
102 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020 1070-9932/20©2020IEEE

utonomous systems operating in uncertain envi -
ronments under the effects of disturbances and
noises can reach unsafe states even while using fine-
tuned controllers and precise sensors and actuators.
To provide safety guarantees on such systems

during motion planning operations, reachability analysis (RA)
has been demonstrated to be a powerful tool. RA, however, suf -
fers from computational complexity, especially when dealing
with intricate systems characterized by high-order dynamics,
making it hard to deploy for run time monitoring.

To deal with this issue, in this article, a neural network
(NN)-based framework is proposed to perform fast online
monitoring for safety, and an approach for the verification
of NNs is presented. Training is performed offline using
precise RA tools, while the trained NN is harnessed online
as a fast safety checker for motion planning. In this way, at
runtime, a planned trajectory can be quickly predicted to
be safe or unsafe. When unsafe, a replanning procedure is
triggered until a safe trajectory is obtained. The results of
the trained network are tested for verification using our

©ISTOCKPHOTO.COM/ANDRII SHYP,
DRONES—IMAGE LICENSED BY INGRAM PUBLISHING

Assured Runtime Assured Runtime Assured Runtime Assured Runtime Assured Runtime Assured Runtime
Monitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and PlanningMonitoring and Planning

By Esen Yel, Taylor J. Carpenter, Carmelo Di Franco, Radoslav Ivanov,
Yiannis Kantaros, Insup Lee, James Weimer, and Nicola Bezzo

Toward Verification of Neural Networks
for Safe Autonomous Operations

Digital Object Identifier 10.1109/MRA.2020.2981114

Date of current version: 14 April 2020

A

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

103JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

recent tool Verisig, in which the NN is transformed into a
hybrid system to provide guarantees before deployment. In
the case of unverified NNs, the outputs of the verification
are used to retrain the network until verification is
achieved. Two illustrative case studies on a quadrotor
unmanned aerial vehicle (UAV) (a pickup/drop-off opera-
tion and navigation in a cluttered environment) are pre-
sented to validate the proposed framework in simulations
and experiments.

Safety Predictions
As autonomous vehicles find their way into our society, it
becomes critical to guarantee safety against unpredictable
uncertainties and disturbances during their operations at
runtime. In fact, while model-driven motion planning
and control techniques can be robust against noises and
disturbances, they cannot prevent deviations from the
desired behavior during system operation, potentially
leading to unsafe states (e.g., crashing into an obstacle in
the environment due to excessive wind disturbance). To
assure safety during autonomous operations, it is neces-
sary to take the effect of noises and disturbances into
account during planning. Traditional RA tools, such as
Hamilton–Jacobi reachability [1], and hybrid system RA
techniques [2], [3] have proved to be very effective in pro-
viding safety guarantees by leveraging knowledge about
the model of the system. However, their computational
complexity makes them difficult to use at runtime, which
is the subject of this article.

On the other hand, contrary to traditional RA tools,
recent developments in machine learning have considerable
potential to enable fast RA thanks to their efficiency and
accuracy. Unfortunately, since the performance of such
learning enabled components (LECs) depends significantly
on the properties of the training data, it is challenging to
provide guarantees in safety-critical operations. To deal
with these challenges, this article presents a framework to
verify LECs for fast, safe monitoring and planning of
autonomous operations.

An NN trained to predict whether an operation will be
safe or unsafe is verified if its output decision (safe or unsafe)
always concurs with the results obtained by running the oper-
ation under the worst case conditions in which it was trained.
Since it is unlikely that an NN with this strong property
exists, in this article, we define one that is conservatively veri-
fied; in short, it is verified if, at the least, its safe decision out-
put always concurs with the result obtained by running the
actual operation. In other words, if the NN output is safe, the
system can never reach an unsafe state; however, the NN is
allowed to output unsafe when the system will be safe, since
this is a conservative decision. This definition also holds in
the extreme case that an NN outputs only unsafe decisions,
in which a vehicle will be always safe, although it will not be
able to move anywhere.

In the proposed scheme, an NN is trained to recognize
safe and unsafe trajectories for an autonomous vehicle in an

obstacle-populated environment. Specifically, training is
performed, creating a library of trajectories and computing
their reachable sets to make safety decisions; hence, the
computational burden is limited to the offline stage. A tra-
jectory is labeled safe if its reachable sets do not overlap
with any obstacle in the environment; otherwise, it is
marked unsafe.

Verification of the obtained NN is achieved using our
recent technique Verisig [4], in which the NN is transformed
into a hybrid system and the verification problem is cast as a
hybrid system reachability problem. If the NN is not verified,
meaning that it is not safe to be used, the output of the verifi-
cation is employed as feedback to retrain the NN more con-
servatively until it is verified. Once the NN is verified, it is
used at runtime as a safety checker for the planned trajecto-
ries from an untrained initial state under the effect of
unknown online disturbances. If unsafe, a new trajectory is
planned and tested until a safety-guaranteed course is
obtained, if possible.

Contributions of the article include the following: with the
proposed framework, we 1) develop a fast safety checking and
replanning approach for autonomous vehicles’ operations in
cluttered environments under unknown runtime disturbanc-
es and 2) leverage a novel NN verification tool, Verisig, to ver-
ify and retrain the used NN as a fast safety monitor, before
its deployment.

As a result, with this framework, it is possible to eliminate
the need for computationally expensive RA tools for plan-
ning safe trajectories at runtime, and our verification
method, Verisig, is capable of assessing the validity of the
proposed NN. To better illustrate our proposed framework,
two case studies on a quadrotor UAV are presented with sim-
ulations and experiments under the presence of unknown
disturbances during runtime: 1) a pickup/drop-off mission
and 2) safe navigation in a cluttered environment.

Verified Safe Motion Planning
Our verified safe motion planning framework consists of
offline and online stages, as depicted in Figure 1. During the
offline phase, a library of trajectories is generated. We
parametrize the trajectory generation based on the initial
state of the UAV, the desired goal position, the location of
the obstacles on the way to the goal site, and the distance
that must be maintained from these obstacles. These trajec-
tory parameters are labeled safe or unsafe using RA, and an
NN is trained with this set of parameters. To be able to use
the NN in autonomous operations, it should be guaranteed
that the trained network never outputs safe when the trajec-
tory is actually unsafe. To provide this guarantee, we verify
the trained NN using our recent tool Verisig, as outlined in
the “Verification” section. In case the NN is not verified, the
Verisig output is utilized to retrain the NN more conserva-
tively (i.e., it outputs more unsafe decisions) until it is veri-
fied. Once the NN is verified, it is used to make decisions
about the safety of a new set of trajectory parameters at run-
time. If the NN decides that the trajectory is safe, the UAV

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

104 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

executes the course. If the decision is unsafe, the trajecto-
ry is replanned by changing the parameters until a safe
choice is obtained.

Reachability Analysis
As mentioned previously, RA is a very powerful method for
computing the sets that a system could reach starting
from an initial set. A hybrid system RA tool, Flow* [2],
uses Taylor models to compute flowpipe overapproxima-
tions of the dynamics, while dReach [3] encodes the
reachability problem as first-order formulas across real
numbers and solves the problem using -d decision proce-
dures. Hamilton–Jacobi RA is also a widely used approach
to provide guarantees for the safety of safety-critical sys-
tems’ optimal system trajectories [5]. It performs well in
terms of the generality of system dynamics, flexibility in
the representation of sets, and control policy computa-
tion; however, it suffers from computational scalability
[6]. A significant effort has been made to overcome the
scalability problem for high-dimensional systems, such as
decomposing the system dynamics [7] and using NNs to
approximate the reachable sets [6], [8]. Other types of
reachable sets, such as robust control invariant tubes [9],
have also been proposed for safety-guaranteed UAV plan-
ning. All these traditional RA tools are very effective in
providing safety assurances, although their computational
complexity makes them difficult to use in making runtime
safety decisions.

In the literature, there have been some efforts to make
RA more usable for runtime applications. For example, in
[10], the authors precomputed a library of trajectories and
funnels (analogous to reachable sets) offline and combined
these trajectories online to navigate in a priori unknown
environments under disturbance effects. However, with
this approach, the system is restricted to a discrete set of
motion primitives. In [11], using Hamilton–Jacobi reach-
ability, a lookup table is computed offline to find the
bounds on the planned trajectory that are used to augment
the obstacles to guarantee collision-free behavior under
bounded disturbances in unknown environments. Similar-
ly, in [12], forward reachable sets are computed offline for
parameterized trajectories, and at runtime, safe trajectory
parameters are picked to avoid the sensed obstacles in
unknown environments with model uncertainties. Differ-
ent from these works, our framework solves this problem
of safe navigation in known and unknown environments
under the presence of external disturbances by using veri-
fied NNs to perform safety decisions at runtime, leaving
the RA computation offline. Our framework is also general
and modular, meaning that any type of control and plan-
ning method can be considered. It is also independent
from the choice of reachability analysis tool. Specifically,
during the offline stage, reachable sets are generated for a
given trajectory, and if they do not intersect with obsta-
cles, the corresponding trajectory parameters are labeled
as safe:

In
iti

al
 P

os
iti

on

G
oa

l P
os

iti
on

O
bs

ta
cl

es

A
vo

id
an

ce
D

is
ta

nc
e

In
iti

al
 P

os
iti

on

G
oa

l P
os

iti
on

A
vo

id
an

ce
D

is
ta

nc
e

P
la

nt

R
A

La
be

le
d

In
pu

tsC
on

ve
rs

io
n

In
to

 H
yb

rid
 S

ys
te

m

N
N

 T
ra

in
in

g

N
N

V
er

is
ig

V
er

ifi
ed

?

N
oY

es

H
yb

rid
 S

ys
te

m
R

ea
ch

ab
ili

ty

S
af

e

U
ns

af
e

U
ns

af
e

S
af

e

T
ra

in
ed

 N
N

S
af

e

U
ns

af
e

U
pd

at
ed

 In
pu

ts

R
ep

la
nn

in
g

E
xe

cu
tio

n

(a
)

(b
)

Fi
gu

re
 1

. T
he

 a
rc

hi
te

ct
ur

e
of

 th
e

pr
op

os
ed

 fr
am

ew
or

k
fo

r
ve

rif
yi

ng
 N

N
s

fo
r

ru
nt

im
e

m
on

ito
rin

g
an

d
pl

an
ni

ng
 a

ut
on

om
ou

s
op

er
at

io
ns

. (
a)

 D
ur

in
g

th
e

of
fli

ne
 s

ta
ge

, a
n

N
N

 is
 t

ra
in

ed
 a

nd

ve
rif

ie
d,

 fo
llo

w
ed

 b
y

its
 d

ep
lo

ym
en

t a
t r

un
tim

e
fo

r
m

on
ito

rin
g

an
d

re
pl

an
ni

ng
 p

ur
po

se
s.

 (
b)

 T
he

 o
nl

in
e

st
ag

e.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

105JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

(,)
[,], , , ,

R p pis

s

t
t T j N

1

0
0 1

f

otherwise

,o j

o

+ Q

6 6 f! !

=

=

=x

x

x

"* , (1)

where px is the desired positions along the trajectory ,x
(,)R p tx is the corresponding reachable set, sx is the safety

label, p ,o j is the jth obstacle position, and No is the number of
obstacles in the environment. An NN is trained using these
safety-labeled parameters to make decisions for trajectories
with different conditions.

NN Training for Safety Decisions
Following the diagram in Figure 1, after collecting a rich library
of labeled trajectory parameters, we train an NN to provide
safety decisions without having to run computationally expen-
sive RA operations at runtime. The inputs to the NN are the
trajectory parameters, which are the initial and final positions
of the system, and the obstacle-avoidance distance. The output
of the NN is a binary safe/unsafe decision. Since these conclu-
sions are used by a safety-critical system, it is required that the
NN never outputs a decision of safe if the trajectory is unsafe, as
it can lead to dangerous outcomes (e.g., colliding with an obsta-
cle). Therefore, we are interested in training an NN with zero
false positives (FPs). The drawback of reducing the number of
FPs is that the number of false negatives (FNs) (safe trajectories
marked unsafe) may increase. Even a conservatively trained
NN can output a safe decision for a set of untrained, unsafe tra-
jectory parameters. Therefore, the absence of such FPs needs to
be verified prior to its deployment.

Verification
In this article, we use Verisig to verify that the trained NN
does not output safe if the robot plans an unsafe trajectory.
As described in our prior work [4], Verisig was developed to
verify safety properties of closed-loop systems with NN com-
ponents. Verisig focuses specifically on sigmoid-based NNs

and works by transforming the NN into an equivalent hybrid
system. The NN’s hybrid system is then composed with the
plant, resulting in a new hybrid system that describes the
entire closed-loop system, as depicted in Figure 1. This
enables us to cast the verification problem as a hybrid system
reachability problem, which is solved by an optimized hybrid
system verification tool, such as Flow* [2]. Specifically, Veri-
sig transforms the NN S into a hybrid system HS by noting
that the sigmoid derivative can be expressed in terms of the
sigmoid itself, i.e.,

() () (()),x x x1v v v= -l

where () / (())expx x1 1v = + - is the sigmoid. With this
observation in mind, we introduce a proxy function

(,) ()t x xtpv v= such that (,) ()x x1pv v= and

() (,) ((,))x x t x t x1.
p p pv v v= -

using the chain rule. In other words, pv can be considered as
a state in a dynamical system that starts at (,) .x0 0 5pv = and
is equal to ()xv at time 1. Thus, each neuron in the NN can
be mapped to a state in a hybrid system, and each layer can be
mapped to a mode. Transitions between modes occur when

.t 1= Note that this time is local to the NN; global time does
not progress during the NN’s execution.

Although Verisig was originally applied to closed-loop sys-
tems with NN controllers, it applies to the setup considered in
this article, as well. In particular, in the verification problem,
the NN’s hybrid system does not interact with the plant
directly; rather, for a given set of initial conditions, we com-
pute the reachable set for the NN’s output and check whether
it is possible for the robot to crash (when started from that
initial set) while the NN outputs safe.

The composed hybrid system H H Hq S<= is shown in
Figure 2, where Hq is the hybrid system describing the robot’s

Input

NN HS S(x0) = Safe

S(x0) = Unsafe

Trajectory Plant
Obstacle
Collision

Controller

Plant

Runtime
Monitoring

Planner

x = 0
.

.
x = 0
.

xτ

t % ts = 0

u : = g (x, xτ)

x = f (x, u, d)
Safe Unsafe

Safe

t == T

Input

NN HSH S(x0xx) = Safe

S(x0xx) = Unsafe

Trajectory Plant
Obstacle
Collision

Controller

Plant

Runtime
Monitoring

Planner

x = 0x
.

.
x = 0x
.

xτxx

u : = g (x, xx xτxx)ττ

x = x f (x, xx u, d)
Safe Unsafe

Safe

t == t T

Figure 2. The composed hybrid system considered for verifying NNs for runtime monitoring. The plant dynamics evolve as a function
of the state, input, and disturbance

.
x = f(x, u, d). A controller is designed to follow the desired trajectory xx by generating a control

input with sampling time ts, u = g(x, xx). The goal is to verify that the plant (Unsafe) mode is never reached during the duration T of
the mission, i.e., that the NN never outputs safe when the plant is unsafe.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

106 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

dynamics. H contains the union of modes and states of Hq
and .HS H starts in the initial mode of HS and adds a transi-
tion from the last mode of HS to the initial mode of ,Hq
at which point the Hq execution begins. The goal is to
verify that H does not enter the plant (Unsafe) mode when

()xS afe.S0 =
Given a hybrid system description of the closed-loop

system, one could use a tool such as Flow* to verify the
system’s safety. Note that, since hybrid system verifica-
tion is undecidable in general, the typical approach used
in these tools is to overapproximate the reachable sets. If
the overapproximation does not contain any unsafe
states, the system is safe. If the overapproximation con-
tains safe and unsafe states, the outcome is unknown,
since the unsafe states could be spurious; i.e., they do
not exist in the true reachable set but only in the overap-
proximated one. Finally, if all states are unsafe, the sys-
tem is unsafe. Various shapes have been explored to
overapproximate the reachable sets, including polytopes,
ellipsoids, and hyperrectangles. Flow* uses a Taylor
model approximation, which is a Taylor series approxi-
mation with worst case error bounds. Taylor models
scale well when used with interval analysis and are
shown to have a low approximation error for a large
class of nonlinear systems [2].

NN Retraining
At the end of the verification, Verisig specifies the
regions in which 1) the NN is safe to be used (i.e., the
plant is not unsafe when the NN output is safe), 2) the
NN is not safe to be used (i.e., the plant is unsafe when
the NN output is safe), and 3) the system is not able to
make a decision due to the approximation errors
introduced in the hybrid system RA during verifica-
tion (i.e., the NN output is “unknown”). In case there
are regions in which the NN is not safe to be used or
Verisig cannot decide, the NN needs to be retrained.
The output of Verisig can be leveraged to retrain the
NN in several ways. One is to collect more data around
those regions where Verisig is not able to make a deci-
sion, followed by NN retraining. An increased density
of data around previously untrained regions may help
with the verification.

However, how much data needs to be collected in
those regions is not known a priori and is hard to predict,
so the process could require multiple iterations of data
collection and retraining. In addition, collecting new data
to improve the training set may not always be possible.
Instead, we propose adding points from the unsafe/
unknown regions obtained from the Verisig output to
the existing training set, marking them with unsafe labels,
and finally retraining the NN. By retraining the NN
with more unsafe points, a more conservative version is
obtained in which unsafe regions are inflated, helping
with the verification process. This retraining process is
repeated until the NN is verified.

Case Studies
As a proof of concept, our verified safe monitoring and
planning approach is applied to two case studies of quadro-
tor motion planning: 1) a pickup/drop-off mission and 2) a
navigation operation in a cluttered environment. Both case
studies use similar NNs to predict whether the vehicle tra-
jectory will be safe or unsafe (and thus require offline train-
ing and verification). At runtime, the verified NN is used
for different purposes. The pickup/drop-off task requires
the UAV to go from one side of a static environment to the
other, resembling operations that could happen inside a
warehouse or factory. The UAV makes decisions about the
safety of the planned trajectory based on the NN results
and replans by adjusting the obstacle-avoidance distance
until it finds a longer but safe course to its goal position. In
the latter case study, the UAV is tasked with navigating a
previously unknown cluttered area. Training is executed in
a smaller environment with only one obstacle, acting as a
primitive scenario that can appear and be composed multi-
ple times at runtime. Training in a primitive environment
enables the NN and verification to be generalized to differ-
ent settings with the same type of obstacles located in pre-
viously unknown positions. Replanning here is executed by
querying different waypoints along the path to the goal
until the NN outputs a safe decision. In both case studies,
we use the same vehicle, controller, planner, and distur-
bances, whose models are briefly summarized in the fol-
lowing section.

System Models

Quadrotor UAV and Controller Model
A quadrotor can be modeled using the following simplified
sixth-order state vector ,x x y z v v vx y z= R6 @ where x, y,
and z are the world frame positions and vx, vy, and vz are the
world frame velocities. The quadrotor dynamics can be
defined as (, ,),x x u df.

= where u F z i= R6 @ is the input
vector with thrust, roll, and pitch commands and
d d d dx y z= R6 @ is the external disturbance vector. The
dynamics can be described as

,

x y z v v v

v
v
v

g
g

m
F g

k
d v
d v
d v

x y z

x

y

z

d

x x

y y

z z

i

z

=

= -

-

+

-

-

-

R Ro o o

o

o

o

R

T

S
S
SS

6

>

6

>
V

X

W
W
WW

@

H

@

H

where m is the mass of the quadrotor, g is gravity, and kd is
the drag coefficient. It should be noted that, in this article, a
simplified quadrotor UAV model is used to alleviate the
verification problem. Validating a high-fidelity model [13]
is left for future work. To generate the necessary roll, pitch,
and thrust inputs to follow the desired trajectory, a cascad-
ed set of PID controllers is used [14].

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

107JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Disturbance Model
The external disturbance considered in this article is bounded
in magnitude: ,d Dmax< < # ,d D6 ! where Dmax is the
upper bound to the disturbance magnitude and D is the set
of all possible disturbances. Here, we assume that the online
disturbance is unknown but constant through time. This is a
reasonable assumption, as wind disturbance generally follows
a Brownian motion and does not change erratically during
short periods of time [15], [16].

Trajectory Planning
Obstacle-avoidance trajectories are computed using a simple
geometric approach. Specifically, if an obstruction is present
along the way to the goal position, a waypoint is added to the
path at a specified avoidance distance ra away from the obsta-
cle center. A course is finally generated to visit all waypoints
on the path by using a minimum jerk trajectory generation
[17]. It should be noted that we use this path-planning meth-
od due to its simplicity in implementation in simulations and
experiments; however, the overall proposed framework is
independent from the choice of path-planning approach.

Pickup/Drop-Off Task
The first case study that we present in this article is a pick-
up/drop-off task, an operation that is commonly used in
factory applications where a vehicle moves back and forth
between a warehouse and a workstation. The environment
has a designated pickup area (warehouse) and drop-off posi-
tion (workstation), with obstacles at known locations in
between. The vehicle is tasked to move from a point inside
the pickup area to the drop-off location. Once it reaches the
drop-off site, it can move back to a new point in the pickup
area. To complete its mission safely, the UAV needs to
decide whether the planned trajectory, parametrized by the
initial position ,p0 final goal ,p g and avoidance distance ,ra
is safe and if not, replanning is required. In this case, replan-
ning is executed by adapting .ra

To train an NN to make safety decisions in this scenario,
two sets of trajectories with different avoidance distances are
generated and labeled using RA: one set links a rich set of ini-
tial positions in the pickup area to the
drop-off position, and the other con-
nects the drop-off position to a rich set
of final positions in the pickup area.
The NN queries the initial and final
positions and the avoidance distances;
if they are unsafe, it checks a larger
avoidance distance until it outputs a
safe decision.

Simulation-Based Reachability
In this case study, we use a simulation-
based RA. During the offline stage,
we run each training trajectory un -
der the worst-case scenario which, in
our example, is the largest possible

disturbance attainable in the environment. Under this condi-
tion, for a given trajectory ,px the maximum deviation dm is
calculated as follows:

 () () ,max max min p pd tdm
[,] [,]d t T T0 0D

< <p= - x
! ! !p

 (2)

where pd is the position of the vehicle under disturbance .d
Here, dm is used as an upper bound for the actual deviation
from the trajectory, and it is conservative since it is the maxi-
mum deviation measured through the entire trajectory. The
position-reachable sets are then generated as follows:

 (,) () : () () .R p p p pt t t t dm< < #= -x x" , (3)

After generating the reachable sets, the trajectory is labeled
safe or unsafe according to (1). In Figure 3, we show the
reachable sets of two sample trajectories.

Offline Training
The environment has a designated rectangular pickup area
that is limited between [0.0, 1.3] m in the x-axis and [−1.0,
1.0] m in the y-axis. The drop-off point is located at

[. , .] .p 4 0 0 0 mg = There are two obstacles between the pickup
area and drop-off location, positioned at [. , .]p 2 0 0 1 mo1 =
and [. , .]p 3 0 0 1 m.o2 = - For training, 294 points are uni-
formly distributed in the pickup area and used as the initial
and final positions. For trajectory generation, seven different
avoid distances are considered: . ,r 0 3a ! " 0.35, 0.4, 0.45, 0.5,
0.6, .0 7 m.,

Two NNs were trained: one for the drop-off operation
and the other for the pickup task. To implement the NNs,
we chose Keras (https://keras.io), a deep-learning library
capable of running on top of Tensorflow (https://tensor-
f low.org) through a set of application programming
interfaces written in Python. For all layers (input, hid-
den, and output), we use a sigmoid activation function.
The NN is composed of three input nodes (the x-y initial
position and avoidance distance pair), one hidden layer
of 40 nodes, and one output that determines whether the
label is safe or unsafe. We trained two different NNs, one

1

0.5

0

–0.5

–1

y
(m

)

–1 0 1 2 3 –1 0 1 2 3
x (m)

1

0.5

0

–0.5

–1

y
(m

)

x (m)
(a) (b)

Desired Trajectory
Reachable Sets

ObstacleInitial Position
Goal Position

Safe Unsafe

Figure 3. The reachable sets for two sample trajectories. (a) A safe trajectory. (b) An
unsafe trajectory.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

108 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

for each subtask (drop-off and pickup). The training
results showed 0% FPs and roughly 5.2% FNs for the first
NN and 0% FPs and approximately 1.2% FNs for the sec-
ond one.

In Figure 4, the initial positions in the training set for the
drop-off and pickup operations are presented with their
respective labels and the NN results inside the proposed
workspace. Each subfigure denotes a different avoidance

Verified (NN Output: Safe; Plant: Safe)

Not Verified (NN Output: Safe; Plant: Unsafe)

Verified (NN Output: Unsafe)
Unknown (NN Output: Safe; Plant: ?)

1

0.5

0

–0.5

–1

y
(m

)

0 1 2 3
x (m)

x (m)
(a)

(b)

0

–0.5

y
(m

)

0 0.2 0.4 0.6 0.8 1

Verisig Test Area
0.5

Figure 5. (a) The pickup task with avoid distance ra = 0.45 m in Figure 4(c). (b) The initial set was divided into small subsets and
verified. No unsafe sets were obtained.

1

0.5

0

–0.5

–1

y
(m

)

0 1 2
x (m)

3 4

1

0.5

0

–0.5

–1

0 1 2
x (m)

3 4

1

0.5

0

–0.5

–1

y
(m

)

0 1 2
x (m)

(a) (b) (c)

(d) (e) (f)

ra = 0.45 m ra = 0.7 m ra = 0.7 m

ra = 0.3 m ra = 0.3 m ra = 0.45 m

3 4
y

(m
)

1

0.5

0

–0.5

–1

0 1 2
x (m)

3 4

y
(m

)

1

0.5

0

0.5

0

y
(m

)

0.5 1 1.5
x (m)

2 2.5

y
(m

)

1

0.5

0

–0.5

–1

0 1 2
x (m)

3 4

Safe Labels Unsafe Labels NN Safe Labels NN Unsafe Labels Obstacles PositionsDrop-Off Position

Figure 4. Safety maps for the initial and final positions in training sets with different avoidance distances. The (a) drop-off task and
(b) pickup mission for ra = 0.3 m. The (c) drop-off task and (d) pickup mission for ra = 0.45 m. The (e) drop-off task and (f) pickup
mission for ra = 0.7 m.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

109JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

distance marked on top of the figure.
Due to space constraints, we show
examples of data for only three avoid-
ance distance values: .r 0 3 m,a =

. ,r 0 45 ma = and .r 0 7 m.a = Arrows
inside the workspace indicate the
direction of motion of the vehicle.
Inside each subfigure, the green (red)
dots represent initial positions from
which the trajectories to the goal are
labeled safe (unsafe) using reachabil-
ity analysis. The green (red) circles
around the dots denote the deci-
sions of the NN on the same training
points. As can be noticed and as
expected, when the avoidance dis-
tance increases, the number of safe
initial positions also increases in
both missions because the distance
between the desired trajectories and
the obstacles becomes larger. There-
fore, increasing the avoidance dis-
tance improves safety; however, the
routes become longer, which generally
is not desirable due to energy concerns.

Verification Results
Verification was performed with
the methods in the “Verification” sec-
tion. Here, we present the results for
the second drop-off task shown
in Figure 4, namely, the case in
which the UAV starts in the set

[,],x 0 10 ! [. , .]y 0 5 0 50 ! - and aims
to reach the goal at [4, 0] m, with

.r 0 45a = m and disturbances ,dx
. , .d 0 1 0 1 m/s.y ! -" ,

The verification results are present-
ed in Figure 5. We divided the initial
set into smaller subsets and verified
each one separately to keep the approx-
imation error in Flow* small enough.
The size of these subsets [i.e., the 5-cm
boxes in Figure 5(b)] was chosen after
some preliminary testing; these subsets
were large enough to verify the majori-
ty of the initial set with a small approx-
imation error. Some subsets were
further refined when an instance
resulted in an error that was too large.
Refinements were necessary at the
NN’s decision boundary as well as for
sets that triggered multiple if-cases in
the planner (e.g., when planning
around multiple obstacles). The verifi-
cation was performed using Amazon

Safe Labels
Unsafe Labels
NN Safe Labels
NN Unsafe Labels
Obstacles
Drop-Off Position

1

0

–1

y
(m

)

–2 0
x (m)

2

(a)

ra = 0.4 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(f)

ra = 0.4 m

1

0

–1
y

(m
)

–2 0
x (m)

2

(b)

ra = 0.5 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(g)

ra = 0.5 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(c)

ra = 0.6 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(h)

ra = 0.6 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(d)

ra = 0.7 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(i)

ra = 0.7 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(e)

ra = 0.8 m

1

0

–1

y
(m

)

–2 0
x (m)

2

(j)

ra = 0.8 m

Figure 6. The safe and unsafe training and NN results for the pickup and drop-off tasks
in the area where experiments were performed. An FP (red dot inside a green circle)
corresponds to an unsafe label (red dot) with a safe NN decision (green circle), while
an FN (green dot inside a red circle) is a safe label (green dot) marked as unsafe (red
circle). The number of FPs is zero for both NNs, and there are two and zero FNs for the
first and second NN, respectively. The drop-off tasks where (a) ra = 0.4 m, (b) ra = 0.5
m, (c) ra = 0.6 m, (d) ra = 0.7 m, and (e) ra = 0.8 m. The pickup tasks where (f) ra =
0.4 m, (g) ra = 0.5 m, (h) ra = 0.6 m, (i) ra = 0.7 m, and (j) ra = 0.8 m.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

110 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

Web Services (https://aws.amazon.com). Each subset took
roughly an hour to verify, although some took longer due to
branching introduced by if-cases in the planner.

Figure 5 closely matches the corresponding graph in Fig-
ure 4(c). We confirmed that the NN was, indeed, conservative

so that no unsafe events occurred when its output was safe.
The same procedure can be used for all other cases. Note
that we verified the safety for only the first NN as a proof of
concept; the procedure for the second NN would be exactly
the same.

Desired Trajectory
Actual Path

Obstacles

Waypoints
Goal

2

1

0

–1

–2

–4 0 2 4–2
x (m)

y
(m

)

2

1

0

–1

–2

–4 0 2 4–2
x (m)

y
(m

)

2

1

0

–1

–2

–4 0 2 4–2
x (m)

y
(m

)

2

1

0

–1

–2

–4 0 2 4–2
x (m)

y
(m

)

ra = 0.4: Unsafe
ra = 0.5: Unsafe
ra = 0.6: Safe

ra = 0.4: Unsafe
ra = 0.5: Safe

ra = 0.4: Unsafe
ra = 0.5: Unsafe
ra = 0.6: Safe

ra = 0.4: Unsafe
ra = 0.5: Unsafe
ra = 0.6: Unsafe
ra = 0.7: Safe

WindWind

WindWind

(a) (b)

(c) (d)

Figure 7. The experimental results in which the trained NN was used to make safety decisions and replan accordingly. The desired
versus the actual trajectories are presented in the top row of subfigures, with the relative snapshots from the experiments in the
bottom row. (a) The round 1 pickup task. (b) The round 1 drop-off task. (c) The round 2 pickup task. (d) The round 2 drop-off task.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

111JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Experimental Results
To test our framework, we designed a similar pickup/drop-
off scenario (see Figure 6) in which the quadrotor was tasked
to visit different points in the pickup area and return to the
drop-off location every round while avoiding two obstacles
(Figure 7). Real flights were performed with an AscTec
Hummingbird quadrotor controlled through the Robot
Operating System. A Vicon motion capture system was used
to track the position of the quadrotor and provide ground
truth position information. Two industrial fans blew wind in
the middle of the area, creating a disturbance toward the
obstacles. To generate safe and unsafe labels for the real sce-
nario, 14 positions equidistant from one another in the pick-
up area were considered. For every avoidance distance

. ,r 0 4a ! " 0.5, 0.6, 0.7, .0 8 m,, trajectories were generated
from each starting position to the drop-off goal, and vice-
versa, and safety decisions about these routes were made
using a similar approach explained in the “Reachability Anal-
ysis” section. A trajectory was labeled unsafe if the maximum
deviation from the desired course became larger than the
distance between the obstacle and the desired route at any
point along the path. We trained two NNs, one for each sub-
task. In Figure 6, the safety decisions are shown when the
training set is provided as input to the NN.

During testing, we exploited the trained NN by executing
multiple passes back and forth between different points in
the pickup area through an unknown disturbance, generat-
ed in the middle of the area, that could push the quadrotor
toward the obstacles. Throughout the experiment, the vehi-
cle was tasked to navigate using the smallest avoid dis-
tance .r 0 4 m,a = if possible. As expected, the NN generated
unsafe outputs for some of the points. Consequently, ra was
increased by 0.1-m increments until a safe decision was
returned by the NN before sending the vehicle to the goal.
The computation time for the NN to make a safety decision
was on the order of milliseconds and constant for all trajec-
tories, making it suitable for online replanning operations.
Conversely, the simulation-based reachability used dur-
ing training is not suitable at runtime, as its computation
time increases linearly with the duration of the trajectory.

Figure 7 shows the sequence of snapshots, the decisions of
the NN, and the comparison between the desired and actual
trajectories (upper rows) for two rounds of the operation.

Finally, we ran an experiment in which we generated trajec-
tories with the minimum avoid distance .r 0 4 m,a = using
the wind disturbance from the previous experiment and disre-
garding the decision from the NN. During the first round,
which was predicted to be unsafe with .r 0 4 m,a = the quadro-
tor collided with an obstacle (Figure 8), confirming the unsafe
decision predicted by the NN.

Navigation in Cluttered Environments
The other case study that we demonstrate in this article is a
navigation operation in a cluttered environment, such as a
heavily forested area. A UAV was tasked to reach a goal posi-
tion in an area in which obstacles were scattered in a priori
unknown locations discoverable at runtime as the system
moved toward the final objective. To plan safety-guaranteed
trajectories, we considered a smaller environment with only
one obstacle in the center and trained and verified an NN to
predict the safety of the routes within this smaller region. The
trained and verified primitive space could then be fitted and
composed multiple times at runtime to assess safety in larger
regions with more obstacles.

Throughout a mission, every time the UAV encounters an
obstacle along its path, it selects an intermediate goal point
around the obstruction and queries the trained NN about
the safety of the trajectory to the selected target. If unsafe, a
new intermediate goal is queried until the output of the NN
is safe. This procedure is repeated multiple times for each
obstacle along the path until the vehicle reaches the final tar-
get position.

Offline Training
To train the NN for this operation, we used a small, box-shaped
workspace with one obstacle in the center, as shown in Fig-
ure 9. We picked 44 initial and 44 final positions uniformly
distributed across the start (to the left of the obstacle) and goal
(to the right of the obstacle) regions. The safety of the trajec-
tories generated from those 1,936 start–goal position pairs

2

1

0

–1

–2

y
(m

)

–4 –2 0 2 4
x (m)

Desired Trajectory
Actual Path

Obstacles

Waypoints
Goal

Figure 8. The trajectory followed by the quadrotor for the first pickup task in Figure 7(a), with ra = 0.4 m and marked unsafe, resulting
in a crash.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

112 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

was decided offline using Flow* RA [2]. On average, it took
roughly 5 min for Flow* to make a safety decision for one
start–goal position pair under bounded disturbance condi-
tions , [. , .] ,d d 0 4 0 4 m/sx y ! - reinforcing the fact that RA is
expensive to perform at runtime.

Using this set of initial–final position pairs, an NN was
trained to predict the safety of an untrained pair of initial–
final goals. The NN was composed of four input nodes (the
x-y initial position and x-y goal position pair), one hidden
layer of 40 nodes, and one output, which determined
whether the label was safe or unsafe. The NN performed
with 0% FPs and roughly 0.2% FNs. In Figure 9, we present
examples of labels and NN decisions for trajectories start-
ing from three different initial positions to all of the final
goals in the training set. Similar to the previous case, a
green (red) dot represents a final position in which the tra-
jectory was labeled safe (unsafe) from a given starting
point, and a green (red) circle represents the NN decision
for the same point.

NN Verification
Similar to the previous case study, since the results of an NN
could be erroneous, we use Verisig to verify the safety predic-
tions obtained by the trained NN. As a proof of concept, to
demonstrate the procedures explained in the “Verification”
and “NN Retraining” sections, the results of the NN from a
single initial position to all goal positions in the primitive envi-
ronment are verified. However, the same NN verification and
retraining procedure can be performed for all possible initial
and final regions. The training data for this case are presented
in Figure 9(a), while Figure 10(a) displays the results of the
verification. The gray shaded regions in Figure 10(a) represent
areas where the NN outputs unsafe and where Verisig concurs
without performing the whole verification, since the NN out-
put is already unsafe and thus, in the worst-case scenario, con-
servative. Green regions represent areas where the NN outputs
safe and where Verisig verifies that the plant is safe, too. In the
yellow regions, the NN outputs safe, but Verisig cannot decide
whether the plant is safe or not.

0

–0.5

–1

y
(m

)

0 0.5 1 1.5 2 2.5
x (m)

0

–0.5

–1

y
(m

)

0 0.5 1 1.5 2 2.5
x (m)

(a) (b)

Verified (NN Output: Safe; Plant: Safe)
Verified (NN Output: Unsafe)
Unknown (NN Output: Safe; Plant: ?)
Not Verified (NN Output: Safe; Plant: Unsafe)
Safe Training Points
Unsafe Training Points

Verified (NN Output: Safe; Plant: Safe)
Verified (NN Output: Unsafe)
Safe Training Points
Unsafe Training Points
Unsafe Points Added
After Verification

Figure 10. The NN verification results. (a) The verification of the NN trained with the original data set. (b) The verification of the
retrained NN with the conservative data set.

1

0.5

0

–0.5

–1

y
(m

)

0 1 2

x (m)

1

0.5

0

–0.5

–1

y
(m

)

0 1 2

x (m)

1

0.5

0

–0.5

–1

y
(m

)

0 1 2

x (m)

(a) (b) (c)

Safe Labels
Unsafe Labels
NN Safe Labels
NN Unsafe Labels

Obstacles
Initial Position

Figure 9. The safe and unsafe trained final goals and NN decisions from various initial positions. (a) Initial position [0.0, −0.2] m.
(b) Initial position [0.2, −1.0] m. (c) Initial position [0.4, 0.4] m.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

113JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Since the NN is not completely verified due to the unde-
cided regions, points from these regions are added to the
existing training set, and the NN is retrained as explained in
the “NN Retraining” section. These points are shown by yel-
low dots in Figure 10(b). After retraining with the addition of
these points, the NN performed with 0% FPs and roughly
1.9% FNs, which was expected since the NN was trained to be
more conservative. Figure 10(b) gives the verification results
with the retrained NN, and, as can be noted, the entire goal
region was verified by Verisig.

Simulation Results
In this simulation, the trained NN is used to make decisions
about the safety of a trajectory in the cluttered environ-
ment presented in Figure 11. First, the primitive box space
used for training is superimposed around each obstacle
(the square areas inside Figure 11) in such a way that there
is only one obstacle in each primitive space; otherwise,
the results of the NN may not be reliable due to the differ-
ence from the training conditions.

Once the mission is started, the
quadrotor picks the closest point to the
final goal inside the target region of the
first primitive as an intermediate loca-
tion. The NN makes a decision about
the safety of this intermediate goal
from the current position of the UAV. If
the decision is deemed safe, the UAV
moves to this intermediate position. If
the NN decision is unsafe, it searches
for a safe goal location in the target
region of the current primitive. This
search is performed by randomly que-
rying points in the target area of the
primitive, starting from a closer prox-
imity of the initially selected goal and
radially enlarging the search area if no
safe goals are obtained immediately.
Note that, to deploy such an approach,
the NN must contain at least one safe
point in the goal area of the primitive.
This process continues until the UAV
reaches its final destination.

Figure 11(a) shows the trajectory fol-
lowed by the quadrotor in this environ-
ment. The queried intermediate goal
positions found by the NN to be unsafe
are shown by red dots in the goal regions
in the primitives areas, while the safe
intermediate goals traveled to by the
UAV are shown by cyan dots. Wind dis-
turbance is present throughout the
entire mission, blowing in the north-
east direction, as shown by the orange
arrow inside the figures. The UAV is
able to complete the mission without

any collision. In Figure 11(b), we repeat the same case without
using the NN decisions; here, the UAV moves to the interme-
diate goal positions even if the NN decision is unsafe. As
expected, there are instances where the UAV crashes or gets
very close to the obstacles. These results confirm that NNs
can be used to monitor safety properties of motion planning
operations using the composition of smaller verified regions into
larger, more complex, and untrained environments.

Experimental Results
The same case study was also performed in experi-
ments following a similar setup as the one presented in
the previous example. NN training was done on a
smaller primitive environment with one obstacle by
performing 100 flights with our aerial testbed under a
wind disturbance blowing in the +y direction. An ini-
tial–final position pair was labeled unsafe if the reach-
able sets generated using the approach explained in the
“Simulation-Based Reachability” section collided with

3

2

1

0

–1

–2

–3

y
(m

)

x (m)
(a)

0 2 4 6 8 10 12 14

Wind

3

2

1

0

–1

–2

–3

y
(m

)

x (m)
(b)

0 2 4 6 8 10 12 14

Wind

Initial Position
Final Goal Position
Candidate Goal Positions Intermediate Goal Positions

Actual Path
Desired Trajectory

Obstacles

Figure 11. The navigation simulation in a cluttered environment. (a) The safe replanning
using NN decisions. (b) The planning without using NN decisions.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

114 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

the obstacle. Using these safe-/unsafe-labeled initial–final
position pairs, a conservative NN was trained to make safe-
ty decisions about untrained initial–final position pairs at
runtime. Figure 12 shows the safe and unsafe initial–final
position pairs and corresponding NN decisions, using the
same color coding as the previous cases.

The safe navigation approach was validated in an envi-
ronment with three obstacles and two fans blowing air in
the +y direction, as seen in Figure 13. Obstacles in Figure 13
are represented as circles having a radius equal to the actual
obstacle size plus the size of the UAV. In Figure 13(a), the
intermediate goal positions queried by the NN are shown
using the same color code as the simulation results. The
UAV queried 20 points to avoid the first obstruction until it
found a safe intermediate goal and repeated this operation
until it reached its final destination. Using this NN-based
framework, it takes a few milliseconds to search for a safe
target. The experimental results of the proposed approach
are compared with the ones in which the NN is not utilized
to make safety decisions about intermediate goal positions.
As expected, in Figure 13(b), the UAV fails to complete its
mission safely, as it crashes and gets very close to the other
obstacles. These experiments were executed without the
obstructions, which are overlaid in the figure for reference.

Conclusions
The recent interest in LECs and their rapid introduction in
our society, in particular in autonomous systems technolo-
gies, reveal considerable potential and benefits, especially in
terms of computation overhead and decision-making applica-
tions. However, new challenges have emerged due to the lack
of models and the complete reliance on data that do not pro-
vide the assurance and guarantees necessary for their deploy-
ment in safety-critical operations.

The framework for verification discussed in this arti-
cle moves toward this assurance-driven design of LECs.

However, many challenges remain that need to be ad -
dressed to fully integrate these technologies in safety-
critical operations. In this section, we provide an
overview of these challenges and offer some possible
solutions and directions for future research on assured
runtime monitoring.

Discussion
A first challenge typical of LECs centers around how to
select the appropriate training set. The accuracy of any
machine learning technique depends largely on the type,
amount, and heterogeneity of the data used during the
training phase. A poorly trained NN results in poor per-
formance, leading to unsafe or overconservative behavior
of autonomous systems. Similarly, overfitting can intro-
duce overhead and poor prediction. To deal with these
issues, it is possible to perform sensitivity analysis [18] and
nonconformity analysis [19] on the system prior to train-
ing to better interpret and select data. It is also possible to
leverage knowledge about the system dynamics to perform
verification before the deployment of the LEC, as suggest-
ed in this article.

Verification provides safety guarantees for the outputs
of such LECs; however, it does not provide any robustness
guarantees against changes between training and testing
conditions. Currently, state-of-the-art verification tech-
niques, beyond machine learning applications [20], require
knowledge about system model and bounded conditions.
However, no guarantees can be provided if, for example,
the disturbance acting on a system is above or below the
bounds for which training was performed. This challenge
becomes even more evident when dealing with real sys-
tems. In fact, typically (including in our setup in this arti-
cle), verification considers a specific model that may and
will change from the actual model of a real system. Even
precise system-identification techniques are not able to

Figure 12. The safe and unsafe final positions and NN results from different initial locations in the experimental setting. The NN here
is composed of four input nodes (an x-y initial position and x-y final position pair), one hidden layer of 40 nodes, and one output for
the safety decision. The NN performed with 0% FPs and roughly 16% FNs.

1

0

–1

y
(m

)

1

0

–1–1

–1 0 1
x (m)

–1 0 1

1

0

–1

–1 0 1

x (m)

1

0

–1

–1 0 1

1

0

–1

–1 0 1

x (m)

1

0

–1

–1 0 1

1

0

–1

–1 0 1

x (m)

1

0

–1

–1 0 1

1

0

–1

–1 0 1

x (m)

Safe Final Position
Unsafe Final Position
Safe NN Decision
Unsafe NN Decision
Initial Position
Obstacle

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

115JUNE 2020 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

provide fully accurate models and often rely on specific
operating conditions.

One way to provide verification for systems with model
uncertainties is to consider a conservative abstracted model
and verify that the real system is equivalent to or safer than
this abstraction. Building on the intuition in [21], if the sys-
tem performance and behavior are verified to be closer to the
desired behavior than the abstraction, verifying the abstrac-
tion also verifies the real system. Note that, since these con-
servative abstractions capture the worst-case behavior of the
system, failing to verify the abstraction may lead to the belief
that the actual system is not safe, which may not necessarily
be true but safe.

Training and verification operations require heavy com-
putation time; although this is a minor problem since these
operations occur offline, it is still a concern, especially
when dealing with high-order dynamical models and large
unknowns in the system. Several services, such as Amazon
Web Services (used in this article), Microsoft Azure
(https://azure.microsoft.com), and Google Cloud Platform
(https://cloud.google.com), are available and projected to
become faster and more accessible in the future.

Lastly, we note that, similar to the approach presented in
the second case study in this article, although verification is
done for a static model, the approach that we presented could
be generalized to other settings where verifying a subset of the
state space can be sufficient for use compositionally to check
safety properties about larger spaces.

Future Work
The framework proposed in this article enables fast and
assured predictive and proactive monitoring of autonomous
systems operations in cluttered and uncertain environments
at runtime. NNs are leveraged to make decisions about the
safety of planned trajectories at runtime and perform replan-
ning accordingly. RA is used during the training phase and
for verification purposes, bypassing its usage at runtime. In
this way, most of the computation burden is limited to offline
operations, leaving the fast decision-making and replanning
tasks for the online application.

The applicability of the proposed framework was demon-
strated in two case studies, and the designed NNs were veri-
fied using our recent Verisig tool to produce decisions that
never lead to unsafe states. Safety was the main concern in
this article. Possible future directions include adding energy
constraints while designing safe operations, developing robust
NNs to deal with changes in environments, and, as discussed
in the previous section, diving deeper into the problem of ver-
ifying real systems.

Acknowledgment
This material is based upon work supported by the Air Force
Research Laboratory (AFRL) and the Defense Advanced
Research Projects Agency (DARPA) under the Assured
Autonomy program, Contract FA8750-18-C-0090. Any opin-
ions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not

2

1

0

–1

–2
–4 0 2 4–2

x (m)

y
(m

)

2

1

0

–1

–2
–4 0 2 4–2

x (m)

y
(m

)

WindWind Wind Wind

(a) (b)

Initial Position
Final Position
Actual Path
Desired Path

Obstacles
Intermediate Goal Positions

Safe
Safe

Safe

Safe
SafeUnsafe

WindWindWind Wind

Initial Position
Final Position
Actual Path
Desired Path
Candidate Goal Positions

Obstacles
Intermediate Goal Positions

Figure 13. (a) The experimental results of the navigation of the quadrotor using the trained NN to make safety decisions and replan.
(b) The unsafe navigation in which NN decisions were disregarded. The lower row shows the experiments relative to the upper row.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

116 • IEEE ROBOTICS & AUTOMATION MAGAZINE • JUNE 2020

necessarily reflect the views of AFRL, DARPA, the Depart-
ment of Defense, or the U.S. Government.

References
[1] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in Proc. IEEE 56th
Annu. Conf. Decision and Control (CDC), Dec. 2017, pp. 2242–2253. doi:
10.1109/CDC.2017.8263977.
[2] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyz-
er for non-linear hybrid systems,” in Computer Aided Verification, N.
Sharygina and H. Veith, Eds. Berlin: Springer-Verlag, 2013, pp. 258–263.
[3] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-Reachability
analysis for hybrid systems,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, C. Baier and C. Tinelli, Eds. Berlin: Spring-
er-Verlag, 2015, pp. 200–205.
[4] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: Veri-
fying safety properties of hybrid systems with neural network control-
lers,” Proc. 22nd Int. Conf. Hybrid Systems: Computation and Control,
2019, pp. 169–178. doi: 10.1145/3302504.3311806.
[5] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid prob-
lems with time-varying dynamics, targets and constraints,” in Proc.
ACM 18th Int. Conf. Hybrid Systems: Computation and Control, 2015,
pp. 11–20. doi: 10.1145/2728606.2728612.
[6] V. R. Royo, D. Fridovich-Keil, S. L. Herbert, and C. J. Tomlin, Classi-
fication-based approximate reachability with guarantees applied to
safe trajectory tracking. 2018. [Online]. Available: http://arxiv.org/
abs/1803.03237
[7] M. Chen, S. Herbert, and C. J. Tomlin, “Exact and efficient Hamil-
ton-Jacobi guaranteed safety analysis via system decomposition,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), May 2017,
pp. 87–92. doi: 10.1109/ICRA.2017.7989015.
[8] B. Djeridane and J. Lygeros, “Neural approximation of PDE solu-
tions: An application to reachability computations,” in Proc. 45th IEEE
Conf. Decision and Control, Dec. 2006, pp. 3034–3039. doi: 10.1109/
CDC.2006.377184.
[9] S. Singh, A. Majumdar, J. J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), May 2017,
pp. 5883–5890. doi: 10.1109/ICRA.2017.7989693.
[10] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” Int. J. Robot. Res., vol. 36, no. 8, pp. 947–982,
2017. doi: 10.1177/0278364917712421.
[11] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“Fastrack: A modular framework for fast and guaranteed safe motion
planning,” in Proc. 2017 IEEE 56th Annu. Conf. Decision and Control
(CDC), Dec, 2017, pp. 1517–1522.
[12] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasude-
van, Bridging the gap between safety and real-time performance in
receding-horizon trajectory design for mobile robots. 2018. [Online].
Available: arXiv:1809.06746.
[13] E. Yel, T. X. Lin, and N. Bezzo, “Self-triggered adaptive planning
and scheduling of UAV operations,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), Brisbane, Australia, May 21–25, 2018, pp. 7518–
7524. doi: 10.1109/ICRA.2018.8463205.
[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The
GRASP multiple micro-UAV testbed,” IEEE Robot. Autom. Mag.,

vol. 17, no. 3, pp. 56 –65, Sept . 2010. doi: 10.1109/MR A.2010.
937855.
[15] E. van Doorn, B. Dhruva, K. R. Sreenivasan, and V. Cassella, “Statis-
tics of wind direction and its increments,” Phys. Fluids, vol. 12, no. 6,
pp. 1529–1534, 2000. doi: 10.1063/1.870401.
[16] R. T. Palomaki, N. T. Rose, M. van den Bossche, T. J. Sherman, and
S. F. De Wekker, “Wind estimation in the lower atmosphere using mul-
tirotor aircraft,” J. Atmos. Ocean. Technol., vol. 34, no. 5, pp. 1183–1191,
2017. doi: 10.1175/JTECH-D-16-0177.1.
[17] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proc. IEEE Int. Conf. Robotics and Auto-
mation, May 2011, pp. 2520–2525. doi: 10.1109/ICRA.2011.5980409.
[18] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpret-
ing and understanding deep neural networks,” Digit. Signal Process.,
vol. 73, pp. 1–15, Feb. 2018. doi: 10.1016/j.dsp.2017.10.011.
[19] H. Papadopoulos, V. Vovk, and A. Gammerman, “Regression confor-
mal prediction with nearest neighbours,” J. Artif. Intell. Res., vol. 40, pp. 815–
840, Jan. 2011.
[20] W. Xiang et al., Verification for machine learning, autonomy, and
neural networks survey. 2018. [Online]. Available: arXiv:1810.01989
[21] A. Girard and G. J. Pappas, “Approximate bisimulation relations for
constrained linear systems,” Automatica, vol. 43, no. 8, pp. 1307–1317,
2007. doi: 10.1016/j.automatica.2007.01.019.

Esen Yel, Department of Engineering Systems and Environ-
ment, University of Virginia, Charlottesville. Email: esenyel@
virginia.edu.

Taylor J. Carpenter, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia. Email:
carptj@seas.upenn.edu.

Carmelo Di Franco, Departments of Engineering Systems and
Environment and Electrical and Computer Engineering, Uni-
versity of Virginia, Charlottesville. Email: cd8gm@virginia.edu.

Radoslav Ivanov, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia. Email: riva
nov@seas.upenn.edu.

Yiannis Kantaros, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia. Email:
kantaros@seas.upenn.edu.

Insup Lee, Department of Computer and Information Science,
University of Pennsylvania, Philadelphia. Email: lee@seas
.upenn.edu.

James Weimer, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia. Email:
weimerj@seas.upenn.edu.

Nicola Bezzo, Departments of Engineering Systems and Envi-
ronment and Electrical and Computer Engineering, Universi-
ty of Virginia, Charlottesville. Email: nbezzo@virginia.edu.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore. Restrictions apply.

