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Abstract—The tight interaction between information technol-
ogy and the physical world inherent in Cyber-Physical Sys-
tems (CPS) can challenge traditional approaches for monitoring
safety and security. Data collected for robust CPS monitoring
is often sparse and may lack rich training data describing
critical events/attacks. Moreover, CPS often operate in diverse
environments that can have significant inter/intra-system vari-
ability. Furthermore, CPS monitors that are not robust to
data sparsity and inter/intra-system variability may result in
inconsistent performance and may not be trusted for monitoring
safety and security. Towards overcoming these challenges, this
paper presents recent work on the design of parameter-invariant
(PAIN) monitors for CPS. PAIN monitors are designed such
that unknown events and system variability minimally affect the
monitor performance. This work describes how PAIN designs
can achieve a constant false alarm rate (CFAR) in the presence
of data sparsity and intra/inter system variance in real-world
CPS.

To demonstrate the design of PAIN monitors for safety
monitoring in CPS with different types of dynamics, we con-
sider systems with networked dynamics, linear-time invariant
dynamics, and hybrid dynamics that are discussed through case
studies for building actuator fault detection, meal detection in
type I diabetes, and detecting hypoxia caused by pulmonary
shunts in infants. In all applications, the PAIN monitor is shown
to have (significantly) less variance in monitoring performance
and (often) outperforms other competing approaches in the
literature. Finally, an initial application of PAIN monitoring for
CPS security is presented along with challenges and research
directions for future security monitoring deployments.

I. INTRODUCTION

The confluence of low-powered low-cost embedded com-
munication, sensing, and actuation technologies with un-
precedented computational capabilities stands to revolution-
ize safety-critical systems and infrastructures. These cyber-
physical systems (CPS) have already shaped the way we
interact with the world by enabling, for example, smart grids,
autonomous driving, medical screening and control, energy
efficient buildings, and advanced manufacturing. In the smart
grid, networked phasor measurement units (PMUs) have en-
abled high-fidelity monitoring and control of grid voltage [1],
[2], [3], [4], [5]. In medicine, computerized clinical decision
support systems (CDSS) can automatically analyze data and
provide the corresponding results to clinicians [6], [7], [8],
enabling improved patient care and outcomes [9], [10], [11]. In
smart buildings, incorporating CPS technologies into existing
supervisory control and data acquisition (SCADA) systems
has enabled improved building energy management [12], [13],
[14], [15]. Similarly, pervasive CPS monitoring technologies
have enabled manufacturing systems to quickly identify faults

in process control and infrastructures [16], [17], [18]. Recently,
data-driven monitoring techniques have been developed for
autonomous vehicles to identify potential security threats and
critical events [19], [20], [21], [22]

Despite these successes, cyber-physical systems are still
prone to failures and vulnerable to attacks, as illustrated in
the Maroochy water breach in March 2000 [23], the 2003
northeast blackout in the USA [24] and multiple recent power
blackouts in Brazil [25], the SQL Slammer worm attack on the
DavisBesse nuclear plant in January 2003 [26], the StuxNet
computer worm in June 2010 [27], the recent fatal wrecks
involving autonomous cars [28], the recall of medical de-
vices [29], [30], and various industrial security incidents [31].
Moreover, there has been an exponential increase in the
number of CPS safety and security incidents in the past
decade [32]. Thus, it is imperative that safety and security
monitoring techniques be developed for CPS and adopted into
their designs.

Complicating this effort, the tight interaction between in-
formation technology and the physical world inherent in
Cyber-Physical Systems (CPS) can challenge traditional ap-
proaches for monitoring safety and security. While new sens-
ing technologies can produce large amounts of data, this data
is often sparse and may lack rich data describing critical
events/attacks. Data sparsity in safety critical CPS is especially
troublesome for data-driven techniques, where an insuffi-
ciently trained CPS can respond unfavorably to unforeseen
events/scenarios (e.g., the 2016 Tesla crash [28]). Moreover,
in many applications, data is often corrupted due to sensor
noise, unmodeled data artifacts, system interactions, and lossy
communication connections. In addition to data sparsity and
integrity concerns, CPS often have (significant) intra/inter-
system variability. For example, in medical CPS, intra-system
variability can result from time-varying physiological effects
of a specific patient, while inter-system variability results
when a medical device must interact sequentially with multiple
patients – each with different physiology.

A fundamental challenge arises in designing CPS monitors
robust to data sparsity and inter/intra-system variability since
monitors that have significant variability in their performance
may not be trusted for monitoring safety and security. Safety-
critical CPS performance must provide high performance in
all operating scenarios, not just the average scenario. For CPS
monitoring results to be useful, they must not only be accurate
(as failure might lead to injury or system failure) but also
precise. In CPS, a high rate of false positives will fatigue
human operators and, over time, can cause them to ignore the
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system’s recommendations [33]. Trust in a system’s results
has been found to be a major determinant in the success of
monitoring systems [34]. Thus, CPS monitors must produce
consistent and predictable results over all operating scenarios.
Monitoring systems that do not address these challenges risk
becoming another source of information that system operators
ignore. This is already apparent in medicine where one of
the most pressing issues for the simple clinical decision and
support systems in widespread use today. For example, bedside
threshold alarm systems are known to generate the large
numbers of false positives, which has created the “alarm
fatigue” problem, i.e., clinicians ignoring alarms or completely
shutting them down [35], [36], [37].

Related Work: Concerns about safety and security of CPS
are not new, as the numerous manuscripts on systems at-
tack/fault detection, isolation, and recovery testify – e.g., [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54]. Currently, there exist several
approaches to designing monitors ranging from simple sensor
thresholding techniques to more complex data-driven learning
approaches. One common approach is referred to as a model-
based approach, in which physics-based models (e.g., com-
partmental models [55]) are developed that attempt to capture
the relevant processes in the physical world. These techniques
perform well when accurate models are developed [56], [57],
[58], [59], [50], [48] but they can require extensive training
data to tune parameters, especially in settings with large inter-
system variability.

When high-fidelity accurate models are not available, re-
searchers employ gray-box [60], [61], [62] or black-box (data-
driven) approaches [63], [64], [65], [66], [67], [68]. Data-
driven techniques have shown improved performance over
competitive approaches when rich/dense training data is avail-
able [69], [70]. At the same time, such approaches (including
Hidden Markov Models [71]) suffer from the often incorrect
assumption that data is generated from a discrete, fixed set
of classes that do not change over time – as a result, the
performance of these techniques varies greatly across operat-
ing scenarios. Continuous density hidden Markov models [72]
and Hierarchical Bayesian modeling [73], [74] address the
fixed-class assumption and thus have seen success in various
CPS applications (e.g., medical CPS [75], [76], [67]), but still
provide no individual level guarantees. Recent work on fair
learning [77], [78] aims to overcome this shortcoming in data-
driven monitoring. It is worth noting that in special cases,
such as monitoring malware in CPS communication networks,
research have developed model-free techniques by exploiting
network structure [53], [54].

An alternative approach shown to be robust to data sparsity
and inter/intra-system variability is parameter-invariant (PAIN)
monitoring [79], [80], [81], [82], [83], [84], [85]. In PAIN
monitors, a parameterized model is developed for the purposes
of classification – instead of estimating the model parameters,
however, PAIN classification provides guaranteed performance
(i.e., constant false positive rates) regardless of the param-
eter values. This approach has been successfully applied in
multiple CPS domains with parameterized models such as
fault detection in networked systems [79], [80] as well as

the development of heating, ventilating and air conditioning
systems [86], smart grids [52], and in medical monitoring
applications for critical pulmonary shunts [81], [82], hypo-
volemia [83] and meal-detection in type I diabetics [84], [85].

This paper presents the design methodology for parameter-
invariant monitors in safety-critical CPS. The presented design
methodology is shown to generalize the recent applications of
PAIN monitoring for safety critical and secure CPS. We illus-
trate the versatility and different features of PAIN monitoring
through real-world CPS applications spanning systems with
networked dynamics, linear-time invariant (LTI) dynamics, and
hybrid dynamics. These applications include: (i) monitoring
actuator fault detection in smart buildings that is invariant
to changes in the heat-transfer dynamics (e.g., invariant to
whether doors and windows are open or closed); (ii) detecting
meal ingestion by type 1 diabetic patients that is invariant to
the patient’s unique physiology; and (iii) predicting hypoxia,
caused be a pulmonary shunt, in infants under anesthesia that
is invariant to the oxygen diffusion, lung thickness, etc. In
all applications, the PAIN monitor is shown to have (signif-
icantly) less variance in monitoring performance and (often)
outperforms other competing approaches in the literature. An
initial application of PAIN monitoring for CPS security is
presented along with challenges and research directions for
future security monitoring deployments.

In the following, our presentation of PAIN monitoring for
CPS is structured as follows. In the subsequent section, we
begin by providing an overview of binary hypothesis testing
techniques that form the foundation of PAIN monitoring.
Section III presents the design of parameter-invariant monitors
and discusses its theoretical performance. Utilizing the PAIN
design, we then describe multiple monitoring scenarios and
discuss them in the context of real-world CPS applications.
Networked dynamical systems are discussed in Section IV
and utilizes the building fault detection application as an
illustrative example. Section V discusses CPS with LTI dy-
namics and demonstrates a corresponding PAIN monitor for
meal detection in type I diabetics. To illustrate the final class
of system dynamics, namely hybrid systems, a monitor for
critical pulmonary shunts is presented in Section VI. An initial
application and future challenges for extending PAIN monitors
for CPS security monitoring is discussed in Section VII. The
final section provides a discussion and conclusions.

II. FOUNDATIONS OF BINARY HYPOTHESIS TESTING

Classical binary hypothesis testing concerns the problem
of discriminating, based on available measurements, between
a null hypothesis that captures normal operation (e.g., ab-
sence of a fault) and an event hypothesis that models the
event/alternative scenario (e.g., presence of a fault). To for-
mulate a (binary) hypothesis testing problem, a designer can
utilize two models: (i) a noisy measurement model relating
measurements to underlying parameters; (ii) a hypothesis
model mapping parameters to potential hypotheses. The noisy
measurement model can be represented as a random measure-
ment vector y ∈ Y ⊆ RN which is drawn from a distribution
y ∼ fθ,γ(Y ) that is parametrized by parameters θ ∈ Θ ⊆ RM



3

and γ ∈ Γ ⊆ RJ , where θ and γ correspond to test parameters
and nuisance parameters, respectively. The test parameters, θ,
are utilized in the hypothesis model such that

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, (1)

where,H0 represents the null hypothesis,H1 denotes the event
hypothesis, and Θ0,Θ1 ⊂ Θ are the parameter subspaces for
the null and event hypotheses, respectively. As their name
suggests, the nuisance parameters (denoted by γ) do not
discriminate between the hypotheses (i.e., do not appear in the
hypothesis model), but affect the measurement model. Thus,
a primary challenge in designing tests for (binary) hypothesis
testing problems lies in maximizing test performance in spite
of the nuisance parameters.

The performance of a binary test can be quantified in
terms of false positives and true positives. A false positive
occurs when the test incorrectly rejects the null hypothesis
(i.e., φ(y) = 1 when H0 is true). Similarly, a true positive
occurs when the test correctly rejects the null hypothesis
(i.e., φ(y) = 1 when H1 is true). In general, minimizing
the false positive rate and maximizing the true positive are
competing objectives – decreasing the false positive rate tends
to also decrease the true positive rate (and vice versa).

There are two fundamental approaches to hypothesis testing.
A Bayesian approach assumes a prior on the likelihood of
each hypothesis occurring in the hypothesis model, while a
non-Bayesian approach (e.g., frequentist approach) does not
utilize a prior distribution assumption on the hypothesis model.
While each approach has its benefits and shortcomings, this
work concerns CPS safety and security scenarios where the a
prior distribution on the hypothesis model is likely unknown.
In this scenario, multiple testing techniques exist and can be
classified based on parameter subspace assumptions. When a
parameter subspace for a hypothesis contains a single element,
i.e., Γ = {γ} and Θ0 = {θ0} or Θ1 = {θ1}, the correspond-
ing hypothesis is said to be a simple hypothesis. Otherwise,
the hypothesis is called a composite hypothesis. Regardless
of whether the hypotheses are simple or composite, the aim
in binary hypothesis testing is to design a test that maps the
measurement (subspace) to a hypothesis, φ : Y → {0, 1}, such
that φ(y) = j represents the test’s claim that Hj is true. In the
remainder of this section, we overview different types of tests
and their performance in the presence of simple and composite
hypotheses as motivation for the PAIN test in the following
section.

A. Likelihood Ratio Tests

For tests between two simple hypotheses, i.e., Γ = {γ},
Θ0 = {θ0} and Θ1 = {θ1}, the classic likelihood ratio
test (LRT) introduced by Neyman and Pearson [87] is often
employed. The LRT is constructed by utilizing the likelihood
ratio,

l(y) =
fθ1,γ(y)

fθ0,γ(y)
,

which represents the likelihood of the measurement being
drawn from the event hypothesis divided by the likelihood

of the measurement being drawn from the null hypothesis. To
construct a test, a threshold, η, is applied to the likelihood
ratio such that

φLRT (y) =

{
0 if l(y) ≤ η
1 otherwise

, (2)

is the likelihood ratio test.
For a large class of distributions, the likelihood ratio has

a monotonic (increasing) distribution such that the Neyman-
Pearson Lemma [87] ensures the likelihood ratio test is the
uniformly most powerful (UMP) test. A UMP test is considered
the ideal test for binary hypothesis testing and ensures that
for every false positive rate (i.e., size), the corresponding true
positive rate (i.e., power) is larger than any other test with the
same (or less) false positive rate. More formally, a candidate
test, φ, is UMP with false alarm rate α ∈ [0, 1] if and only
if the false alarm rate equals α (i.e., P [φ(y) = 1 | H0] = α)
and for any other test, φ′, such that has no greater false alarm
rate (i.e., P [φ′(y) = 1 | H0] ≤ α), the candidate test has at
least the same true positive rate (i.e., P [φ(y) = 1 | H1] ≥
P [φ′(y) = 1 | H1]). Unfortunately, UMP tests often do
not exist for composite hypotheses since it requires a test to
maximize power (i.e., maximize the true positive rate) for a
specific size (i.e., false alarm rate) over all parameters, θ ∈ Θ.

B. Generalized Likelihood Ratio Tests (GLRT)

In cases where the null hypothesis and/or the event hypoth-
esis is composite, the generalized likelihood ratio test (GLRT)
extends the notion of the likelihood ratio test by utilizing the
ratio of the maximum likelihood under each hypothesis,

l̂(y) =

max
θ∈Θ1,γ∈Γ

fθ,γ(y)

max
θ∈Θ0,γ∈Γ

fθ,γ(y)
,

and constructing a threshold test similar to the likelihood ratio
test,

φGLRT (y) =

{
0 if l̂(y) ≤ η
1 otherwise

. (3)

One attractive feature of the GLRT is that when both hypothe-
ses are simple, the test is equivalent to the LRT; thus, when the
LRT is a UMP test, the GLRT is also a UMP test. Moreover,
when the generalized likelihood ratio has a monotonic distri-
bution, the Karlin-Rubin Theorem [88] states that the GLRT is
UMP. In general, a UMP test for composite hypothesis testing
only exists in a few special cases (e.g., simple hypotheses). A
benefit of the GLRT is that when the estimated value of the
parameter θ under the true hypothesis is accurately estimated,
the GLRT asymptotically approaches the performance of a test
that has access to the unknown parameters [89]. However, as
the maximum likelihood estimate of the parameter deviates
for the actual value, the performance can degrade rapidly.

C. Maximally Invariant Tests

In CPS, it is entirely possible (if not likely) that the max-
imum likelihood estimate of the nuisance parameters deviate
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from their true values. This deviation can be caused by a
number of effects, including too little data and/or poor dis-
tribution/model assumptions. In these situations, an attractive
alternative is to design a maximally invariant test. Maximally
invariant tests attempt to remove the effect of the nuisance
parameters from the test decision. Modeling the effect of
the nuisance parameters on the measurements as a group
of measurement transformations, G ⊂ YY , allows us to
capture how changing the nuisance parameters can change the
measurement. We provide examples of such groups in the next
section in our presentation of the parameter-invariant test.

A test statistic, t(y), is invariant to the group of transfor-
mations, G, if and only if

∀g ∈ G, t(y) = t(g(y))

where, in words, we say the statistic is invariant to the
group of transformation if the statistic has the same value
regardless of the unknown parameters. There are many in-
variant statistics (e.g. t(y) = 0 is trivially invariant to all
parameters, but is useless as a test statistic.). Thus, we wish
(if possible) to choose an invariant statistic that is maximally
invariant, namely the statistic which only removes the effect
of the unknown nuisance parameters. This concept is captured
mathematically by the following implication: for any two
measurement vectors y,y′ ∈ Y ,

t(y) = t(y′) −→ ∃g ∈ G, y = g(y′).

In words, a statistic is maximally invariant if it is invariant
to the unknown nuisance parameters and if the information
removed by the invariant statistics can be fully explained by
a change in the unknown nuisance parameters. Similar to
the LRT and GLRT, this statistic can be utilized to design
a (maximally) invariant test

φMI(y) =

{
0 if t(y) ≤ η
1 otherwise

, (4)

where, as long as the maximally invariant statistic preserves
the original testing dichotomy, the maximally invariant test
will be invariant to G (i.e., ∀g ∈ G, φ(g(y)) = φ(y)).
Additionally, an optimal maximally invariant test is said to
be the uniformly most powerful invariant (UMPI) test, which
has a direct relation to the UMP test. Specifically, a maximally
invariant test to G, namely φ, is UMPI if for any other test, φ′,
also invariant to G, φ is UMP. Similar to the case for the UMP
test, a direct consequence of Neyman-Pearson Lemma [90]
and the Karlin-Rubin Theorem [88], if a maximally invariant
statistic t : Y → T has a monotone likelihood ratio, then the
corresponding likelihood ratio test, φ : T → {0, 1}, is UMPI.

Realizing a maximally invariant test is not always possible.
Maximally invariant statistics do not yield constant false alarm
rates for hypothesis testing problems where the test parameter
sets contain more than a single value (i.e., the test parame-
ters are composite). In these scenarios, maximally invariant
statistics can have wide ranging performance. Especially in
systems where the hypotheses can be potentially incorrect. In
these scenarios, we wish to accept/reject the null hypothesis for
the right reason – and not just because there is a discrepancy

between the real-world and the assumed models.

III. PARAMETER-INVARIANT MONITOR DESIGN

In many CPS monitoring applications, designing robust
monitors in the presence of unknown or uncertain physical
processes presents a fundamental challenge. In general, un-
known physical processes can affect both the normal scenario
(null hypothesis) and the potential event (event hypothesis),
resulting in a problem where both the null and event hy-
potheses are composite. In this section, we present the design
of parameter-invariant monitors to robustly address real-world
uncertainty. A PAIN monitor consists of a test of near max-
imally invariant statistics. In a CPS monitoring context, the
PAIN monitor removes the effect of the unknown nuisance
parameters (using maximally invariant statistics) which do not
reliably differentiate the hypotheses – i.e., are unnecessary
for monitoring. Theoretically, PAIN designs can achieve a
constant false alarm rate (CFAR) regardless of parameter
uncertainty. Practically, PAIN designs have provided near-
constant false alarm rates in many CPS applications spanning
networks [80], smart buildings [91], and medicine [92], [82],
[83].

In this section, we present the design of parameter-invariant
monitors in three parts. In the following subsection, we discuss
the modeling of physical processes for parameter invariant
monitoring and present a general form of the measurement
and hypotheses models. Next, in Section III-B, we formulate
maximally invariant statistics for the nuisance parameters in
the measurement model. The final subsection utilizes the maxi-
mally invariant statistics to construct a parameter-invariant test
and discusses its sequential implementation. Before presenting
PAIN monitor design, we briefly summarize the notation
employed in the following.

Notation: We write R≥0 to be the set of non-negative real
numbers. For a matrix, F , we write F−1, F>, and |F | to
be the inverse, transpose, and determinant of F , respectively.
Additionally, we write |F |c to be the number of columns of F
and denote the column space of F as 〈F 〉 – i.e., 〈F 〉 denotes
the range that can be modeled as a linear combination of the
columns of F . For completeness, we write 〈F 〉⊥ to denote the
nullspace of F>. For a random variable, n, we write E [n] to
be the expected value of n.

A. Model Development for PAIN Monitoring
Consistent with the hypothesis testing foundations in Sec-

tion II, designing a PAIN monitor also requires a measurement
model and hypothesis model. In general, the measurement
model captures the effects of the nuisance and test parameters
on the measurements, while the hypothesis model describes
the test parameters under each hypothesis. However, in CPS,
relating models of the physical world (and their corresponding
parameters) to measurement and hypothesis models (having
nuisance and test parameters) can be challenging conceptually.
In this section, we present a general form for the measurement
and hypothesis models utilized in PAIN monitoring. In later
sections, we will show how the general form of both the mea-
surement and hypothesis models can be realized for different
real-world CPS monitoring applications.
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1) Measurement Model: In PAIN monitoring, we assume
the measurement vector, y, can be written as a linear model
of M (potentially unknown) parameters, p ∈ RM−1 and σ ∈
R≥0, according to

y =Hp+ σn =
[
F G0 G1

]  µ
θ0ρ0

θ1ρ1

+ σn

=Fµ+ θ0G0ρ0 + θ1G1ρ1 + σn

(5)

where, H = [F ,G0,G1] is a known signal matrix whose
columns correspond to potential signals and n is a random
noise. In this model, there are no restrictions on what the
parameters represent physically. For instance, the parameters
can represent physical parameters (e.g., metabolic rate [82]),
but could also represent lumped parameters that have no
explicit physical world interpretation (e.g., coefficients of a
transfer function [83], [91]). In PAIN monitoring, we assume
that µ ∈ Γµ = R|F |c , ρi ∈ Γρ,i = {ρ ∈ R|Gi|c | ‖ρ‖ = 1},
and σ ∈ Γσ = {σ ∈ R | σ > 0} are nuisance parameters, and
θ0, θ1 ∈ R≥0 are test parameters. For completeness, this means
the nuisance parameters, γ, and test parameters, θ, introduced
in Section II correspond to

γ =


u
ρ0

ρ1

σ

 and θ =

[
θ0

θ1

]
.

Observing that the test parameter θi can be interpreted as a
magnitude since it can take any non-negative value (i.e., θi ∈
R≥0). Similarly, the nuisance parameter ρi can be interpreted
as a direction since it is any |Gi|c-dimensional vector that has
unit length (i.e., ρi ∈ Γρ,i). Consequently, the product of these
parameters represents any vector of the same dimension as ρi.
Thus, the measurement model can capture any linear combina-
tion of signals (i.e., the columns of

[
F G0 G1

]
), since

the corresponding parameters p – made up of µ, θ0ρ0, and
θ1ρ1 – can all be arbitrary vectors of appropriate dimensions.
It will be shown through different applications in later sections
that the model in Equation 5 is capable of accurately capturing
the dynamics of many real world CPS since it can represent
any unknown linear combination of known signals – plus
noise.

While the parameters in p denote a linear combination of
known signals, the parameter σ multiplies the noise vector,
n. The combined effect of σ and n can have multiple inter-
pretations. Similar to θi, σ can be thought of as an unknown
magnitude and n as a random direction. In this interpretation,
we claim that the magnitude of the noise is a nuisance while
the direction is a random variable. More commonly, if the
noise is an i.i.d. with zero mean (i.e., E [n] = 0), then σ
represents the covariance of the noise. This interpretation can
lead to nice theoretical results for some common distributions,
e.g., Gaussian noise. Regardless of the exact interpretation,
σ accounts for the measurement model error. Thus, when
some linear combination of the signals accurately captures the
measurement, σ is small. When the model is inaccurate, σ is
larger. In general, knowing the accuracy of a model in a real-

world CPS may be unreasonable, thus in PAIN monitoring we
refer to σ as the magnitude of the model error and treat it as
a nuisance parameter. In general, when interpreting σn as a
model error, we observe that any system (linear or non-linear)
can be modeled by Equation 5; however, the magnitude of the
model error (i.e., σ) increases as model accuracy decreases.
The effect of this relation will be discussed in terms of the
performance of the PAIN monitor.

2) Hypothesis Model: As identified in the previous section,
the test parameters in PAIN monitoring correspond to θ0 and
θ1. Consequently, we state the hypothesis model used in PAIN
monitoring as

H0 : θ0 > 0, θ1 = 0 vs. H1 : θ0 = 0, θ1 > 0 (6)

where, the hypotheses are both composite. The interpretation
of the hypothesis model is that under the null hypothesis,
H0, the signals corresponding to the columns of G1 do not
affect the measurements. Similarly, under the even hypothesis,
H1, signals denoted by the columns of G0 do not affect the
measurements. Restricting the hypothesis model in PAIN mon-
itoring to the form of Equation 6, often requires a co-design
between the measurement model and hypothesis model. For
example, when testing whether the system is in one mode or
another (possibly corresponding to a normal model versus an
attack/fault mode), the matrixG0 can represent the signals that
can possibly affect the measurements when no fault/attack is
present, while G1 may represent potential fault/attack signals.
In this scenario, under the null hypothesis (no attack/fault),
the test parameter θ1 equals zero and denotes that none of the
fault/attack signals in G1 affect the measurement. Similarly,
in the event hypothesis (corresponding to an attack/fault),
the measurements are not affected by the nominal signals in
G0, since θ0 is equal to zero. Moreover, we note that F in
Equation 5 denotes the signals that can affect the measurement
under both the null and event hypothesis (if they exist).
Depending on the application, the specific signals contained in
F , G0, and G1 may change; however, in PAIN monitoring we
restrict the corresponding measurement model and hypothesis
model to the form of Equations 5 and 6, respectively. This co-
design is discussed in the context of various CPS monitoring
applications in later sections.

B. Maximally Invariant Statistics

In this section, we develop statistics that are maximally
invariant to the nuisance parameters in the measurement model
in Equation 5. To achieve this, for each nuisance parameter
(i.e., µ, ρi, and σ), we discuss its effect in words, then
formalize the effect as a group of transformations induced
upon the measurements by changing the nuisance parameters.
These groups induce orbits within the measurement space such
that all measurements on a unique orbit can be achieved by
(only) changing the nuisance parameters. For simplicity in the
following discussion, we make some additional assumptions
on the structure of the measurement model
• The columns of

[
F G0 G1

]
are orthonomal

Any pair of measurement and hypothesis models having
the form of Equation 5 and Equation 6, respectively, can
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be restated such that the new measurement and hypothesis
models still have the form of Equation 5 and Equation 6 and
this assumption holds while preserving the dichotomy of the
original testing problem. We note that this transformation can
be automated (e.g., see [82], [85]).

In the following, we first present maximally invariant statis-
tics for each nuisance parameter independently, then com-
pose the individual statistics (under the above assumption)
to generate maximally invariant statistics for the combined
effect of the nuisance parameters. To illustrate the effects
and the nuisance parameters and motivate their corresponding
maximally invariant statistics, we make use of Figure 1.

• Maximal Invariance to µ: Given the measurement vec-
tor y in Figure 1a, any change in the nuisance parameter
only translates the measurement in column space of F
(i.e., in 〈F 〉). This is illustrated in Figure 1a by assuming
µ̂ denotes a change in the nuisance parameter such that
a resulting change in the measurement is denoted as
y + F µ̂. This nuisance parameter-induced translation
is referred to as a subspace bias, and can arbitrarily
translate the portion of the measurement vector in the
column space of F . Formally, the set of all subspace
biases induced by changing the nuisance parameter µ is
captured by the group of transformations,

Gbias =
{
g
∣∣ g(y) = y + F µ̂, µ̂ ∈ Γµ,

}
where, each g ∈ Gbias represents a directional bias
induced by a change in the nuisance parameter µ.
We observe that the projection of the original measure-
ment and the biased measurement onto the nullspace
of F> – denoted by the red vector in Figure 1a –
are the same, regardless of the induced bias. Thus, the
nullspace of F> represents the lumped region of the
measurement space where only changing the value of µ
will have no effect on the measurement. By exploiting
this property, we can project the measurement vector onto
the nullspace such that changing µ will have no effect
on the resulting projection. Mathematically we write this
projected measurement as

tµ(y) =
(
I − FF>

)
y, (7)

where, I − FF> is the projection onto the null space
of F>. It is well known (and shown in [93]) that tµ(y),
is maximally invariant Gbias corresponding to a subspace
bias.

• Maximal Invariance to ρi: Given the measurement
vector y in Figure 1b, any change in the nuisance param-
eter ρi rotates the measurement in column space of Gi

(i.e., in 〈Gi〉). This effect can be explained in two steps.
First, since Gi is an orthonormal basis and ρi ∈ Γρ,i
always has unit length, then the Giρi will always have
unit magnitude (i.e., ∀ρi ∈ Γρ,i, ‖Giρi‖ = 1). Second,
if changing the parameter always results in a vector with
unit magnitude, then the change is a rotation (i.e., a
change in direction only). Formally, the set of all rotations
induced by changing the nuisance parameter ρi is stated

by letting R be the set of rotation matrices,

R =
{
R
∣∣ R−1 = R>, |R| = 1

}
,

and writing

Grotate,i =

{
g

∣∣∣∣∣ g(y) =
(
P +GiRG

>
i

)
y,

P = I −GiG
>
i , R ∈ R

}
to be the group defining orbits within the measurement
space explained by rotation in Gi.
In Figure 1b, we observe that a rotation in the space of
Gi does not affect its magnitude (as illustrated by the
red radius of the resulting circle). Moreover, a rotation in
the space of Gi does not affect the measurement in the
nullspace of G>i (as illustrated by the vertical red line in
Figure 1b). Mathematically we write this pair of statistics
as

t̂ρ,i(y) =

[
tρ,i(y)
t̄ρ,i(y)

]
=

[
‖G>0 y‖(

I −G0G
>
0

)
y

]
(8)

where tρi(y) represents the magnitude of the measure-
ment in the space of Gi and t̄ρi(y) denotes the projection
of the measurement onto the nullspace of G>i . Recalling
the maximally invariant statistic for µ (i.e., tµ(y)) we
observe that t̄ρ,i(y) is maximally invariant to a bias in
the column space of Gi. This fact will come in useful
when discussing the PAIN test in the next subsection.
As with the subspace bias, it is shown in [93] that the
statistic, t̂ρ,i(y), is maximally invariant to rotation in the
column space of Gi, namely Grotate,i.

• Maximal Invariance to σ. To normalize the unknown
noise scaling factor, σ, requires us to multiply the mea-
surement model in Equation 5 by σ−1. This effect is
illustrated in Figure 1c, where scaling y by σ−1 results in
a vector in the same direction, but a different magnitude
– i.e., yσ . Thus, we say σ induces an unknown scaling of
the measurement space. Formally, the set of all scalings
induced by changing the nuisance parameter σ is captured
by the group of transformations,

Gscale =

{
g

∣∣∣∣ g(y) =
1

σ
y, σ ∈ R≥0

}
which represents the group defining orbits within the
measurement space that vary by scale. Since the direction
of the measurement is unaffected by scaling, we consider
the statistic

tσ(y) =
y

‖y‖ (9)

where it is discussed in [93] that tσ(y) is, in fact,
maximally invariant to Gscale.

In the above, we discussed the effects of the nuisance
parameters individually and developed maximally invariant
statistics for each nuisance parameters. Namely, for the mea-
surement model in Equation 5, tµ(y) is maximally invariant
to the subspace bias induced by µ ∈ Γµ, t̂ρ,i(y) provides
invariance to the rotation induced by ρi ∈ Γρ,i, and tσ(y)
is maximally invariant to the scaling needed to normalize
the measurement model against σ ∈ Γσ . Observing that the



7

<F> 

<F> 

y 
y+Fµ 

Fµ 

tµ(y) 

(a) Subspace Bias in 〈F 〉

<Gi> 

<Gi> 
(P+GiRGi

T)y 
y 

tρ,i(y) 

tρ,i(y) 

(b) Rotation in 〈Gi〉

y 

σ 
y 

tσ(y) 

(c) Scaling by 1
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Fig. 1: Types of transformations included in the transformation group G.

nuisance parameters can simultaneously affect the measure-
ments, we need a statistic that is maximally invariant to their
combined effect. Formally, their combined effect is defined
as the composition of each individual transformation group,
namely

G =

{
gµ ◦ gρ,0 ◦ gρ,1 ◦ gσ

∣∣∣∣∣ gµ ∈ Gbias, gρ,0 ∈ Grotate,0,gσ ∈ Gscale, gρ,1 ∈ Grotate,1

}
Exploiting the orthogonality of F , G0 and G1, we can write
a maximally invariant statistic to G as

t(y) =

 t0(y)
t1(y)
t̄(y)

 =

 tρ,0 ◦ tσ ◦ t̄ρ,1 ◦ tµ
tρ,1 ◦ tσ ◦ t̄ρ,0 ◦ tµ
tσ ◦ t̄ρ,0 ◦ t̄ρ,1 ◦ tµ


where, the individual maximally invariant statistics are
(mostly) applied in the opposite order as the group of trans-
formations such that t(y) is maximally invariant to G. The
exception to this structure occurs when applying tρ,0 and
tρ,1, which are applied last since they each reduce the N -
dimensional measurement space to a scalar value. The max-
imally invariant statistic, t(y), developed in this section is
utilized in the following subsection to introduce the PAIN test.

C. Parameter-Invariant Hypothesis Testing

This section presents the PAIN test for evaluating the
hypothesis model in Equation 6 invariant to the nuisance
parameters in the measurement model in Equation 5. We begin
by observing the statistic, t(y), in the previous subsection
is maximally invariant to the nuisance parameters in the
measurement model in Equation 5. Therefore, any test for the
hypothesis model based on the maximally invariant statistic,
t(y) will also be invariant to the nuisance parameters. Before
proceeding in our discussion, we recall that t(y) represents a
concatenation of multiple statistics, namely t0(y), t1(y), and
t̄(y). We observe that t0(y) is invariant to θ1 since, t0(y)
is composed of t̄ρ,1(y) which is invariant to any bias in the
column space of G1, including θ1ρ1 in Equation 5. Similarly,
t1(y) is invariant to θ0 since t1(y) is composed of t̄ρ,0(y)
which is invariant to any bias in the column space of G0,
including θ0ρ0 in Equation 5. Lastly, we note that t̄(y) is
invariant to all the test parameters (i.e., both θ0 and θ1) since it

contains both t̄ρ,1(y) and t̄ρ,0(y). This implies that t̄(y) does
not discriminate between the hypotheses (since it is invariant
to the test parameters). Thus, we can re-write the hypothesis
model in Equation 6 based on t0(y) and t1(y) as

H0 : t0(y) > 0, t1(y) = 0 vs. H1 : t0(y) = 0, t1(y) > 0.

Another interpretation of this updated hypothesis testing
problem is that the two statistics test the hypotheses inde-
pendently. The first statistic, t0(y), should be (near) zero if
the event hypothesis is true and will vary based on θ0 if
the null hypothesis is true. Conversely, the second statistic,
t1(y) should be (near) zero if the null hypothesis is true and
will vary based on θ0 if the event hypothesis is true. These
properties provide the opportunity to design multiple tests
using the statistics t0 and t1. For example, a threshold test on
t0(y) can (for some distributions) yield a constant false alarm
rate (CFAR) detector. Similarly, a threshold test on t1(y) can
(for some distributions) yield a detector that can achieve a
minimum probability of detection.

When designing monitors for CPS, a number of errors can
be introduced. The measurement model in Equation 5 may not
be entirely accurate (or altogether wrong). This can result in
large model errors that decrease both t0(y) and t1(y) resulting
a low powered test (i.e., unlikely to detect events). Similarly,
due to the complexity of CPS, it is possible that neither the null
or event hypothesis accurately describes the system. In this
scenario, both statistics t0(y) and t1(y) will tend to increase
– indicating that both hypotheses are rejected. Thus, a PAIN
monitor utilizes both statistics and not only monitors for when
to alarm, but also tests for low power and inaccurate models.
Specifically, a PAIN monitor makes a decision according to
Table I, where η0 and η1 denote the test thresholds.

TABLE I: Test Decision Space for Alarm System

t0(y) ≥ η0 t0(y) < η0

t1(y) ≥ η1
Warning

(inaccurate model) No alarm

t1(y) < η1 Alarm Warning
(low power)

In Table I, the parameter invariant test makes a definitive de-
cision (i.e., alarm or no alarm) when both statistic tests agree.
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Fig. 2: Overview of PAIN monitoring in CPS applications.

When the tests do not agree, the parameter-invariant alarm
generates one of two types of warnings. An indecision warning
occurs when neither test rejects its assumption, indicating that
there is not enough power in the test to disambiguate between
the two hypotheses to the level of accuracy specified. A
model inaccuracy warning occurs when both tests reject their
assumptions, indicating neither model accurately describes the
measurements. The benefit of this two-sided testing approach
is that the event (or null) hypothesis won’t be accepted/rejected
just because there wasn’t enough power or because the models
were inaccurate. This is a similar concept to the reject option
in the machine learning literature [94].

In special cases, such when n is an i.i.d. Gaussian, the PAIN
monitor has some nice theoretical results. Specifically, the test
thresholds η0 and η1 can be chosen such that

P [t0(y) ≥ η0] ≤ α and P [t1(y) ≥ η1] ≤ β

where α and β are the probability of false alarm (type I
error) and probability of miss (type II error), respectively.
While achieving these theoretical results requires restrictive
assumptions on the distribution of the noise in the measure-
ment model that may not hold in CPS applications, practically,
the PAIN monitors have shown near-constant false alarm rates
in multiple CPS application domains.

D. Application of PAIN monitoring in CPS

The versatility of the PAIN monitoring approach is illus-
trated by its use in multiple CPS applications. An overview
of different PAIN applications is provided in Figure 2 that
spans systems whose dynamics are modeled using network
models, linear time-invariant models, and hybrid models. In
the following sections, we describe each modeling framework,
discuss the use of each modeling approach in various CPS
applications, and illustrate the development of a PAIN monitor
for a representative application. Specifically, in the next section
CPS with network dynamics are considered and a PAIN
monitor is described for actuator fault detection and diagnosis
in a smart building. Section V discusses modeling physical
dynamics as linear time invariant (LTI) models and presents
a PAIN meal detector for type I diabetic patients. Lastly,
Section VI presents modeling physical dynamics as a (hybrid)
mode-switching systems and demonstrates the concept using
PAIN detector for critical pulmonary shunts in infants.

IV. NETWORKED DYNAMICAL SYSTEMS

Networked dynamical systems represent systems whose
state dynamics that depend on the interaction of a certain
state (or node) with its neighbors. Many CPS have real-
world processes can be described (either fully or in part) by
such dynamics, including power grid dynamics [95], [96], gas
diffusion dynamics used in environmental monitoring [97], the
wireless communication protocols [98], distributed multi-agent
control applications (e.g., robotic swarms) [99], thermal energy
storage in smart buildings [100], and the spreading and miti-
gation of malware attacks [101], [102]. In these applications,
many of which are safety-critical and/or security focused, fast
and accurate detection of system faults is necessary. When
undetected, system faults and/or attacks can lead to several
flavors of detriments: from mild inconveniences in HVAC
systems (poor air quality) to disruptive ripple effects in power
systems (extended blackouts).

Traditional approaches to fault detection in networked dy-
namical systems utilize a model of the networked dynamics
to construct monitors. A general model for the networked
dynamics considers a system with J interconnected nodes
for which there exists an underlying interconnection graph,
G(V, E), between the J nodes, where V = {1, . . . , J} is the
vertex set, with i ∈ V corresponding to node i, and E ⊆ V×V
is the edge set of the graph. The undirected edge {i, j} is
incident on vertices i and j if the dynamics of nodes i and j
are interdependent. The neighborhood of node i is defined as
Ni = {j ∈ V | {i, j} ∈ E}. The networked dynamics can be
described by a discrete-time system (representing potentially
a discretization of a continuous-time networked system),

xi(k + 1) =

J∑
j=1

aij(k)xi(k) +

L∑
`=1

bi`u`(k) (10)

where, L denotes the number of input signals, each written as
ul(k), and bil denotes the effect of the l-th input to the i-th
node, and

aij(k) =


1−

∑
j∈Ni

wij
mi

if i = j

wij

mi
if j ∈ Ni, i 6= j

0 otherwise

describe the inter-node networked dynamics. In most physical
systems, wij represents an impedance and thus, wij = wji.
For example, the impedance introduce by a wall separating two
thermal air masses is often the same regardless of the thermal
flow direction [100]. Additionally, mi represents the effective
mass of a specific node and represents a node’s resistance
to change – a node with large mass is less effected by a
neighboring node with a smaller mass. We note that in some
applications, the dynamics include additional states beyond
the networked dynamics presented in the above model. For
example, the swing equation governing power grid dynamics
includes a second order integrator at each node [103]. Thus,
depending on the application, the networked dynamic model in
Equation 10 may require additional states (with corresponding
dynamics) in each node.
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While fault detection algorithms can theoretically undoubt-
edly benefit from the knowledge of accurate models, prac-
tical constraints often these models are often parametrized
by unknown environmental variables. For instance, in power
transmission networks, the resistance of the transmission lines
varies with temperature and icing conditions, while in building
automation, the heat transfer between air-masses varies with
the humidity, external temperature, and the opening or closing
of windows and doors. Under these uncertain conditions, fault
detection algorithms that cascade parameter-estimation with
hypothesis testing (e.g., the GLRT) can yield significantly
varying results based on the accuracy of the estimated param-
eters, see, e.g., [104, Example 1, page 46]. However, testing
approaches (e.g., PAIN monitors) that are invariant to the
underlying model parameters are designed to have the same
baseline performance independent of the unknown parameters.
Utilizing the invariance property allows PAIN monitors to
detect faults in networked systems when network interactions
are unknown (or untrusted).

To illustrate how the PAIN monitor can be applied to sys-
tems with networked dynamics, the remainder of this section
overviews a recent application of PAIN monitors for fault
detection and diagnostics in smart buildings.

A. Fault Detection and Diagnostics in Smart Buildings

Heating, ventilation and cooling (HVAC) are known to be
the largest consumer of energy in buildings, accounting for
40% and 47% of the national energy consumption of the
U.S. [105] and U.K. [106], respectively. Due to this high us-
age, energy-efficient HVAC system operations has been thrust
to the forefront of world-wide research agendas. Recently,
several researchers have studied how to improve the control
of HVAC systems by deploying more embedded sensors to
monitor temperature, humidity, and CO2 levels [107], using
information about occupant behavior [108], [109], [110], and
improving the modeling and control approaches [111], [112],
[113], [114], [115], [116]. In smart building applications, un-
detected HVAC sensor and actuator failures can result in poor
temperature, poor air quality management, and a reduction in
potential energy savings. However, HVAC Fault Detection and
Diagnostic (FDD) schemes which result in unpredictable or
erratic performance can deter building managers from inves-
tigating potential failures and utilizing the system altogether.
For these reasons, technological development of FDD schemes
tailored for HVAC systems is paramount and has received
much research interest in the recent years [117], [118], [119],
[120], [121].

The study of HVAC FDD systems has only been investi-
gated since the late 1980s, with a particular interest in identify-
ing low-cost, timely, and accurate methods for detecting actua-
tor faults. A thorough review of approaches to HVAC actuator
fault detection, diagnostics, and prognostics prior to 2006 is
provided in [117], [118]. In general, approaches to HVAC
actuator fault detection can be classified as either hardware-
based or software-based solutions [117]. The hardware-based
solutions introduce additional smart components strictly for
the purposes of actuator fault detection and provide accurate

detection capabilities; however, hardware solutions are far
more expensive to both deploy and maintain than software-
based approaches, and are much more difficult to reconfig-
ure with the introduction of additional smart-actuator de-
vices [118]. Moreover, the inclusion of additional hardware
has the added drawback of further increasing the complexity
of the HVAC system itself. Most software-based actuator FDD
approaches are attractive in theory, but suffer from either a
reliance on unknown (and difficult to learn) physical models
or system-specific detector design specifications [119], [117],
[118], [121].

To overcome the challenges in software-based actuator
FDD, we consider a PAIN monitor designed to detect actuator
failures with minimal knowledge of the building’s physical
dynamics. A common failure in HVAC systems occurs when
the actuator “stick” and no longer changes its set point, despite
controller requests. This type of actuator failure can occur in
any position. For example, a valve can be stuck fully open,
fully shut, or at any intermediate setting. The remainder of
this subsection presents a PAIN monitor for detecting actuator
faults invariant to known physical parameters of the building
(i.e., windows open/closed, wall thickness/material, etc.).

1) A PAIN monitor for HVAC actuator faults: To develop a
PAIN monitor for detecting faults in HVAC actuators requires
a physical model describing the dynamics. Building dynamics
are commonly modeled using networked dynamics where each
node in Equation 10 represents a zone that is assumed to
have a uniform temperature. The interactions between zones is
governed by the impedance of the plane separating the zones
(i.e., wij representing a wall) and the volume of air contained
in the zone (i.e., mi). In buildings, the volume corresponding
to a zone is constant (and easy to calculate); however, the
interactions between zones can be difficult to model and can
change drastically. For instance, two adjacent rooms separated
by a door will interact very differently depending on whether
the door is open or closed. Adding additional hardware to
monitor whether the door is open or closed can be expensive
(for large buildings), unsightly, and adds additional points
of failure (and attack surfaces). Thus, we aim to design a
PAIN monitor that can detect actuator faults invariant to the
unknown inter-zone interactions.

To develop a measurement model, we assume that actuator
` receives a known actuation signal, s`(k). If the actuator is
working correctly, corresponding to the null hypothesis, then
u`(k) = s`(k) in Equation 10. However, if the actuator is
’stuck’, corresponding to the event hypothesis, then u`(k) = c`
for some arbitrary value of c`. For appropriate S`(k) and
b`, where S`(k) are known actuation signals and b` are
corresponding gain parameters, the networked dynamics in
Equation 10 can be written (assuming σn represents the model
error/noise) as

x(k + 1) = A(k)x(k) + S`(k)b` +B`u`(k) + σn(k)

y(k) = x(k),

where A(k) = [aij(k)], B` = [bi`], x(k) =
[x1(k), . . . , xJ(k)]>, u(k) = [u1, . . . , uL]>, and y(k) denotes
the measurements. To design a PAIN monitor, we observe
that the networked dynamics have a natural invariant, namely,
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given m> = [m1, . . . ,mJ ] then m>A(k) = 1> for all time
k – which is directly observable from Equation 10. Thus,
utilizing the vector of air masses, m> and its correspond-
ing nullspace, Pm = I − mm>

m>m
, we can write the time-

concatenated measurement model, in the PAIN general form
of Equation 5, as

y =


y(1)−m1>y(0)

m>m
...

y(k)−m1>y(k−1)
m>m

 , G1 =

 Is`(0)
...

Is`(k − 1)



F =

 Pm S`(0)
. . .

...
Pm S`(k − 1)

 , G0 =

 I
...
I


with nuisance parameters, σ and

µ =


A(0)x(0)

...
A(k − 1)x(k − 1)

b`

 , ρ0 =
B`c`
‖B`c`‖

, ρ1 =
B`
‖B`‖

,

and test parameters (under each hypothesis)

H0 : θ0 = 0, θ1 = ‖B`‖ vs. H1 : θ0 = ‖B`c`‖, θ1 = 0

We note that y, F , G0, and G1 are all known matrices and
that the test results in a measurement model and hypothesis
model that satisfy the general PAIN models in Equation 5 and
Equation 6, respectively. Thus, a PAIN monitor to detect actu-
ator faults invariant to the unknown inter-zone interactions can
be achieved by following the procedure outlined in Section III.

2) Experimental Evaluation and Discussion: The evalu-
ation of the actuator fault detector was performed in the
KTH HVAC testbed [122]. To evaluate the parameter-invariant
detector performance, multiple experiments were performed
utilizing room A225 in Figs. 3 and 4 as the test room. In
this evaluation, we aim to detect whether there is an actuator
failure in the air conditioning system, namely whether the
fresh air vent (actuator ST901 in Fig. 4) is stuck in a given
position. To emulate an actuator failure, we hold the vent in
a constant position and assume that the actuator signal cycles
between fully open and fully closed (as a diagnostic signal)
on 15 minute intervals for 3 hours. We evaluate the detector
performance in terms of missed alarm rate and false alarm
rate, as denoted by PMA and PFA in Table II, in scenarios
when the window in room A225 is open and closed.

For comparison, the PAIN monitor was compared with two
model-based approaches utilizing a likelihood ratio test, as
described in Section II. The first model-based approach is
designed assuming the windows in room A225 are open,
while the second model-based approach assumes the windows
are closed. Both of these models are described in [86]. For
evaluation purposes, we aim to minimize the probability of
false alarm while ensuring a 10% probability of miss. For the
model-based monitors, we select the likelihood test thresholds
such that a probability of miss is 10% is achieved when the
model is correct. The motivation behind designing a detector
that achieves a constant probability of miss (rather than a
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Fig. 3: KTH HVAC testbed at the second floor of the Q-
building at KTH. Each of the five rooms considered contain
sensors and actuators used for HVAC control. Additional
sensors are located in the corridor and outside of the building.

Fig. 4: The HVAC system components in room A225, the
Automatic Control experimental lab. Various sensors and
actuators are available allowing for the control of ventilation
and heating.

constant probability of false alarm) is discussed in [91]. The
results of the experimental evaluation are provided in Table II.

TABLE II: Building Actuator FDD Results

Approach Window State PMA

(%)
PFA
(%)

PAIN
open 10.1 5.1

closed 9.8 0.2
varying 9.9 3.1

Model-based
(window open)

open 10.0 4.0
closed 18.2 0.1
varying 14.1 2.9

Model-based
(window closed)

open 15.1 3.1
closed 10.0 0.2
varying 12.1 3.0

In Table II, we observe that the PAIN monitor achieves
nearly identical missed alarm rates regardless of whether the
window is open, closed, or switching between open and closed
(i.e., varying). In contrast, both model-based approaches have
varying missed alarm rates depending on the window state.
These results illustrate that while it may be possible to design
a model-based monitor that (slightly) outperforms the PAIN
monitor when the model is correct, the performance of the
model-based approach can vary significantly if the model is
inaccurate. Moreover, these results are achieved without adapt-
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ing the PAIN monitor to the specific testing scenario; thus,
illustrating the robustness of the PAIN monitoring approach
to changes in the underlying networked dynamical system.

V. LINEAR TIME INVARIANT SYSTEMS

Linear time invariant (LTI) systems represent systems where
the relationship between the inputs and the outputs is a
linear map that does not vary with time. Modeling the dy-
namics of a CPS as an LTI system is common in many
monitoring applications, since LTI systems serve as good
approximations for most real-world systems, especially over
small enough time windows [123]. LTI models arise in include,
compartment modeling in medicine and biology [124], [125],
robotic dynamics [126], [127], electric motor models [128],
and advection diffusion processes [129]. In addition, LTI
systems represent a generalization for many of the networked
dynamical systems in the previous subsection [97], [95], [99].

LTI models for CPS come in many forms including
continuous/discrete-time state space models [130], autoregres-
sive moving average models with exogenous inputs (AR-
MAX) [131], and difference equations [132]. In general, LTI
models of the physical world consist of a set of differential
(or difference) equations in which the state variables have
physical meaning (e.g., vehicle velocity, room temperature,
amount of oxygen in blood) and the equations represent the
lumped interactions/interconnections between different state
variables,

ẋ = Ax+Bu, y = Cx (11)

where, x represents the system state, u denotes the inputs,
y corresponds to the outputs, and A, B, and C capture the
linear dynamics. Many variations of the LTI model exist,
including stochastic versions with process and measurement
noise. A benefit of state-space models is that they can be
designed to arbitrary accuracy through a natural grouping
(or ungrouping) of physical effects. For example, air mass
interaction through walls in smart buildings can be captured
using a simple resistor-capacitor model or by modeling the
different materials that make up the wall. Similarly, in the
glucose-insulin physiological system one can model the cumu-
lative effect of carbohydrate ingestion as a single first-order
differential equation representing collectively the stomach,
intestine, and blood compartments as the glucose system,
or one can model each of the three physical compartments
individually as interactive systems.

The risk in using a linear model to describe real world
dynamics is that it may not be accurate. While it is likely
that some linear model can sufficiently capture the dynamics
of a CPS, it is unlikely that the same linear model is accu-
rate for all dynamics. Thus, the model error introduced by
using LTI systems (with estimated or assumed parameters) to
design CPS monitors can lead to poor monitor performance
in safety-critical scenarios. Moreover, while accurate model
parameters are useful for distinguishing between the null and
event hypotheses, they are often unnecessary. For instance, to
test a vehicle’s braking system, an autonomous driver may
trigger the brakes and observe a sudden decrease in speed.

Knowledge or estimation of the brake pad friction coefficient is
unnecessary to identify that triggering the brakes resulted in a
sudden decrease in speed (i.e., the braking system is working).
While this example is somewhat trivial, it does illustrate that
knowledge of system parameters is (sometimes) unnecessary
to test a hypothesis.

To illustrate how the PAIN monitor can be applied to sys-
tems with LTI models, the remainder of this section overviews
a recent application of PAIN monitors for meal detection in
type I diabetic patients.

A. Meal Detection in Type 1 Diabetic Patients

Type 1 diabetics depend on daily insulin infusion or injec-
tion to keep their glucose level within an acceptable range. Too
much insulin can cause life-threatening hypoglycemia (low
glucose levels) and too little insulin can cause nerve-damaging
hyperglycemia (high glucose levels) [133]. Ingested carbohy-
drates from meals cause a major disturbance to blood glucose
levels. Thus, all diabetics must carefully titrate insulin doses
for every meal so that post-meal hyperglycemia is effectively
controlled, while avoiding administering too much insulin and
risking hypoglycemia. Currently, many type 1 diabetics use
continuous glucose monitors (CGMs) and wearable insulin
pumps. These devices allow the user to manually input the
time and estimated carb count of each ingested meal into
the device, which then calculates a suggested insulin dose.
Unfortunately, self-reported meal information is known to be
inherently unreliable [134].

Several meal detection strategies exist in the literature. Das-
sau et al. proposes voting-based meal detector that tracks the
glucose rate-of-change (RoC) estimated by different methods
(including Kalman filtering) and announces a meal when three
out of the four RoC estimates cross their thresholds [134].
Using similar Kalman filtering techniques, Lee et al. develop
a meal detector that announces a meal based on thresholding
glucose RoC and estimates the meal size by feeding the filtered
glucose RoCs into a finite response filter [135]. Harvey et al.
recently propose a meal detection algorithm that announces
meals based on a two-stage CGM filtering process and a RoC
criteria [136]. Cameron et al. use a simple glucose model to
match estimated glucose trajectories assuming no meals to
CGM residuals as a means to detect meals [137]. Turksoy
et al. simultaneously aim to estimate physiological variables
and model parameters to provide accurate meal detection and
estimation [138]. In terms of performance, the aforementioned
detectors require balancing a tradeoff between false alarm
rate, detection rate, and detection delay –which can vary
significantly due to non-meal factors, such as exercise [139],
stress [140], and depletion of insulin-on-board [141]. Ad-
ditionally, the shape-matching meal detector [137] requires
personalization to a subject’s time-varying physiology (e.g., in-
sulin sensitivity) and tends to have a long average detection
delay [142], while the adaptive technique [138] provides no
guarantee that the physiological parameter estimates converge
to their true value.

To improve patient safety, more dependable meal detection
methods are necessary; ideally, meal events could be detected
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directly from physiologic data, freeing the patient from having
to manually input meals. In the following sections we formu-
late the meal detection problem in the PAIN general form and
discuss its performance with respect to existing meal detectors
in the literature.

1) A PAIN monitor for Meal Detection: To develop a PAIN
monitor for meal-detection in type I diabetes requires a model
of insulin-glucose physiology. There are multiple ways to
model insulin-glucose physiology ranging from low-fidelity
minimal models [125] to a high-fidelity maximal models such
as the FDA-accepted UVa/Padova Type 1 Diabetes Mellitus
Metabolic Simulator (T1DMS) [143]. To enable the design of a
PAIN monitor, a minimal model denoted by a fifth-order order
LTI system that describes the glucose-insulin kinetics [144]
under carbohydrate ingestion [145] and subcutaneous insulin
injections [146], [147], written as

Ġ(t)

ṁ(t)

ġ(t)

İ(t)
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
︸ ︷︷ ︸

ẋ(t) ≈ A x(t) + u(t).

(12)

In Equation 12, x represents the physiological state vector,
where G(t) represents the plasma glucose, x(t) and I(t) is
the insulin in the subcutaneous compartment and plasma, g(t)
denotes glucose in the lumped digestive track compartment,
and m(t) represents the rate of plasma glucose appearance
due to meals. Injected insulin is represented as u(t) while meal
carbohydrate inputs correspond to d(t). The parameters p1, p2,
and p3 are unspecified lumped physiological parameters, ka
and ke are rate parameters, Vd is the insulin volume, and AG
and tG represent the unspecified carbohydrate bioavailability
and maximum glucose rate of appearance, respectively – all
assumed to be unknown. The details of the model are provided
in [85], [84].

By modeling the CGM measurement as y = G, the appli-
cation of standard discretization and z-transform techniques,
results in a LTI discrete-time model (specifically an ARMAX
model) which approximates the measurement at time step
k using a weighted sum of past measurements and inputs,
namely

y(k) =

5∑
j=1

ajy(k − j) + b3,j
AG
tG

d(k − j) + b5,ju(k − j)

+c+ σn(k).

In the above equation, σn(k) denotes the model error,
while a = [a1, . . . , a5]>, bn = [bn,1, . . . bn,5]>, and c =
p3

∑5
j=1 b1,j represent unknown patient-specific lumped phys-

iological coefficients that correspond to the z-domain transfer
function coefficients relate to the LTI model in Equation 12.

By hypothesizing that meals can occur in at most one of two
windows, S0,S1 ∈ {0, . . . , k} such that S0 ∩S1 = ∅. Writing
ek to be a unit vector with a single unit entry in the k-the
element, and using ek to write Ek =

[
ek+1 . . . ek+5

]
.

We write b̄m,n(k) = AG

tG
dk−Sm[n]b3

We can write the time-concatenated measurement model,
in the PAIN general form of Equation 5, as y =
[y(5), . . . y(k)]>,

F =

 y(4) . . . y(0) u(4) . . . u(0) 1
...

...
...

...
...

y(k − 1) . . . y(k − 5) u(k − 1) . . . u(k − 5) 1

 ,
G0 =

[
ES0[1] . . . ES1[|S0|]

]
,

G1 =
[
ES1[1] . . . ES1[|S1|]

]
with nuisance parameters, σ, µ = [a>, b>5 , c]

>, and

ρ0 =

 b̄0,1(k)
...

b̄0,|S0|(k)


∥∥∥∥∥∥∥
 b̄0,1(k)

...
b̄0,|S0|(k)


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, ρ1 =

 b̄1,1(k)
...

b̄1,|S1|(k)


∥∥∥∥∥∥∥
 b̄1,1(k)

...
b̄1,|S1|(k)


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,

and test parameters (under each hypothesis)

H0 : θ0 = 0 , θ1 =

∥∥∥∥∥∥∥
 b̄1,1(k)

...
b̄1,|S1|(k)


∥∥∥∥∥∥∥

H1 : θ0 =

∥∥∥∥∥∥∥
 b̄0,1(k)

...
b̄0,|S0|(k)


∥∥∥∥∥∥∥ , θ1 = 0

We note that y, F , G0, and G1 are all known matrices and
that the test results in a measurement model and hypothesis
model that satisfy the general PAIN models in Equation 5
and Equation 6, respectively. Thus, a PAIN monitor to detect
meals can be achieved by following the procedure outlined in
Section III.

2) Experimental Evaluation and Discussion: The PAIN-
based detector is evaluated against three existing meal-
detection algorithms: the Dassau (et al.) detector [134], Harvey
(et al.) detector [136], and Lee (and Bequette) detector [135].
A complete description of the clinical data set and evaluation
criteria are provided in [85]. In the evaluation, each detector
is tuned to an operating point of approximately 2 false alarms
per day such that the detection rates in Table III result.

TABLE III: Operating Points of the Four Detectors on the
Clinical Data set Used for Analysis

Approach Detection rate (%) False alarms per day
PAIN [85] 86.9 2.01

Dassau [134] 74.1 1.99
Lee [135] 73.4 1.99

Harvey [136] 79.4 1.97

The experimental evaluation shows that the PAIN-based de-
tector significantly improves the detection performance when
compared with the other three detectors. Figure 5 compares the
performance variability, in terms of false alarm and detection
rates, of each meal detector on different patients in the
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Fig. 5: Distributions of the four detectors false alarm and
detection rates on different patients in the clinical data set
used for analysis. The dots corresponds to outliers in patient
performance for each detector.

data set. The box-plots represent the performance of each
detector on the majority of the patients, while the dots indicate
corresponding outliers. These results provide a measure of
the consistency of detection performance at the individual
level, that is, whether a detector can perform particularly
bad on any patient. In Figure 5, the PAIN monitor detects
at least 55% of all reported meals and never has a false
alarm rate greater than 3.7 false alarms per day. In sharp
contrast to the PAIN-based detector, all other three detectors
miss significantly more meals (both on average and worst
case), and have false alarm rates with higher variances and
higher worst-case values. For example, compared with the
Harvey detector, the PAIN-based detector reduces the number
of missed detections by 36% without increasing the false
alarm rate in the experimental evaluation. The performance
distribution over the patients validates the unique strength of
the PAIN-based detector: it is designed to be invariant to
differences in patients physiological parameters and thereby
achieves low variance detection performance across a real
population.

VI. HYBRID DYNAMICAL SYSTEMS

Hybrid dynamical systems represent a class of systems
that exhibit both continuous and discrete dynamic behavior.
The continuous behavior is often described by differential
equations (potentially LTI), while the discrete behavior is
captured by a corresponding state machine. A hybrid system
is a general formulation that encompasses many other classes
of systems including networked systems and LTI systems.
Often, a discrete state in a hybrid system will correspond to
an unsafe or error condition. Due to its generality as a model,
hybrid systems monitors have been developed in many CPS
applications [127], [126], [148], [149], [150] and can capture
both the LTI and networked dynamics models of the previous
sections.

In general, the state of a hybrid system is defined by the val-
ues of the continuous variables and a discrete mode. The state
changes either continuously, according to a flow condition, or
discretely according to a control graph. Continuous flow is
permitted as long as so-called invariants hold, while discrete
transitions can occur as soon as given jump conditions are
satisfied. Discrete transitions may be associated with events.
Thus, the model of a hybrid system can be written as

S = 〈X ,Q,Xinit,Xinv,F(P), T 〉 ,

where X represents the continuous states, Q denotes the
discrete modes, Xinit ∈ RX specifies the initial condition
space, F(P) captures the flows parameterized by a vector
P ∈ RP , Xinv identifies invariants mapping modes to flows,
and T relates the transitions between modes. An output
y = φ(t;Xinit) denotes the measurement, with φ(t,Xinit)
describing the measurement at time t, having evolved from
initial condition Xinit.

The risk in using discrete mode transitions as monitors is
that the underlying continuous models may be inaccurate. As
in the networked and LTI systems, the model error intro-
duced by the underlying continuous dynamic model (e.g., LTI
model), can lead to poor monitor performance in safety-critical
scenarios. Moreover, while accurate model parameters are
necessary to accurately describe the continuous dynamics, if
the discrete dynamics define the null and event hypotheses,
then they are not necessary for monitoring. For instance, a
vehicle transmission has a specific system response relating
engine torque to vehicle velocity when in each unique gear, but
varies based upon road grade and surface conditions (e.g., icy
or dry). When the vehicle’s speed drops below a certain value,
the automobile should shift to a lower gear to prevent undue
stress on the vehicle transmission. Monitoring a change in
the transmission represents monitoring for a mode switch in
the dynamics between vehcile speed and engine torque (or
RPMs). As in the LTI systems, we observe that switching
between two modes can be monitored without knowing the
specific dynamics of each mode, and only monitoring whether
a change in the dynamics occurs.

To illustrate how the PAIN monitor can be applied to hybrid
systems, the remainder of this section overviews a recent
application of PAIN monitors for detecting critical pulmonary
shunts in infants.

A. Critical Pulmonary Shunt Detection in Infants

During surgery, blood O2 content is perhaps the most
closely monitored physiological variable, as values that are
too low can lead to organ failure (e.g., brain damage), and
values that are too high can cause atelectasis (i.e., collapse
of the lungs). Pulmonary shunts, which occur when a patient
is breathing with only one lung, can cause dangerous drops
in O2 levels. Shunts can be caused by a physical disorder,
such as pulmonary edema, or may occur when the patient is
under mechanical ventilation (e.g., when the perioperative lung
is not ventilated). Infants are especially vulnerable to shunts
because they have underdeveloped lungs. In these patients,
critical shunts are common (e.g., caused by small shifts in the
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endotraceal tube), thereby often leading to dangerously low
levels of O2 content.

Despite its importance, blood O2 content is challenging to
monitor, as it cannot currently be measured non-invasively or
in real time. Instead, clinicians must monitor proxy variables.
One popular proxy is the hemoglobin oxygen saturation in the
peripheral capillaries, denoted by SpO2. While it is a good
non-invasive measure of the O2 content in the location at
which it is measured (e.g., a fingertip), SpO2 is a delayed
measure of the O2 content in other parts of the body (e.g., the
arteries), as blood takes time to circulate.

To improve patient safety, earlier detection of critical pul-
monary shunts is necessary. In the following, we formulate the
critical shunt detection problem in the PAIN general form and
discuss its performance with respect to monitoring the SpO2.

1) A PAIN monitor for Critical Pulmonary Shunts: To
develop a PAIN monitor for detecting critical pulmonary
shunts requires models of the blood-oxygen dynamics in
the presence and absence of a pulmonary shunt. Since no
established models exist, we elect to model the dynamics under
each scenario using compartment models. In general, compart-
ment models (discussed in [55]) tend to balance the trade-
off between model accuracy and usefulness for monitoring.
Compartment models of the physical world consist of a (po-
tentially switching) set of differential or difference equations in
which the state variables have physical meaning (e.g., amount
of oxygen in blood) and the equations represent the lumped
interactions/interconnections between different state variables
in compartments. A simplified schematic model of the gas
partial pressures in the circulatory and respiratory systems is
illustrated in Figure 6, where the details of the model are
contained in our previous work [81], [82].

Following [82], we can construct a state-space model of the
system (not shown in this paper due to space constraints) based
on the schematic model in Figure 6, and after some algebraic
manipulation, the time-series measurement can be modeled as

y = θ0G0ρ0 + θ1G1ρ1 + σn

where G0 corresponds to the model in the absence of a
shunt (i.e., null hypothesis ) as illustrated in Figure 6aand
G1 corresponds to the model in the presence of a shunt
(i.e., event hypothesis) as illustrated in Figure 6b. This model
has corresponding nuisance parameters, σ, and

ρ0 =

[
α
µα

]
∥∥∥∥[ α

µα

]∥∥∥∥ , ρ1 =

[
α
µα

]
∥∥∥∥[ α

µα

]∥∥∥∥
with test parameters (under each hypothesis),

H0 : θ0 = 0, θ1 =

∥∥∥∥[ α
µα

]∥∥∥∥
H1 : θ0 =

∥∥∥∥[ α
µα

]∥∥∥∥ , θ1 = 0.

Here we observe that the test parameters serve to indicate
which model G0 or G1 explains the measurements under
each hypothesis. For example, under the null hypothesis, θ1

is always zero and θ0 is non-zero, which indicates that G1ρ1

(i.e., the model in the presence of a shunt) does not affect the
measurement.

2) Experimental Evaluation and Discussion: To evaluate
the performance of the PAIN monitor, real patient data from
lung lobectomy surgeries performed on infants is utilized. A
complete description of the clinical data set and evaluation
criteria are provided in [82]. In the evaluation, each detector
is tuned to an operating point of approximately 1 false
alarm per hour such that the detection rates in Table IV
result. For comparison, the PAIN monitor is compared with a
standard change detection technique, namely, the cumulative
sum control chart (CUSUM) detector. In order to develop
the CUSUM detector, a maximum likelihood estimate of the
model parameters for each patient were estimated (similar to
the GLRT approach described in Section II) and then the
detector algorithm from [151][Ch. 8.10] was employed.

TABLE IV: Operating Points of the PAIN Monitor and
CUSUM Detector on the Clinical Data set Used for Analysis

Approach Detection rate (%) False alarms per hour
PAIN [82] 88 1.0

CUSUM [151] 18 1.0

As discussed in detail in [82], the PAIN monitor is able to
accurately predict 88 % of critical pulmonary shunts about 90
seconds before a drop in the SpO2 occurs while only having
1 false alarm per hour. Moreover, as can be seen in Table IV,
the PAIN monitor greatly outperforms the CUSUM detector.
There are two main reasons for this difference. First, the model
in Figure 6 captures general trends but is a poor predictor of
the future that makes it unsuitable for model-predictive and
estimation-based techniques. Second, it is difficult to obtain
good parameter estimates in the presence of noisy and missing
measurements.

To further illustrate the performance disparity, Figure 5
compares the performance variability, in terms of false alarm
rate, of each shunt detector on different patients in the data
set. The box-plots represent the performance of each detector
on the majority of the patients, while the red dots indicate
corresponding outliers. These results provide a measure of
the consistency of detection performance at the individual
level, that is, whether a detector can perform particularly bad
on any patient. In Figure 7, the PAIN monitor never has
a false alarm rate greater than 3.5 false alarms per hour.
In sharp contrast to the PAIN-based detector, the CUSUM
detector misses significantly more critical events and has
a false alarm rate with higher variances and higher worst-
case values. The performance distribution over the patients
reaffirms the previous results that illustrate the unique strength
of the PAIN-based detector: it is designed to be invariant to
differences in patients physiological parameters and thereby
achieves low variance detection performance across a real
population.

VII. EXTENSIONS TO CPS SECURITY

As described in Section I, we have witnessed a significant
increase in the number of security related incidents in cyber-
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(a) System without a shunt. (b) System with a shunt.

Fig. 6: Model of the respiratory and cardiovascular partial pressures with and without a shunt.
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Fig. 7: Distributions of the PAIN and CUSUM detectors
false alarm rates on different patients in the clinical data set
used for analysis. The dots corresponds to outliers in patient
performance for each detector.

physical systems in recent years. These incidents have seri-
ously raised security awareness in CPS, where there is a tight
coupling of computation and communication substrates with
sensing and actuation components. However, the complexity
and heterogeneity of this next generation of safety-critical,
networked and embedded control systems have challenged the
existing design methods in which security is usually consider
as an afterthought.

Therefore, many researchers have begun to consider attacks
against the control system as the primary function of CPS,
where the attacker can (1) take over a sensor and supply wrong
or untimely sensor readings, or (2) disrupt actuation. These
attacks manifest themselves to the controller as malicious
interference signals, and the defenses against them have to be
introduced in the control design phase. Specifically, resilience
against these attacks is built into the low-level and supervisory
control algorithms. This approach have attracted a lot of
attention, with several efforts focused on the use of control-
level and monitoring techniques, which exploit a model of the
normal system behavior, for attack-detection and identification
in CPS (e.g., [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52]). A common feature to the
design of these approaches is their reliance on an model of
normal system (possibly with bounded or stochastic noise).
However, this may not be feasible in all applications and
scenarios (as illustrated by the examples in Section IV-VI).

The following subsection introduces preliminary results on

attack detection using PAIN monitors. The final subsection
overviews challenges associated with attack detection using
PAIN monitors and provides insight to potential research
directions for overcoming these challenges.

A. Attack Detection using PAIN Monitors

The development of monitoring techniques that can ac-
curately detect attacks with minimal reliance on underlying
dynamical models can improve the penetration of CPS security
techniques. Here, the ability of PAIN monitors to provide con-
stant monitoring accuracy invariant to (possibly maliciously
altered) parameters, can prove useful. This utility has already
been demonstrated in [152], where a PAIN monitor has been
developed for detecting attacks in systems with redundant
sensors. In CPS, utilizing multiple correlated sensors is a well
established method of providing better estimates of control
variables and model parameters; however, when attacked, a
sensor can be used as a means to maliciously alter a CPS.
Thus, to ensure safe performance requires securing the sensory
data. A PAIN monitor can be utilized to identify inconsistent
sensors by observing that for a known C, redundant sensor
measurements can be modeled as

y = Cx+ e+ n

where, x denotes an unknown system state that affects the
measurements, n denotes a random noise (note that we do
not include σ as in the previous models), and e represents
a potential attack vector. We say that a measurement in y is
under attack if the corresponding element of e is non-zero.
Thus, an attack detector aims to distinguish between when no
measurement is under attack (i.e., ‖e‖ = 0) versus when some
measurement is under attack (i.e., ‖e‖ > 0). A PAIN monitor
can be designed for this problem by writing

F = C, G0 = 0, G1 = I
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and defining µ = x and ρ1 = e
‖e‖ as nuisance parameters

with corresponding test parameter(s) under each hypothesis,

H0 : θ1 = 0 vs. H1 : θ1 = ‖e‖,

where, θ0 need not be defined since G0 = 0. Moreover, in the
noiseless case (i.e., n = 0), if C and e are structured such
that there always exists a subset of unattacked measurements
that can be used to exactly reconstruct the unknown state x (a
property refered to as S-sparse observability in [39]), then the
PAIN monitor perfectly detects attacks [152] – i.e., detects all
attacks with no false alarms – invariant to the unknown state
x. We note that this result is not exclusive to PAIN attack
monitors, as many other techniques can also provide perfect
detection in the absence of noise (e.g., [39], [46], [47], [48],
[49], [50]).

B. Challenges and Future Research Directions

While the PAIN monitor can provide perfect detection
capabilities in the absence of noise, bounding the attack
detection performance of PAIN monitors in the presence of
noise remains an open challenge. Bounding this performance
is further complicated when measurements (and as a potential
consequence the attack effect) comprise the F , G0, and G1

matrices – as is common in networked dynamical systems, LTI
systems, and hybrid dynamical systems. In this scenario, the
models themselves can potentially be altered by a malicious
attacker. While overcoming this challenge remains an open
research area, solutions will likely utilize a collection of pos-
sibly application dependent techniques, ranging from bounding
the potential attacker capabilities, to the co-design of security
monitors and control systems in a CPS. In the remainder of
this section, we discuss potential approaches for overcoming
tampered models using system robustness, redundancy, and
trust.

When the model noise is bounded, we say that a CPS
exhibits robustness. Robustness is commonly used in CPS
security to monitor whether the system is misbehaving. In
safety-critical CPS this equates to monitoring for when the
measurements significantly different from their estimates.
Thus, it is likely that PAIN monitors can be designed for attack
detection that leverage system robustness to ensure security;
however, bounding the performance of PAIN attack monitoring
remains challenging due to the highly non-linear nature of
PAIN monitors.

When multiple measurements (or functions of measure-
ments) provide similar information, we say that a CPS ex-
hibits redundancy. Recently, measurement redundancy has
been utilized by resilient state estimators [39], [46] to identify
attacked sensors and actuators. Utilizing sensor redundancy
by either designing separate monitors for individual sensors
or switching the roles of sensors in the model may yield
monitors that can accurate detect attacks. However, as in
resilient state estimation, the primary challenge with utiliz-
ing redundancy in PAIN attack monitoring lies in searching
all possible combinations of secure and insecure sensors to
detect an attack [46]. Moreover, utilizing redundancy alone
can not secure systems with (in general) more than half of

the measurements attacked; thus, to provide maximum attack
detection will ultimately require complementing redundancy
techniques with some other approach (e.g., robustness and/or
trust).

Another approach to detect attacks in CPS utilizes a no-
tion of trust. Trust represents the belief that a measure-
ment/component/algorithm is likely to be correct. Recent
work on behavioral-trust management has utilized Bayesian
techniques to capture temporal behavioral (i.e., fault/attack)
correlations in the networked control setting [153]. Applying
the concept of trust to PAIN attack detection appears promising
since clean measurements can be identified that can be used
to correlate with untrusted measurements. While quantified
trust can be utilized to overcome the limitations of redundancy
techniques, it potentially introduces new vulnerabilities – an
attacker may try to manipulate our trust in a measurement.
Limiting the risk of trust manipulation in CPS remains an
open research problem where application-specific solutions are
likely to prevail.

While robustness, redundancy, and trust provide three sep-
arate approaches for improving PAIN monitoring to support
attack detection in real CPS, it is likely that some combination
of these approaches will prove superior. By enabling PAIN
monitoring for attack detection, requirements on accurate
models may be avoided. This is especially true in (medical)
cyber-physical systems where accurate (physiological) models
often do not exist.

VIII. CONCLUSIONS

Monitoring for critical events in CPS presents several
challenges, that include sparse data, inter/intra-system vari-
ance, and the fact that trust in monitors is brittle. Towards
overcoming these challenges, this paper generalizes recent
work on the design of PAIN monitors for CPS. Theoretically,
PAIN designs can achieve a constant false alarm rate (CFAR)
regardless of parameter uncertainty. Practically, the utility
and robustness of PAIN monitors are illustrated through real-
world CPS case studies including actuator fault detection and
diagnosis in a smart buildings, meal detector for type I diabetic
patients, and detection of critical pulmonary shunts in infants.
These applications span CPS with networked dynamics, LTI
dynamics, and hybrid dynamics. These applications illustrate
how the general theory of PAIN monitor construction can be
simplified for specific classes of system dynamics, which give
rise to more specific methodologies. In all applications, the
PAIN monitor is shown to have (significantly) less variance
in monitoring performance and (often) outperforms other
competing approaches in the literature. An initial extension
of PAIN monitoring to detecting attacks in CPS is discussed
and future research challenges identified.
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