt N 1- + . The state xt  is then computed using the history of 
actuator inputs , ...,u ut N t1 1- + -^ h by applying the system 
evolution from (1) for N 1-  steps. Specifically, the state 
xt N 1- +  is computed as the minimization argument of the 
following optimization problem

	 ( ) .xYmin ,
x

N lt N
Rn 0

U-
!

� (2)

Here, Y y y y R,t N t N t N t
p N

1 2 f != #
- + - +u u u6 @  aggregates the 

last N  sensor measurements while taking into account the 
inputs applied during that interval

, ,

, , ..., .

y y

y y CA Bu

k t N

k t N N

1

2

k k

k k
i

i

k t N

k i
0

2
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=
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Furthermore, :R RN
n p N"U #  is a linear mapping defined as 

( ) | | |x Cx CAx CA xN
N 1fU = -6 @  that captures the sys-

tem’s evolution over N  steps caused by the initial state x.
The rationale behind problem (2) is that the matrix 

( )E Y x, ,t N t N N t N 1U= - - +  presents the history of the last N  
attack vectors , ..., ,e et N t1- +  that is,

	 .E e e e R,t N t N t N t
p N

1 2 f != #
- + - +6 @ � (3)

The critical observation here is that for a noiseless LTI 
system there is a pattern of zeros (that is, zero rows) in the 
matrix E ,t N  that corresponds to the nonattacked sensors 
and which remains constant over time. If K  is the set of 
compromised sensors, then, for all ,N  t  such that ,N 0$  

p, ( ) .Et N 1 rowsup K,t N$ 3-

As shown in [18], for noiseless systems, the state estima-
tor from (2) is optimal in the sense that if another estimator 
can recover ,xt N 1- +  then the one defined in (2) can as well. 
In addition, the estimator from (2) can extract the system’s 
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state after N  steps when up to q  sensors are under attack if 
and only if, for all ,x 0R! \" ,

( )| .CA x q2p 2sup( )CAxp( )Cx supp , , ,|sup N 1g -

In this article, qmax  denotes the maximal number of com-
promised sensors for which the system’s state can be recov-
ered after N  steps despite attacks on sensors. However, 
note that the size of the measurement history N  is considered 
to be an input parameter to the resilient-state estimator. In the 
general case, the notation q ,max N  should be used. Hence, if the 
number of compromised sensors q  satisfies q qmax# , for 
noiseless systems the minimal l0  norm of (2) is equal to .q  In 
addition, note that for these systems qmax  does not decrease 
with ,N  and, due to the Cayley–Hamilton theorem [28], it 
cannot be further increased when more than n previous mea-
surements are used, that is, qmax  obtains the maximal value 
for .N n=  Finally, in addition to the measurement window 
size ,N  qmax  only depends on the system’s dynamics (that 
is, matrices A and ),C  as was characterized in [18] and 
[29]. To formally capture this dependency, consider the fol-
lowing notation. For any set , ..., ,k k SK | |1 K 3= " ,  where 

,k k k| |1 2 Kg1 1 1  the matrices OK  and PK  are

	 , .O

C
CA

CA

i

i

P
P

P

P      
N

k

k1

K

K

K

KK

| |

1

K

h
h= =

-

l

l

R

T

S
S
S
SS

>

V

X

W
W
W
WW

H � (4)

Here, PK  denotes the projection from the set S  to the set K  
by keeping only rows of C with indices that correspond to 
sensors from ,K  because i jl  denotes the row vector (of 
appropriate size) with a one in its jth position.

Definition 1 [29] 
An LTI system (1) is said to be s-sparse observable if, for 
every set K S1  of size s (that is, sK = ), the pair ,A CPKN^ h 
is observable.

The following lemma holds from results in [18] and [29].

Lemma 1
qmax  is equal to the maximal s for which the system is 
2s-sparse observable.

Sources of Modeling Errors
Beside process and measurement noise, vectors vk  and wk  in 
(1) can be used, in some cases, to capture deviations in the 
plant model from the real dynamics of the controlled physical 
system. One source of modeling errors is the impossibility of 
obtaining accurate parameter values during initial modeling 
experiments. In the general case, these types of errors are 
dominant in the overall model error. However, in some cases, 
significant modeling errors are introduced by nonidealities of 
control system implementation and limitations of the used com-
putation and communication platforms. For instance, model-
ing errors can be caused by sampling and computation/
actuation jitter and synchronization errors between system 
components in scenarios where continuous-time plants are be-
ing controlled. Errors of this type are emphasized in control sys-
tems in which underlying computation and communication 
platforms provide very loose execution guarantees.

The described attack-resilient state estimator (2) is based 
on the discrete-time model (1) of the system. Consequently, 
to be able to deal with continuous-time plants, it is conve-
nient to discretize the controlled plant, while taking into 
account real-time issues introduced by communication and 
computation schedules. To illustrate this, consider a stan-
dard continuous-time plant model

	
( ) ( ) ( ),
( ) ( ),

x A x B u

y C x

t t t

t t

.
c c

c

= +

=
�

(5)

with state ( ) ,x t Rn!  output ( ) ,y t Rp!  and input vector 
( ) ,u t Rm!  where matrices , ,A Bc c  and Cc  are of the appro-

priate dimensions.
First, consider setups where all the plant’s outputs are 

sampled (that is, measured) at times ,tk  k 0$  and where all 
actuators apply newly calculated inputs at times tk kx+ , 
k 0$ , as shown in Figure 1. Here, the kth sampling period 
of the plant is denoted by T t t,s k k k1= -+ , and the input 
signal will have the form shown in the lower diagram of 
Figure 1. Using the approach from [30] and [31], the system 
can be described as

	

( ) ( ) ( ),
( ) ( ),   [ , ),

( ) ,   { , , , , },

x A x B u

y C x

u u

t t t

t t t t t

t t t k 0 1 2

.
c c

c k k k k

k k k

1 1

f

!

!

x x

x

= +

= + +

= + =

+ +

+

�
(6)

where ( )u t+  is a piecewise-continuous function that only 
changes values at time instances ,  t k 0k k $x+ . Thus, the 
discretized system model can be represented as [28]

	
,

,
x A x B u B u

y Cx
k k k k k k k

k k

1 1= + +

=

+
-

-

�
(7)

where ( ),  ,x x t k 0k k $=  and

Sample
Actuate

Ts,k

Sample
Actuate

τk τk+1

uk+1

tk+1

uk

tk

uk–1

Figure 1  Scheduling sampling and actuation.
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Note that the matrices ,A Bk k , and Bk
-  are time varying 

(with k) and depend on the continuous-time plant dynam-
ics, intersampling time T ,s k , and latency kx . On the other 
hand, when control (and state estimation) is performed 
using resource-constrained CPUs, the designers usually use 
the “ideal” discrete-time model of the system of the form (1) 
where, for all k 0$ , T T,s k s= , and 0kx = ,

	 . A B Be e dand A AT
c

T

0

c s c
s

i= = i# � (9)

Hence, by comparing the discrete-time models (1) and (7), 
in this case, sampling and actuation jitter and actuation 
latency (caused by computation and/or communication) 
introduce the error component vk

jit  (k 0$ ) defined as

	 .
A

B

v x B u B ue e e dA A A
k
jit T T

k c
T

T
k k k 1

,
,

c s k c s c

s

s k k

i= - + +i
x-

-
-

3
3

^ h
1 2 3444 444 1 2 34444 4444

# � (10)

Finally, from (10) it follows that a bound on the size of the 
error vk

jit  can obtained from the conservative bounds on the 
sampling jitter (that is, T T,s k s- ) and latency kx^ h, for a pre-
defined range of acceptable system states and actuator inputs. 
For example, boundedness of the system state can be ensured 
in the case where the actual closed-loop system is stable.

Effects of Synchronization Errors
To simplify the presentation, only systems where the sensors 
do not have a common clock source are considered, that is, 
where there possibly exist synchronization errors between sen-
sors; the same approach can be extended to scenarios with syn-
chronization errors between plant actuators. In this case, 
although scheduled to sample at the same time instance ,tk  
each sensor j will actually perform measurement at time .t ,k j  
Therefore, for every , ..., , ( )y C xj p t1 , ,k j j k j= = l  instead of ( ),C x tj kl  
where C jl  denotes the jth row of C, meaning that the synchroni-
zation error introduces a measurement error defined as

	
( )x ue t +

( ( ) ( ))

.B

t t

e d

v C x x

C

, ,

A A

k j j k k j

j
t

k c
t

k
0

1

syn

,
,

c k j c
k j

i

= -

= iD
D

-

l

l c m# �
(11)

Here, t t t, ,k j k k jD = -  captures the synchronization error for 
each sensor j. Hence, if the plant state can be bounded (for 
example, due to closed-loop system stability), for a predefined 
actuation range it is possible to provide a bound on the size of 
the measurement error vector v Rk

psyn
!  describing modeling 

errors caused by synchronization errors between sensors.

l0-based Method for Resilient State 
Estimation in the Presence of Noise
In the rest of this section, unless otherwise specified, the 
term noise will be used to both include process and mea-

surement noise and capture modeling errors, that is, the dis-
crepancy between the model used to design the state 
estimator and the real dynamics of the plant. The presence 
of noise limits the use of the attack-resilient state estimator 
from (2). For example, in this case, the l0  norm of a solution 
of the problem in (2) may be larger than qmax, indicating that 
more than the allowed number of sensors has been compro-
mised, which violates requirements for correct operation of 
the state estimator. Therefore, it is necessary to provide a 
method for attack-resilient state estimators in the presence 
of noise, with a provable bound on the worst-case perfor-
mance degradation of the introduced resilient-state estima-
tor due to the bounded size noise.

As illustrated in the previous section, the effects of the 
input vectors uk  are taken into account when computing the 
matrix .Y ,t N  Thus, in the rest of this article, it is assumed that 
in (1) u 0k =  for all k 0$ . In addition, to further simplify the 
notation, the case for t N 1= -  is considered, meaning that 
our goal is to obtain ,x0  and thus the matrices ,Y E, ,t N t N , and 

( )xNU  are denoted as , ,Y E  and ( )xU , respectively.
Consider ,x0  the state of the plant at ,k 0=  and the sys-

tem’s evolution for N  steps as specified in (1) (for u 0k = ) for 
some attack vectors , ...,e eN0 1-  applied via sensors from set 

{ , ..., } ,i iK Sq1 3=  where qK max#  and the corresponding 
matrix .E e e eN0 1 1= -f6 @  Furthermore, consider the case 
where | |w Rk w

p
k) !e  and ,v Rk v

n
k) !e  , , ...,k N0 1 1= - , 

that is, the process and element noise vectors are element-
wise bounded. Define

| | | .Y y y y,w v N0 1 1f= -6 @

Note that the matrix Y ,w v  contains measurements of the system 
including noise. Finally, | ...|Y y y yN0 1 1= -r r r r6 @ denotes the sensor 
measurements (plant outputs) that would be obtained in this 
case if the system were noiseless, that is, for 0w v2 2k ke e= =  
(meaning that ,y CA x ek

k
k0= +r , , ...,k N0 1 1= - ).

Now, consider the following optimization problem

	
( ):            

( ) .

Y

E Y x

EminP   

subject to   

             
,E x l0 0

U= -
�

(12)

As previously described,

	 ( , ) ( ),x E Yarg maxP0 0= � (13)

where .Eq qmaxl0 #=  However, the “ideal” (noiseless) mea-
surements from Y  are not available to the estimator; the estima-
tor can only use the measurements in the matrix .Y ,w v  In 
addition, it is worth noting that ( , )x E0  may not even be a feasi-
ble point for problem ( )YP ,w v0  when there are noisy measure-
ments. Consequently, problem ( )YP0  should be adapted to 
handle nonideal models that capture noise and modeling errors.

To achieve this, consider the following problem that 
relaxes the equality constraint from (12) by including a 
noise allowance
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.

( ):             

 ( )

Y

Y x E

EminP  

subject to 

,
,E x l0 0

3)U- -

D
�

(14)

Here, the matrix Rp N3 ! #  contains nonnegative tolerances 
,j id  for each sensor ,  , ...,i i p1= , in each of the N  steps j, that 

is, ,N0 1 1fT d d d= -6 @  , , , ..., .i N0 1 1Ri
p!d = -  The solu-

tion to (14) is

	
( , ) ( ),

.
x E

E

Yarg maxP
q
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=

=
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3 3

D D
�

(15)

Note that ( ) ( ),Y YP P,0 00p N =#  for all .Y Rp N! #

To allow for the use of (14) as an attack-resilient state 
estimator, it is necessary to ensure that ( )YP ,0 D  has a feasible 
point ( , )x E  such that ;E qmaxl0 #  this condition has to be 
satisfied for all Y Rp N! #  that could be “generated” by the 
system when at most qmax  sensors have been attacked, 
which can be guaranteed with an appropriate initialization 
of the matrix 3 . From (1), it follows that for , , ...,k N0 1 1= -

.

y CA x e C A v w

y C A v w

k
k

k
k i

i

k

i k

k
k i

i

k

i k

0
1

0

1

1

0

1

= + + +

= + +

- -

=

-

- -

=

-

r

/

/

If ( )Ak i1- -  is used to denote the matrix whose elements are 
absolute values of the corresponding elements of the matrix 
Ak i1- - , then
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(16)

Therefore, for k k*d dr  , ..., ,k N0 1= -^ h  it follows that ( , )x E0  
from (13) is a feasible point for the problem ( ),YP , ,w v0 D  
meaning that there exists ( , )x E,0 D D  from (15) such that 

.q q qmax#=3  Hence, the solution of ( )YP , ,w v0 D  from (14) can 
be used as a state estimator in the sense that if at most qmax  
sensors have been compromised it would provide a solution 
where the size of row-support of E3  is not larger than .qmax

Robustness of (Y)P0,D  State Estimation
To perform robustness analysis for the ( )YP ,0 D  optimization 
problem, it is assumed that the matrix T  satisfies the afore-
mentioned conditions. Consider ( , )x E,0 3D  from (15) and a 
matrix Rp N!R #  such that

	 ( ) .Y x E,0U R- - =3D � (17)

Here, T)R . In addition, because ( , )x E0  is a feasible point 
for ( )YP ,0 D , it follows that

,E Eq ql l0 0
$= =T D

implying that .E E q2l0 #- T  The goal is to provide a 
bound on xD 2,  where

	 .x x x,0 0D = -D � (18)

If ED  is defined as E E ED = -T , it holds that

.
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Denote by , ...,y yN0 1TT -  the columns of the matrix YD  
(that is, , ...,Y y yN0 1T TD = -6 @). From (16) and (17) it follows 
that

.y 2k k k k) )d d dD +r

Accordingly, a bound on x 2D , is

	 xmax 2D
Dx

� (19)

	 ( ) Ω ,x q2l0 #U D - � (20)

	 Ω .2) D � (21)

Since q qmax# , the feasible space can be increased by relax-
ing constraint (20) to

	 ( .Y x) q2 maxl0 #D U D- � (22)

Therefore, the goal is to bound xD  for which there exists 
Ω Rp N! #  that satisfies (21), and for where at least p q2 max-  
rows of the matrix ( ) ΩxU D -  are zero rows. Let F and 
K SF 1  to denote the number of rows ( )xUD  that are zero 
rows and the set of corresponding sensors, respectively. 
This means that at least F p q F2 max1 = - -  rows of ( )xU D  
are equal to the rows of Ω , which are nonzero, and let 
K SF1 1  to denote sensors corresponding to those rows. It 
is worth noting here that p q2K K maxF F1, = -  and 

.0KKF F1+ =Y

Since K SF 1  contains indices of zero rows of ( )xU D , it 
follows that ,O x 0KFD =  where OKF  is defined as in (4). In 
addition, ,O x KKF F11D X=  where for Ω N1 2 f~ ~ ~= 6 @ (that 
is, , , ...i N1i~ =  are columns of Ω such that 2i i)~ d ), and
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Consequently, for xD  to satisfy constraints (22) and (21), 
there have to exist sets ,KK SF F1 1  such that

	 ,  ,F p q F2K K maxF F1= = - - � (23)

	 ,0KKF F1+ =Y � (24)

	 ,O x 0KFD = � (25)

	 .O x 2 KKF F11 T)D � (26)
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Now, consider the polyhedron P  defined with con-
straints (23)–(26). From its definition it follows that the 
point x 0D =  belongs to the polyhedron. In addition, the 
polyhedron P  is bounded. To show this, start with the fol-
lowing lemma.

Lemma 2 
For any two sets ,KK SF F1 1  such that ,FKF =  KF1 = 
p q F2 max- -  and ,0KKF F1+ =Y

	 ( ) .O nrank K KF F1 =, � (27)

Proof
From [18], /q s 2 1max = -^ h , where s is the cardinality of 
the smal lest set K S3  for which the matr ix OK N  
has nontrivial kernel. Note that ,p sK = -N  and since 

,s q q2 1 2max max2$ +  it follows that .p q2<K max-N  Now 
consider any set K1  for which ,p q2K max1 $ -N  meaning 
that .q s2K max1 1#  Thus, OK1

N  does not have nontrivial 
kernel (since K  is the smallest such matrix), meaning that 
columns of OK1

N  are linearly independent. Thus, since 
,O RN n

K1
K1! #N
N

 it follows that .O nrank K1 =N^ h  This is satis-
fied for any K1

N  with at least p q2 max-  sensors, and hence 
(27) holds since the set KKF F1,  contains p q2 max-  sensors.
� ■

Theorem 1
The polyhedron P defined by constraints (23)–(26) is bounded.

Proof
Assume the opposite, namely, that P  is unbounded. Then 
there exist a feasible point x P!D  and a direction d Rn!  
such that d 0!  and for any 02e , x d P!eD +  [32]. There-
fore, ( ) ,x d 0OKF eD + =  and, since ,x P!D  it follows that 

.d 0OKF =  In addition,

	 ( )O x 2d KKF F11 T)eD + � (28)

implies that O d 0KF1 =  (otherwise for any nonzero element 
of the vector O dKF1 , when " 3e  the absolute value of that 
element in vector O dKF1e  will be unbounded and the con-
straint (28) will be violated). Therefore, d belongs to the 
kernel of ,OK KF F1,  that is, .O d 0K KF F1 =,  However, from 
Lemma 2, OK KF F1,  has full rank (i.e., ( )O nrank KKF F1 =, ), 
meaning that it has a nontrivial kernel and thus d 0= , which 
violates the initial assumption and concludes the proof. � ■

As a direct consequence of Theorem 1, it follows that 
maximal x 2D  is bounded, and the attacker cannot use 
modeling errors and the corresponding relaxation of the l0  
optimization problem to introduce an unbounded error in 
the attack-resilient state estimator.

Bounding the State-Estimation Error
Theorem 1 allows bounding x 2D , the error of the resilient 
state estimator ( )YP , ,w v0D , by noticing that the maximal 

value of a convex function over a polyhedron can be obtained 
at a vertex of the polyhedron [33]. Thus, to determine the 
maximal x 2D  over the polyhedron P  it is sufficient to 
compute x 2D  at each vertex of the polyhedron. The verti-
ces of the polyhedron satisfy
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1T
D = +-

,u

; ;E E
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where KF1T+-  denotes a vector such that K KF F11T T=+-  (that is, 
with elements whose absolute values are equal to the cor-
responding elements of KF1T ). It is worth noting that there 
are 2| |·NKF1  such elements and thus 2| |·NKF1  vertices of the 
polyhedron. Finally, since O KKF F1,

u  is a full-rank matrix 
( ) ( ) ,O O nrank rankK K K KF F F F11 = =,,
u^ h  vertex points can be 

found as
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where O KKF F1,
@u  denotes the pseudoinverse of matrix .OK KF F1,

u  
Consequently, for any sets KF  and KF1  that satisfy (23) and 
(24), by checking all 2| |·NKF1  vertices defined by (30), the 
maximal x 2D  can be determined for the corresponding 
polyhedron. However, since

( ) ( ) ,x x2 2ver verK KF F1 1D D D D= -+- +-

where ( )xver KF1TD +-  denotes the solution of (30) for specific 
,KF1T+-  it is only needed to evaluate norms at 2| |·N 1KF1 -  points 

(that is, vertices). Furthermore, to provide a bound on 
x 2D  for all xD  that satisfy (21) and (22), all such sets KF  

and KF1  have to be considered. Therefore, it is necessary to 
evaluate all possible values for F. From the definition, .F 0$  
On the other hand, from (25), KF  has a nontrivial kernel, 
meaning that, as in the proof of Lemma 2, F p sKF #= -  

.p q2 1max# - -  Finally, from (30) the bound can be over 
approximated as
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minF F F F2 2
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where max
OK KF F1
m

,
@u  denotes the maximal singular value of the 

matrix ,OK KF F1,
@u  while O

min
KKF F1

m ,u  denotes the smallest singular 
value of the matrix O KKF F1,

u  (and this is nonzero since it is a 
full-rank matrix).

Note that the matrix T captures several sources of model-
ing errors (for example, noise, jitter, or synchronization errors). 
Since (31) is linear in T, the estimation error bound obtained 
by evaluating the x 2D  at vertices of the polyhedron will be 
less than or equal to the sum of the estimation error bounds 
computed separately for each error component. Therefore, it is 
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possible to separately analyze the impact for each source of 
modeling error on the robustness of the state estimator.

To obtain the bound from (30), in the general case, the 
number of times that (30) has to be solved is

.F
p

p q F
p F
2 2( )

maxF
p s p q F N

0
2 1max

- -

-
=

- - - -c cm m/

Note that, for almost all systems, meaning that for almost 
all pairs of matrices A C RRn n p n# #! # #  (that is, the set of 
matrices for which the property does not hold has Lebesgue 
measure zero), the number of correctable errors using the 
previous N n=  measurement vectors is (maximal and) equal 
to /q p 2 1max = -^ h  [18]; in this case, s p= , and thus F can 
only take the value zero, meaning that the error needs to be 
evaluated in p2n 1-  if p is an odd number, or ( ( )/ )p p 1 2 2 n2 1- -  
if the system has an even number of sensors. This effectively 
limits the above-described exhaustive search for systems 
with a large number of states or sensors. In this case, it is pos-
sible to use a more conservative bound introduced in [34] 
that significantly reduces the complexity of the procedure 
used for the computation.

Evaluation
To evaluate the conservativeness of the error bound de-
scribed in the previous section, two types of systems are consid-
ered, systems with n 10=  states and p 5=  sensors and those 
with n 02=  states and p 11=  sensors. For each system type, 
100 systems were generated with measurement models satis-
fying the requirements that the rows of the C matrix have unit 
magnitude and the T matrices had elements between zero and 
two. In addition, for each of the 200 systems, the state-esti-
mation error x x x,0 0 2D = -D  was evaluated in 1000 experi-
ments for various attack and noise realizations. Attack and 
noise profiles were chosen randomly assuming a uniform 
distribution of 1) the number of attacked sensors between zero 
and two for systems with five sensors and between zero and 
five for systems with 11 sensors, 2) attack vectors on the com-
promised sensors between –10 and 10, chosen independently 
for each attacked sensor, and 3) noise realizations between the 
noise bounds specified by matrices T.

The considered case was with the window size N equal 
to the number of system states (that is, N n= ). Comparison 
between the bounds computed as described in the previous 
section and simulation results are shown in Figures 2 and 3. 
Figures 2(a), (b), and 3(a) present histograms of x 2D  errors 
for all 1000 scenarios for three randomly selected systems. 
As can be seen, the computed bound is an order of magni-
tude larger than the average state-estimation error for each 
system. However, for each system S , more relevant is the 
ratio between the worst-case observed state-estimation 
error for all 1000 simulations, that is, xmax :i 1 1000 2SD= , 
and the computed error bound _ xMAX 2SD  for the 
system. Thus, the relative estimation error is considered, 
defined for each system S  as

_ .
x

xmax_Rel error MAX
:i 1 1000

2S

S
S

D
D

= =

Histograms of the relative errors for both types of systems are 
presented in Figures 2(c) and 3(b). For the systems with n =  
10 states, the maximal relative error reaches almost 20% of com-
puted bounds, while for larger systems (with n 20=  states), 
the maximal relative error is 2% of computed bounds.
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Figure 2  Simulation results for 1000 runs of 100 randomly selected sys-
tems with n 10=  states and p 5=  sensors. (a) State-estimation error, 
(b) state-estimation error, and (c) relative state-estimation error. 
Histograms of (a) a system with the obtained error bound equal 
to 41.43, (b) a system with the obtained error bound equal to 35.74, 
and (c) the maximal relative state-estimation error for all 100 systems.
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Conservativeness of the presented results is (at least 
partially) caused by the fact that for each system only 
random initial points were considered and random uncor-
related attack vectors and noise profiles/modeling errors. 
Thus, the errors obtained through simulation do not rep-
resent the worst-case errors. For each system, to obtain 
scenarios that result in the worst-case estimation errors, it 
is necessary to derive the corresponding attack vector 
(and the initial state), which is beyond the scope of this 
article. This is illustrated in histograms of relative estima-
tion errors for systems with different sizes. As in the his-
tograms from Figures 2(c) and 3(b), a decrease in the 
obtained maximal relative estimation error was observed 
in simulations, with an increase in the system size n (and 
thus increase in the window size N n= ). One of the rea-
sons is that with the increase of N, the number of attack 
vectors also increases, and due to the random-actor selec-
tion of the vectors, probabilities to incorporate a worst-
case attack are reduced.

On the other hand, for systems with fewer states (like 
, ,n 1 2=  or 3) we were able to generate initial states and 

attack vectors for which the computed bounds are tight, 
that is, the error x 2D  is equal to the obtained bounds. For 
these attacks, it was assumed that the attacker, which con-
trolled up to qmax  sensors, had full knowledge of the system 
state and the measurements of noncompromised sensors. 
The attacker’s goal was to maximize the state-estimation 
error when the proposed attack-resilient state estimation 
error is used.

Case Study: Attack-Resilient Cruise  
Control on Autonomous Ground Vehicle
In this section, the use of the presented development frame-
work is illustrated on a design of secure cruise control of the 
LandShark vehicle [35], a fully electric unmanned ground 
vehicle shown in Figure 4(a). In a tethered mode, the robot 
can be fully teleoperated from the operator control unit. 
However, in this scenario, the operator only specifies the 
desired vehicle speed, while the onboard control has to 
ensure that all of the safety requirements are satisfied even 
if some of the sensors are under attack.

Vehicle Modeling
To obtain a dynamical model of the vehicle, the standard 
differential-drive vehicle model can be used [Figure 4(b)]
[36]. Here, Fl  and Fr  denote forces on the left and right set of 
wheels, respectively, and Br  is the mechanical resistance of 
the wheels to rolling. The vehicle position is specified by its 
x and y  coordinates, i  denotes the heading angle of the 
vehicle measured from the x axis, while v is the speed of the 
vehicle in this direction. The LandShark employs skid steer-
ing, meaning that to make a turn it is necessary to generate 
enough torque to overcome the sticking force Sl . Therefore, 
when ( / )B F F S2 l r l$-  the wheels start to slide sideways 
(that is, the vehicle begins to turn). Consequently, if it is 

assumed that the wheels do not slip, the dynamical model 
of the vehicle is
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Also, 0~ =  if the vehicle is not turning.
Finally, to estimate the state of the vehicle for cruise 

control (that is, its speed and position), three sensors 
are employed, two speed encoders, one on each side, and 
a GPS. The GPS provides time-stamped global position 
and speed, and the rotation angle can be obtained from 
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Figure 3  Simulation results for 1000 runs of 100 randomly selected 
systems with n 20=  states and p 11=  sensors. (a) State-esti-
mation error and (b) relative state-estimation error. Histograms 
for (a) a system with the obtained error bound equal to 155.98 and 
(b) the maximal relative state-estimation error for all 100 systems.
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the encoders (which can be translated into rotational 
velocity and finally into linear velocity). Note that other 
sensors can be used to estimate the state of the vehicle, for 
instance, linear acceleration measurements obtained from 
an inertial measurement unit (IMU), or visual odometry 
estimates computed by optical flow algorithms from a 
camera feed. However, to illustrate the use (and robust-
ness) of the attack-resilient state estimator, only the encod-
ers and GPS are employed.

The above model presents a high-level one of the vehicle, 
describing only the motion equations. The forces Fl  and Fr, 
which can be considered as inputs to the model, are derived 
from the vehicle’s electromotors and are affected by the 
motors, gearbox, and wheels. Thus, a six-state linear model 
of this low-level electromechanical system based on the 
model from [36] was derived, which is then used to obtain a 
local state (that is, velocity) feedback controller that pro-
vides the desired Fl , Fr  levels.

System Architecture
All sensors on the LandShark vehicle are connected to the 
CPU, which implements the state estimator and controller 
through independent serial buses, while the motors are 
connected to the CPU via motor drivers [as presented in 
Figure 4(c)]. Since the speed of the vehicle is bounded, the 
attack-resilient state-estimator from (14) can be formulated 
as a mixed-integer linear programming problem
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where E jl  and ek  denote the jth row and kth column of the 
matrix ,E Rp N! #  respectively. Here, [ , , ] { , }0 1p
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are binary optimization variables representing, for each 
sensor j, whether the sensor is considered attacked ( 1jc = ) 
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Figure 4  The LandShark unmanned ground vehicle. (a) The vehicle, (b) the coordinate system and variables used to derive the model, 
and (c) the control system diagram used for cruise control. IMU: intertial measurement unit.
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or safe ( 0jc = ), and a  is a sufficiently large positive con-
stant. Note that since the robot cannot obtain a speed larger 
than 20 mi/h, all sensor measurements larger than the value 
have to be obtained from compromised sensors and thus 
can be discarded. Hence, it can be assumed that elements of 
attack vectors cannot be larger than the maximal speed.

The developed resilient controller is executed on top of 
Linux OS and the Robot Operating System (ROS) middle-
ware [37]. ROS is a meta-operating system that facilitates 
the development of robotic applications using a publish/
subscribe mechanism in which a master superintends every 
operation. Associated with each sensor is a driver that takes 
care of getting time-stamped information from the sensor 
and publishing this data in the ROS format to the ROS 
master. The controller, written in C++ language, subscribes 
to each sensor measurement (called topics) through the 
master and sends inputs to the motor driver to maintain the 
desired cruise speed. The tool ROSLab [38] was used to 
describe the architecture of the control system.

Experiments
Figure 5 presents a deployment of the robot during experi-
ments run on a uneven tiled surface and an uneven grassy 
field. From the developed graphical user interface, it is 
demonstrated that the robot can reach and maintain the 
desired reference speed even when one of the sensors is 
under attack, as shown in Figure 6. Figure 6(a) presents 
speed estimates from the encoders and GPS. Each of the 
sensors was attacked at some point, with attacks such that 
their measurements would result in the speed estimate 
equal to  4 /m s, except in the last period of the simulation 

when the experiment was switched to an alternating attack 
on the left encoder.

However, as shown in Figure 6(b), when the attack-resil-
ient controller is active, the robot reaches and maintains the 
desired speed of  1 /m s. On the other hand, if the state esti-
mator is disabled and instead a simple observer is employed 
(as in the interval between 68 s and 73 s, the highlighted 
area in Figure 6), even when one of the sensors is under 
attack the robot cannot reach the desired state (for example, 
it can even be forced to stop). Videos of the LandShark 
experiments can be seen at [39].

Figure 5  The deployment of the LandShark on a tiled pathway. The 
inset picture displays the user interface used in experiments.
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Figure 6  Experimental results: (a) cruise control under attack and 
(b) estimated and reference velocity versus input. (a) A comparison 
of velocity estimated from the encoders’ and GPS measurements 
and (b) reference speed, the estimated speed, and the input applied 
to the motors.

The controller, written in C++ language, subscribes to each sensor 

measurement through the master and sends inputs to the motor driver  

to maintain the desired cruise speed.
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Robustness Analysis
All ROS nodes are executed in the run-to-completion manner. 
Thus, although the execution period for the controller node 
is 20 ms, other instantiated nodes might affect its execution 
(that is, the controller might execute with a variable period). 
Each sensor has its own clock, and all measurements are 
time-stamped before being transmitted to the controller. Yet, 
since relative changes in obtained measurements are used, 
time-synchronization error between sensors does not accu-
mulate. In addition, there is a huge discrepancy between 
sensors’ sampling jitters. For example, encoders’ sampling 
jitters are bounded by 100 μs (as shown in Figure 7), while 
the GPS has highly variable jitter with maximal measured 
values up to 125 ms. Therefore, it is not possible to use the 
idealized discrete-time model from (9), but rather the full 
input compensation has to be done as in (7) and (8), before 
the state estimator is executed.

Consequently, a bound on GPS error is determined from 
manufacturer specifications, worst-case sampling jitter, and 
synchronization error and is experimentally validated to be 

.  .0 4 /m s,k 1 #d  On the other hand, each encoder has 192 cycles 
per revolution, resulting in a measurement error of 0.5%. 
Thus, since the maximal achievable vehicle speed is 
20 m/s, it follows that for both encoders . .0 1 /m s, ,k k2 2 #d d=  

For these values, the computed state-estimation error bound 
is 0.72 m/s. Note that the conservativeness of the bound is 
mostly caused by the large worst-case GPS sampling jitter.

Assurance Case for the Resilient  
Cruise-Control Implementation
In a complex CPS design project, when a large team is en-
gaged in design and validation and verification activities, it 
can be difficult to maintain a centralized, coherent view of 
the system and its associated evidence in all its detail. As-
surance cases have been proposed as a means to organize 
the evidence into a coherent argument that captures what 
evidence is available, what assumptions have been made in 
the design process, and how each piece of evidence contrib-
utes to the overall assurance. For the considered case study, 
a detailed assurance case was constructed, covering both a 
mathematical model of the state estimator and its physical 
environment as well as a software implementation of the 
controller. The goal has been to gain understanding of what 
levels of modeling are involved in the design and implemen-
tation of a resilient control system, what reasoning tech-
niques are used at each level, and what assumptions are 
likely to be made at each level of abstraction, as well as how 
these assumptions can be justified by guarantees estab-
lished in a lower-level model. In this article, an overview of 
the developed assurance case is presented, focusing on the 
implementation guarantees. The detailed assurance case 
description can be found in [40].

In a straightforward generalization from [41], an assur-
ance case can be defined as a documented body of evidence that 
provides a convincing and valid argument that a system has desired 
critical properties for a given application in a given environment. A 
common example of such a critical property is system safety, 
even in the presence of attacks, in which case the argument is 
known as a safety case. The top-level claims of the assurance 
case are shown in Figure 8, and the argument is partitioned 
into two parts. One part is concerned with the algorithmic cor-
rectness of the state estimator and the tracking proportional-
integral derivative (PID) controller. This part of the assurance 
case can be referred to as the control-level argument as it 
deals with mathematical models of the estimator and relies 
on the robustness analysis presented in the previous sec-
tions. The other part addresses the implementation of the 
overall controller and the way it is deployed on the Land-
Shark platform. The argument also specifies assumptions 
and the implementation context. The assurance case relies on 
three categories of assumptions.

»» Attack assumptions represent a model of the attacker 
capabilities. Attacks on sensor data are considered, 
without any restrictions on the attacker’s capability to 
manipulate a stream of sensor data. However, our as-
sumption is that fewer than half of the sensors are at-
tacked. Thus, given that the LandShark platform has 
three sensors, at most one sensor can be compromised at 
any time. There is no direct way to prove that this 

The Difference Between the Speed Estimate Calculated
by Attack-Resilient State Estimator and True Speed

of the LandShark Is Bounded

Attack-Resilient State
Estimator Algorithm
Computes Bounded

Speed Estimates

Attack-Resilient State
Estimator Algorithm

Is Correctly
Implemented

• Environment Assumptions
• Platform Assumptions
• Attack Model

• Target Platform: ROS
• Target Language: C
• Real Arithmetic

Figure 8  Top-level claims of the assurance case.
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assumption holds since it describes the limitation on the 
capability of the attacker. Indirect justification for the at-
tack model can be derived from the implementation of 
the control system. In particular, sensors are implement-
ed as different ROS nodes and publish their readings on 
separate ROS topics, making it more difficult for an at-
tacker to compromise multiple sensor streams. 

»» Environmental assumptions describe the intended 
operating environment of the vehicle, which are used 
to derive a model of its dynamics. 

»» Platform assumptions and the implementation context 
deal with the properties of the LandShark platform, 
including a certain sampling frequency, expected 
latency of sensing and actuation, and maximum actua-
tion jitter, which have been validated on the platform 
as shown in the previous section. 

In general, when an assurance case for the whole vehicle is 
constructed, these platform assumptions correspond to 
claims made in other parts of the assurance case.

Implementation-level Assurance Arguments 
This part of the argument is presented in Figure 9. The strategy 
is to separate the argument into two subclaims. The first sub-
claim covers the platform-independent implementation of the 
attack-resilient state-estimator algorithm and PID controller, 
implemented as a step function periodically invoked by the 
platform. The second subclaim considers the deployment of 
the step function within a platform-specific wrapper that han-
dles periodic invocation of the step function and its connection 
to the streams of sensor data and makes speed estimates avail-
able to other modules in the system. Arguments for both sub-
claims are instances of the model-manipulation strategy. The 
step function is obtained using Simulink Coder and has been 

verified using the methods introduced in [42] and [43]. The 
wrapper for the step function is produced from the architec-
tural model of the LandShark platform, which captures ROS 
topics and their respective publishers and subscribers. The 
wrapper generator has been implemented in Coq [44] and 
supplies a proof that a) the wrapper subscribes to the sensor 
topics as specified in the architectural model, b) subscribed 
values are passed to the parameters of the step function, and c) 
the step function is invoked with the period specified in the 
architectural model. This proof is used as evidence for the tech-
nique subclaim, and a review of the architectural model is per-
formed as evidence for the model subclaim.

Discussion and Future Work
In this article, methods to provide performance guarantees 
in CPSs in the presence of sensor attacks have been present-
ed. By focusing on the design of attack-resilient cruise con-
trol for autonomous ground vehicles, control-theoretic 
challenges in attack-resilient state estimation for dynamical 
systems with noise and modeling errors have been de-
scribed. Also, an l0 -norm-based state estimator has been 
introduced along with an algorithm to derive a bound for 
the state-estimation error caused by noise and modeling er-
rors in the presence of attacks. Furthermore, methods to 
map control requirements to specifications imposed on the 
underlying execution platform have been presented. Final-
ly, an approach to construct an assurance case for the con-
sidered system has been described. This overall assurance 
case is the subject of an on-going multi-institutional project 
funded by the DARPA High-Assurance Cyber Military Sys-
tems program. Some of the platform assumptions made in 
the argument have been claims delivered by other parts of 
the overall assurance case.

Resilient Cruise
Controller Is Correctly

Implemented

Platform-Independent
Estimator and PID Code

Is Correct

Controller Code Is
Correctly Deployed

Platform
Assumptions Are

Satisfied

Simulink Equations Are
Correct with Respect to
the LandShark Model

Simulink
Generates Correct

Equation Code

ROS Node Model
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ROSgen Generates
Correct Wrapper

Code

Simulink
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Reviews

Code Verified
as in [42], [43]

Model
Reviews

Coq Proofs
+ Code
Reviews

Figure 9  An argument for the code-level claims. ROS: Robot Operating System; PID: proportional, integral, derivative.
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Note that, during the control-design phase for resilient 
CPSs, designers usually face limitations of the platform 
since a certain degree of redundancy in the control loop is 
needed to achieve the necessary detection and mitigation 
capabilities. Sensor redundancy is (relatively) easy to han-
dle by adding an additional sensor payload to the platform, 
such as odometers, IMUs, and GPSs in the LandShark case 
study. On the other hand, sensor redundancy is only useful 
if the attacker is not able to compromise all (or more than 
qmax ) of the available sensors, which could be violated if the 
attacker gets access to the local network used to communi-
cate the measurements. However, the biggest limitation is 
the redundancy of actuators. For example, if actuators on 
one side of the vehicle are compromised, the skid-steer ap-
proach used in LandShark is not feasible. Furthermore, a 
synthesis of control-task code and proof of its correctness 
relies on the guarantees provided by the platform services. 
Therefore, in some cases, the assumption needed to make 
the proofs go through may turn out to be too restrictive for 
the platform operating system.

Note that the proposed attack-resilient state-estimation 
algorithm, while providing accuracy guarantees, does not 
guarantee attack detection and identification of compro-
mised sensors due to the presence of noise and modeling 
errors. An avenue for future work would be to provide a 
sound attack-identification procedure. In addition, the pre-
sented estimator requires solving combinatorial optimiza-
tion problems in each iteration. Therefore, it would be 
beneficial to derive computationally more efficient methods 
for attack-resilient state estimation that would potentially 
provide relaxed performance guarantees.
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