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utonomous systems operating in uncertain envi -
ronments under the effects of disturbances and 
noises can reach unsafe states even while using fine-
tuned controllers and precise sensors and actuators. 
To provide safety guarantees on such systems 

during motion planning operations, reachability analysis (RA) 
has been demonstrated to be a powerful tool. RA, however, suf -
fers from computational complexity, especially when dealing 
with intricate systems characterized by high-order dynamics, 
making it hard to deploy for run  time monitoring.

To deal with this issue, in this article, a neural network 
(NN)-based framework is proposed to perform fast online 
monitoring for safety, and an approach for the verification 
of NNs is presented. Training is performed offline using 
precise RA tools, while the trained NN is harnessed online 
as a fast safety checker for motion planning. In this way, at 
runtime, a planned trajectory can be quickly predicted to 
be safe or unsafe. When unsafe, a replanning procedure is 
triggered until a safe trajectory is obtained. The results of 
the trained network are tested for verification using our 
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recent tool Verisig, in which the NN is transformed into a 
hybrid system to provide guarantees before deployment. In 
the case of unverified NNs, the outputs of the verification 
are used to retrain the network until verification is 
achieved. Two illustrative case studies on a quadrotor 
unmanned aerial vehicle (UAV) (a pickup/drop-off opera-
tion and navigation in a cluttered environment) are pre-
sented to validate the proposed framework in simulations 
and experiments.

Safety Predictions
As autonomous vehicles find their way into our society, it 
becomes critical to guarantee safety against unpredictable 
uncertainties and disturbances during their operations at 
runtime. In fact, while model-driven motion planning 
and control techniques can be robust against noises and 
disturbances, they cannot prevent deviations from the 
desired behavior during system operation, potentially 
leading to unsafe states (e.g., crashing into an obstacle in 
the environment due to excessive wind disturbance). To 
assure safety during autonomous operations, it is neces-
sary to take the effect of noises and disturbances into 
account during planning. Traditional RA tools, such as 
Hamilton–Jacobi reachability [1], and hybrid system RA 
techniques [2], [3] have proved to be very effective in pro-
viding safety guarantees by leveraging knowledge about 
the model of the system. However, their computational 
complexity makes them difficult to use at runtime, which 
is the subject of this article.

On the other hand, contrary to traditional RA tools, 
recent developments in machine learning have considerable 
potential to enable fast RA thanks to their efficiency and 
accuracy. Unfortunately, since the performance of such 
learning enabled components (LECs) depends significantly  
on the properties of the training data, it is challenging to 
provide guarantees in safety-critical operations. To deal 
with these challenges, this article presents a framework to 
verify LECs for fast, safe monitoring and planning of 
autonomous operations.

An NN trained to predict whether an operation will be 
safe or unsafe is verified if its output decision (safe or unsafe) 
always concurs with the results obtained by running the oper-
ation under the worst case conditions in which it was trained. 
Since it is unlikely that an NN with this strong property 
exists, in this article, we define one that is conservatively veri-
fied; in short, it is verified if, at the least, its safe decision out-
put always concurs with the result obtained by running the 
actual operation. In other words, if the NN output is safe, the 
system can never reach an unsafe state; however, the NN is 
allowed to output unsafe when the system will be safe, since 
this is a conservative decision. This definition also holds in 
the extreme case that an NN outputs only unsafe decisions, 
in which a vehicle will be always safe, although it will not be 
able to move anywhere.

In the proposed scheme, an NN is trained to recognize 
safe and unsafe trajectories for an autonomous vehicle in an 

obstacle-populated environment. Specifically, training is 
performed, creating a library of trajectories and computing 
their reachable sets to make safety decisions; hence, the 
computational burden is limited to the offline stage. A tra-
jectory is labeled safe if its reachable sets do not overlap 
with any obstacle in the environment; otherwise, it is 
marked unsafe.

Verification of the obtained NN is achieved using our 
recent technique Verisig [4], in which the NN is transformed 
into a hybrid system and the verification problem is cast as a 
hybrid system reachability problem. If the NN is not verified, 
meaning that it is not safe to be used, the output of the verifi-
cation is employed as feedback to retrain the NN more con-
servatively until it is verified. Once the NN is verified, it is 
used at runtime as a safety checker for the planned trajecto-
ries from an untrained initial state under the effect of 
unknown online disturbances. If unsafe, a new trajectory is 
planned and tested until a safety-guaranteed course is 
obtained, if possible.

Contributions of the article include the following: with the 
proposed framework, we 1) develop a fast safety checking and 
replanning approach for autonomous vehicles’ operations in 
cluttered environments under unknown runtime disturbanc-
es and 2) leverage a novel NN verification tool, Verisig, to ver-
ify and retrain the used NN as a fast safety monitor, before 
its deployment.

As a result, with this framework, it is possible to eliminate 
the need for computationally expensive RA tools for plan-
ning safe trajectories at runtime, and our verification 
method, Verisig, is capable of assessing the validity of the 
proposed NN. To better illustrate our proposed framework, 
two case studies on a quadrotor UAV are presented with sim-
ulations and experiments under the presence of unknown 
disturbances during runtime: 1) a pickup/drop-off mission 
and 2) safe navigation in a cluttered environment. 

Verified Safe Motion Planning
Our verified safe motion planning framework consists of 
offline and online stages, as depicted in Figure 1. During the 
offline phase, a library of trajectories is generated. We 
parametrize the trajectory generation based on the initial 
state of the UAV, the desired goal position, the location of 
the obstacles on the way to the goal site, and the distance 
that must be maintained from these obstacles. These trajec-
tory parameters are labeled safe or unsafe using RA, and an 
NN is trained with this set of parameters. To be able to use 
the NN in autonomous operations, it should be guaranteed 
that the trained network never outputs safe when the trajec-
tory is actually unsafe. To provide this guarantee, we verify 
the trained NN using our recent tool Verisig, as outlined in 
the “Verification” section. In case the NN is not verified, the 
Verisig output is utilized to retrain the NN more conserva-
tively (i.e., it outputs more unsafe decisions) until it is veri-
fied. Once the NN is verified, it is used to make decisions 
about the safety of a new set of trajectory parameters at run-
time. If the NN decides that the trajectory is safe, the UAV 
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executes the course. If the decision is unsafe, the trajecto-
ry is replanned by changing the parameters until a safe 
choice is obtained.

Reachability Analysis
As mentioned previously, RA is a very powerful method for 
computing the sets that a system could reach starting 
from an initial set. A hybrid system RA tool, Flow* [2], 
uses Taylor models to compute flowpipe overapproxima-
tions of the dynamics, while dReach [3] encodes the 
reachability problem as first-order formulas across real 
numbers and solves the problem using -d decision proce-
dures. Hamilton–Jacobi RA is also a widely used approach 
to provide guarantees for the safety of safety-critical sys-
tems’ optimal system trajectories [5]. It performs well in 
terms of the generality of system dynamics, flexibility in 
the representation of sets, and control policy computa-
tion; however, it suffers from computational scalability 
[6]. A significant effort has been made to overcome the 
scalability problem for high-dimensional systems, such as 
decomposing the system dynamics [7] and using NNs to 
approximate the reachable sets [6], [8]. Other types of 
reachable sets, such as robust control invariant tubes [9], 
have also been proposed for safety-guaranteed UAV plan-
ning. All these traditional RA tools are very effective in 
providing safety assurances, although their computational 
complexity makes them difficult to use in making runtime 
safety decisions.

In the literature, there have been some efforts to make 
RA more usable for runtime applications. For example, in 
[10], the authors precomputed a library of trajectories and 
funnels (analogous to reachable sets) offline and combined 
these trajectories online to navigate in a priori unknown 
environments under disturbance effects. However, with 
this approach, the system is restricted to a discrete set of 
motion primitives. In [11], using Hamilton–Jacobi reach-
ability, a lookup table is computed offline to find the 
bounds on the planned trajectory that are used to augment 
the obstacles to guarantee collision-free behavior under 
bounded disturbances in unknown environments. Similar-
ly, in [12], forward reachable sets are computed offline for 
parameterized trajectories, and at runtime, safe trajectory 
parameters are picked to avoid the sensed obstacles in 
unknown environments with model uncertainties. Differ-
ent from these works, our framework solves this problem 
of safe navigation in known and unknown environments 
under the presence of external disturbances by using veri-
fied NNs to perform safety decisions at runtime, leaving 
the RA computation offline. Our framework is also general 
and modular, meaning that any type of control and plan-
ning method can be considered. It is also independent 
from the choice of reachability analysis tool. Specifically, 
during the offline stage, reachable sets are generated for a 
given trajectory, and if they do not intersect with obsta-
cles, the corresponding trajectory parameters are labeled 
as safe:
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where px  is the desired positions along the trajectory ,x  
( , )R p tx  is the corresponding reachable set, sx  is the safety 

label, p ,o j  is the jth obstacle position, and No  is the number of 
obstacles in the environment. An NN is trained using these 
safety-labeled parameters to make decisions for trajectories 
with different conditions.

NN Training for Safety Decisions
Following the diagram in Figure 1, after collecting a rich library 
of labeled trajectory parameters, we train an NN to provide 
safety decisions without having to run computationally expen-
sive RA operations at runtime. The inputs to the NN are the 
trajectory parameters, which are the initial and final positions 
of the system, and the obstacle-avoidance distance. The output 
of the NN is a binary safe/unsafe decision. Since these conclu-
sions are used by a safety-critical system, it is required that the 
NN never outputs a decision of safe if the trajectory is unsafe, as 
it can lead to dangerous outcomes (e.g., colliding with an obsta-
cle). Therefore, we are interested in training an NN with zero 
false positives (FPs). The drawback of reducing the number of 
FPs is that the number of false negatives (FNs) (safe trajectories 
marked unsafe) may increase. Even a conservatively trained 
NN can output a safe decision for a set of untrained, unsafe tra-
jectory parameters. Therefore, the absence of such FPs needs to 
be verified prior to its deployment.

Verification
In this article, we use Verisig to verify that the trained NN 
does not output safe if the robot plans an unsafe trajectory. 
As described in our prior work [4], Verisig was developed to 
verify safety properties of closed-loop systems with NN com-
ponents. Verisig focuses specifically on sigmoid-based NNs 

and works by transforming the NN into an equivalent hybrid 
system. The NN’s hybrid system is then composed with the 
plant, resulting in a new hybrid system that describes the 
entire closed-loop system, as depicted in Figure 1. This 
enables us to cast the verification problem as a hybrid system 
reachability problem, which is solved by an optimized hybrid 
system verification tool, such as Flow* [2]. Specifically, Veri-
sig transforms the NN S into a hybrid system HS  by noting 
that the sigmoid derivative can be expressed in terms of the 
sigmoid itself, i.e.,

( ) ( ) ( ( )),x x x1v v v= -l

where ( ) / ( ( ))expx x1 1v = + -  is the sigmoid. With this 
observation in mind, we introduce a proxy function 

( , ) ( )t x xtpv v=  such that ( , ) ( )x x1pv v=  and

( ) ( , ) ( ( , ))x x t x t x1.
p p pv v v= -

using the chain rule. In other words, pv  can be considered as 
a state in a dynamical system that starts at ( , ) .x0 0 5pv =  and 
is equal to ( )xv  at time 1. Thus, each neuron in the NN can 
be mapped to a state in a hybrid system, and each layer can be 
mapped to a mode. Transitions between modes occur when 

.t 1=  Note that this time is local to the NN; global time does 
not progress during the NN’s execution.

Although Verisig was originally applied to closed-loop sys-
tems with NN controllers, it applies to the setup considered in 
this article, as well. In particular, in the verification problem, 
the NN’s hybrid system does not interact with the plant 
directly; rather, for a given set of initial conditions, we com-
pute the reachable set for the NN’s output and check whether 
it is possible for the robot to crash (when started from that 
initial set) while the NN outputs safe.

The composed hybrid system H H Hq S<=  is shown in 
Figure 2, where Hq  is the hybrid system describing the robot’s 
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Figure 2. The composed hybrid system considered for verifying NNs for runtime monitoring. The plant dynamics evolve as a function 
of the state, input, and disturbance  

.
x = f(x, u, d ). A controller is designed to follow the desired trajectory xx by generating a control 

input with sampling time ts, u = g(x, xx). The goal is to verify that the plant (Unsafe) mode is never reached during the duration T of 
the mission, i.e., that the NN never outputs safe when the plant is unsafe.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 29,2021 at 23:42:33 UTC from IEEE Xplore.  Restrictions apply. 



106 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  JUNE 2020

dynamics. H contains the union of modes and states of Hq  
and .HS  H starts in the initial mode of HS  and adds a transi-
tion from the last mode of HS  to the initial mode of ,Hq  
at which point the Hq  execution begins. The goal is to 
verify that H does not enter the plant (Unsafe) mode when 

( )xS afe.S0 =
Given a hybrid system description of the closed-loop 

system, one could use a tool such as Flow* to verify the 
system’s safety. Note that, since hybrid system verifica-
tion is undecidable in general, the typical approach used 
in these tools is to overapproximate the reachable sets. If 
the overapproximation does not contain any unsafe 
states, the system is safe. If the overapproximation con-
tains safe and unsafe states, the outcome is unknown, 
since the unsafe states could be spurious; i.e., they do 
not exist in the true reachable set but only in the overap-
proximated one. Finally, if all states are unsafe, the sys-
tem is unsafe. Various shapes have been explored to 
overapproximate the reachable sets, including polytopes, 
ellipsoids, and hyperrectangles. Flow* uses a Taylor 
model approximation, which is a Taylor series approxi-
mation with worst case error bounds. Taylor models 
scale well when used with interval analysis and are 
shown to have a low approximation error for a large 
class of nonlinear systems [2].

NN Retraining
At the end of the verification, Verisig specifies the 
regions in which 1) the NN is safe to be used (i.e., the 
plant is not unsafe when the NN output is safe), 2) the 
NN is not safe to be used (i.e., the plant is unsafe when 
the NN output is safe), and 3) the system is not able to 
make a decision due to the approximation errors 
introduced in the hybrid system RA during verifica-
tion (i.e., the NN output is “unknown”). In case there 
are regions in which the NN is not safe to be used or 
Verisig cannot decide, the NN needs to be retrained. 
The output of Verisig can be leveraged to retrain the 
NN in several ways. One is to collect more data around 
those regions where Verisig is not able to make a deci-
sion, followed by NN retraining. An increased density 
of data around previously untrained regions may help 
with the verification.

However, how much data needs to be collected in 
those regions is not known a priori and is hard to predict, 
so the process could require multiple iterations of data 
collection and retraining. In addition, collecting new data 
to improve the training set may not always be possible. 
Instead, we propose adding points from the unsafe/
unknown regions obtained from the Verisig output to 
the existing training set, marking them with unsafe labels, 
and finally retraining the NN. By retraining the NN 
with more unsafe points, a more conservative version is 
obtained in which unsafe regions are inflated, helping 
with the verification process. This retraining process is 
repeated until the NN is verified.

Case Studies
As a proof of concept, our verified safe monitoring and 
planning approach is applied to two case studies of quadro-
tor motion planning: 1) a pickup/drop-off mission and 2) a 
navigation operation in a cluttered environment. Both case 
studies use similar NNs to predict whether the vehicle tra-
jectory will be safe or unsafe (and thus require offline train-
ing and verification). At runtime, the verified NN is used 
for different purposes. The pickup/drop-off task requires 
the UAV to go from one side of a static environment to the 
other, resembling operations that could happen inside a 
warehouse or factory. The UAV makes decisions about the 
safety of the planned trajectory based on the NN results 
and replans by adjusting the obstacle-avoidance distance 
until it finds a longer but safe course to its goal position. In 
the latter case study, the UAV is tasked with navigating a 
previously unknown cluttered area. Training is executed in 
a smaller environment with only one obstacle, acting as a 
primitive scenario that can appear and be composed multi-
ple times at runtime. Training in a primitive environment 
enables the NN and verification to be generalized to differ-
ent settings with the same type of obstacles located in pre-
viously unknown positions. Replanning here is executed by 
querying different waypoints along the path to the goal 
until the NN outputs a safe decision. In both case studies, 
we use the same vehicle, controller, planner, and distur-
bances, whose models are briefly summarized in the fol-
lowing section.

System Models

Quadrotor UAV and Controller Model
A quadrotor can be modeled using the following simplified 
sixth-order state vector ,x x y z v v vx y z= R6 @  where x, y, 
and z are the world frame positions and vx, vy, and vz are the 
world frame velocities. The quadrotor dynamics can be 
defined as ( , , ),x x u df.

=  where u F z i= R6 @  is the input 
vector with thrust, roll, and pitch commands and 
d d d dx y z= R6 @  is the external disturbance vector. The 
dynamics can be described as

,
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where m is the mass of the quadrotor, g is gravity, and kd  is 
the drag coefficient. It should be noted that, in this article, a 
simplified quadrotor UAV model is used to alleviate the 
verification problem. Validating a high-fidelity model [13] 
is left for future work. To generate the necessary roll, pitch, 
and thrust inputs to follow the desired trajectory, a cascad-
ed set of PID controllers is used [14].
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Disturbance Model
The external disturbance considered in this article is bounded 
in magnitude: ,d Dmax< < #  ,d D6 !  where Dmax  is the 
upper bound to the disturbance magnitude and D  is the set 
of all possible disturbances. Here, we assume that the online 
disturbance is unknown but constant through time. This is a 
reasonable assumption, as wind disturbance generally follows 
a Brownian motion and does not change erratically during 
short periods of time [15], [16].

Trajectory Planning
Obstacle-avoidance trajectories are computed using a simple 
geometric approach. Specifically, if an obstruction is present 
along the way to the goal position, a waypoint is added to the 
path at a specified avoidance distance ra  away from the obsta-
cle center. A course is finally generated to visit all waypoints 
on the path by using a minimum jerk trajectory generation 
[17]. It should be noted that we use this path-planning meth-
od due to its simplicity in implementation in simulations and 
experiments; however, the overall proposed framework is 
independent from the choice of path-planning approach.

Pickup/Drop-Off Task
The first case study that we present in this article is a pick-
up/drop-off task, an operation that is commonly used in 
factory applications where a vehicle moves back and forth 
between a warehouse and a workstation. The environment 
has a designated pickup area (warehouse) and drop-off posi-
tion (workstation), with obstacles at known locations in 
between. The vehicle is tasked to move from a point inside 
the pickup area to the drop-off location. Once it reaches the 
drop-off site, it can move back to a new point in the pickup 
area. To complete its mission safely, the UAV needs to 
decide whether the planned trajectory, parametrized by the 
initial position ,p0  final goal ,p g  and avoidance distance ,ra  
is safe and if not, replanning is required. In this case, replan-
ning is executed by adapting .ra

To train an NN to make safety decisions in this scenario, 
two sets of trajectories with different avoidance distances are 
generated and labeled using RA: one set links a rich set of ini-
tial positions in the pickup area to the 
drop-off position, and the other con-
nects the drop-off position to a rich set 
of final positions in the pickup area. 
The NN queries the initial and final 
positions and the avoidance distances; 
if they are unsafe, it checks a larger 
avoidance distance until it outputs a 
safe decision.

Simulation-Based Reachability
In this case study, we use a simulation-
based RA. During the offline stage, 
we run each training trajectory un -
der the worst-case scenario which, in 
our example, is the largest possible 

disturbance attainable in the environment. Under this condi-
tion, for a given trajectory ,px  the maximum deviation dm  is 
calculated as follows:

 ( ) ( ) ,max max min p pd tdm
[ , ] [ , ]d t T T0 0D

< <p= - x
! ! !p

 (2)

where pd  is the position of the vehicle under disturbance .d  
Here, dm  is used as an upper bound for the actual deviation 
from the trajectory, and it is conservative since it is the maxi-
mum deviation measured through the entire trajectory. The 
position-reachable sets are then generated as follows:

 ( , ) ( ) : ( ) ( ) .R p p p pt t t t dm< < #= -x x" ,  (3)

After generating the reachable sets, the trajectory is labeled 
safe or unsafe according to (1). In Figure 3, we show the 
reachable sets of two sample trajectories.

Offline Training
The environment has a designated rectangular pickup area 
that is limited between [0.0, 1.3] m in the x-axis and [−1.0, 
1.0]  m in the y-axis. The drop-off point is located at 

[ . , . ] .p 4 0 0 0 mg =  There are two obstacles between the pickup 
area and drop-off location, positioned at [ . , . ]p 2 0 0 1 mo1 =  
and [ . , . ]p 3 0 0 1 m.o2 = -  For training, 294 points are uni-
formly distributed in the pickup area and used as the initial 
and final positions. For trajectory generation, seven different 
avoid distances are considered: . ,r 0 3a ! "  0.35, 0.4, 0.45, 0.5, 
0.6, .0 7 m.,

Two NNs were trained: one for the drop-off operation 
and the other for the pickup task. To implement the NNs, 
we chose Keras (https://keras.io), a deep-learning library 
capable of running on top of Tensorflow (https://tensor-
f low.org) through a set of application programming 
interfaces written in Python. For all layers (input, hid-
den, and output), we use a sigmoid activation function. 
The NN is composed of three input nodes (the x-y initial 
position and avoidance distance pair), one hidden layer 
of 40 nodes, and one output that determines whether the 
label is safe or unsafe. We trained two different NNs, one 
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for each subtask (drop-off and pickup). The training 
results showed 0% FPs and roughly 5.2% FNs for the first 
NN and 0% FPs and approximately 1.2% FNs for the sec-
ond one.

In Figure 4, the initial positions in the training set for the 
drop-off and pickup operations are presented with their 
respective labels and the NN results inside the proposed 
workspace. Each subfigure denotes a different avoidance 
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distance marked on top of the figure. 
Due to space constraints, we show 
examples of data for only three avoid-
ance distance values: .r 0 3 m,a =  

. ,r 0 45 ma =  and .r 0 7 m.a =  Arrows 
inside the workspace indicate the 
direction of motion of the vehicle. 
Inside each subfigure, the green (red) 
dots represent initial positions from 
which the trajectories to the goal are 
labeled safe (unsafe) using reachabil-
ity analysis. The green (red) circles 
around the dots denote the deci-
sions of the NN on the same training 
points. As can be noticed and as 
expected, when the avoidance dis-
tance increases, the number of safe 
initial positions also increases in 
both missions because the distance 
between the desired trajectories and 
the obstacles becomes larger. There-
fore, increasing the avoidance dis-
tance improves safety; however, the 
routes become longer, which generally 
is not desirable due to energy concerns.

Verification Results
Verification was performed with 
the methods in the “Verification” sec-
tion. Here, we present the results for 
the second drop-off task shown 
in  Figure  4, namely, the case in 
which the UAV starts in the set 

[ , ],x 0 10 !  [ . , . ]y 0 5 0 50 ! -  and aims 
to reach the goal at [4, 0] m, with 

.r 0 45a =  m and disturbances ,dx  
. , .d 0 1 0 1 m/s.y ! -" ,

The verification results are present-
ed in Figure 5. We divided the initial 
set into smaller subsets and verified 
each one separately to keep the approx-
imation error in Flow* small enough. 
The size of these subsets [i.e., the 5-cm 
boxes in Figure 5(b)] was chosen after 
some preliminary testing; these subsets 
were large enough to verify the majori-
ty of the initial set with a small approx-
imation error. Some subsets were 
further refined when an instance 
resulted in an error that was too large. 
Refinements were necessary at the 
NN’s decision boundary as well as for 
sets that triggered multiple if-cases in 
the planner (e.g., when planning 
around multiple obstacles). The verifi-
cation was performed using Amazon 
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Web Services (https://aws.amazon.com). Each subset took 
roughly an hour to verify, although some took longer due to 
branching introduced by if-cases in the planner.

Figure 5 closely matches the corresponding graph in Fig-
ure 4(c). We confirmed that the NN was, indeed, conservative 

so that no unsafe events occurred when its output was safe. 
The same procedure can be used for all other cases. Note 
that we verified the safety for only the first NN as a proof of 
concept; the procedure for the second NN would be exactly 
the same.
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Experimental Results
To test our framework, we designed a similar pickup/drop-
off scenario (see Figure 6) in which the quadrotor was tasked 
to visit different points in the pickup area and return to the 
drop-off location every round while avoiding two obstacles 
(Figure 7). Real flights were performed with an AscTec 
Hummingbird quadrotor controlled through the Robot 
Operating System. A Vicon motion capture system was used 
to track the position of the quadrotor and provide ground 
truth position information. Two industrial fans blew wind in 
the middle of the area, creating a disturbance toward the 
obstacles. To generate safe and unsafe labels for the real sce-
nario, 14 positions equidistant from one another in the pick-
up area were considered. For every avoidance distance 

. ,r 0 4a ! "  0.5, 0.6, 0.7, .0 8 m,,  trajectories were generated 
from each starting position to the drop-off goal, and vice-
versa, and safety decisions about these routes were made 
using a similar approach explained in the “Reachability Anal-
ysis” section. A trajectory was labeled unsafe if the maximum 
deviation from the desired course became larger than the 
distance between the obstacle and the desired route at any 
point along the path. We trained two NNs, one for each sub-
task. In Figure 6, the safety decisions are shown when the 
training set is provided as input to the NN.

During testing, we exploited the trained NN by executing 
multiple passes back and forth between different points in 
the pickup area through an unknown disturbance, generat-
ed in the middle of the area, that could push the quadrotor 
toward the obstacles. Throughout the experiment, the vehi-
cle was tasked to navigate using the smallest avoid dis-
tance .r 0 4 m,a =  if possible. As expected, the NN generated 
unsafe outputs for some of the points. Consequently, ra was 
increased by 0.1-m increments until a safe decision was 
returned by the NN before sending the vehicle to the goal. 
The computation time for the NN to make a safety decision 
was on the order of milliseconds and constant for all trajec-
tories, making it suitable for online replanning operations. 
Conversely, the simulation-based reachability used dur-
ing training is not suitable at runtime, as its computation 
time increases linearly with the duration of the trajectory. 

Figure 7 shows the sequence of snapshots, the decisions of 
the NN, and the comparison between the desired and actual 
trajectories (upper rows) for two rounds of the operation.

Finally, we ran an experiment in which we generated trajec-
tories with the minimum avoid distance .r 0 4 m,a =  using 
the wind disturbance from the previous experiment and disre-
garding the decision from the NN. During the first round, 
which was predicted to be unsafe with .r 0 4 m,a =  the quadro-
tor collided with an obstacle (Figure 8), confirming the unsafe 
decision predicted by the NN.

Navigation in Cluttered Environments
The other case study that we demonstrate in this article is a 
navigation operation in a cluttered environment, such as a 
heavily forested area. A UAV was tasked to reach a goal posi-
tion in an area in which obstacles were scattered in a priori 
unknown locations discoverable at runtime as the system 
moved toward the final objective. To plan safety-guaranteed 
trajectories, we considered a smaller environment with only 
one obstacle in the center and trained and verified an NN to 
predict the safety of the routes within this smaller region. The 
trained and verified primitive space could then be fitted and 
composed multiple times at runtime to assess safety in larger 
regions with more obstacles.

Throughout a mission, every time the UAV encounters an 
obstacle along its path, it selects an intermediate goal point 
around the obstruction and queries the trained NN about 
the safety of the trajectory to the selected target. If unsafe, a 
new intermediate goal is queried until the output of the NN 
is safe. This procedure is repeated multiple times for each 
obstacle along the path until the vehicle reaches the final tar-
get position.

Offline Training
To train the NN for this operation, we used a small, box-shaped 
workspace with one obstacle in the center, as shown in Fig-
ure 9. We picked 44 initial and 44 final positions uniformly 
distributed across the start (to the left of the obstacle) and goal 
(to the right of the obstacle) regions. The safety of the trajec-
tories generated from those 1,936 start–goal position pairs 
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was decided offline using Flow* RA [2]. On average, it took 
roughly 5 min for Flow* to make a safety decision for one 
start–goal position pair under bounded disturbance condi-
tions , [ . , . ] ,d d 0 4 0 4 m/sx y ! -  reinforcing the fact that RA is 
expensive to perform at runtime.

Using this set of initial–final position pairs, an NN was 
trained to predict the safety of an untrained pair of initial–
final goals. The NN was composed of four input nodes (the 
x-y initial position and x-y goal position pair), one hidden 
layer of 40 nodes, and one output, which determined 
whether  the label was safe or unsafe. The NN performed 
with 0% FPs and roughly 0.2% FNs. In Figure 9, we present 
examples of labels and NN decisions for trajectories start-
ing from three different initial positions to all of the final 
goals in the training set. Similar to the previous case, a 
green (red) dot represents a final position in which the tra-
jectory was labeled safe (unsafe) from a given starting 
point, and a green (red) circle represents the NN decision 
for the same point.

NN Verification
Similar to the previous case study, since the results of an NN 
could be erroneous, we use Verisig to verify the safety predic-
tions obtained by the trained NN. As a proof of concept, to 
demonstrate the procedures explained in the “Verification” 
and “NN Retraining” sections, the results of the NN from a 
single initial position to all goal positions in the primitive envi-
ronment are verified. However, the same NN verification and 
retraining procedure can be performed for all possible initial 
and final regions. The training data for this case are presented 
in Figure 9(a), while Figure 10(a) displays the results of the 
verification. The gray shaded regions in Figure 10(a) represent 
areas where the NN outputs unsafe and where Verisig concurs 
without performing the whole verification, since the NN out-
put is already unsafe and thus, in the worst-case scenario, con-
servative. Green regions represent areas where the NN outputs 
safe and where Verisig verifies that the plant is safe, too. In the 
yellow regions, the NN outputs safe, but Verisig cannot decide 
whether the plant is safe or not.
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Since the NN is not completely verified due to the unde-
cided regions, points from these regions are added to the 
existing training set, and the NN is retrained as explained in 
the “NN Retraining” section. These points are shown by yel-
low dots in Figure 10(b). After retraining with the addition of 
these points, the NN performed with 0% FPs and roughly 
1.9% FNs, which was expected since the NN was trained to be 
more conservative. Figure 10(b) gives the verification results 
with the retrained NN, and, as can be noted, the entire goal 
region was verified by Verisig.

Simulation Results
In this simulation, the trained NN is used to make decisions 
about the safety of a trajectory in the cluttered environ-
ment presented in Figure 11. First, the primitive box space 
used for training is superimposed around each obstacle 
(the square areas inside Figure 11) in such a way that there 
is only one obstacle in each primitive space; otherwise, 
the results of the NN may not be reliable due to the differ-
ence from the training conditions.

Once the mission is started, the 
quadrotor picks the closest point to the 
final goal inside the target region of the 
first primitive as an intermediate loca-
tion. The NN makes a decision about 
the safety of this intermediate goal 
from the current position of the UAV. If 
the decision is deemed safe, the UAV 
moves to this intermediate position. If 
the NN decision is unsafe, it searches 
for a safe goal location in the target 
region of the current primitive. This 
search is performed by randomly que-
rying points in the target area of the 
primitive, starting from a closer prox-
imity of the initially selected goal and 
radially enlarging the search area if no 
safe goals are obtained immediately. 
Note that, to deploy such an approach, 
the NN must contain at least one safe 
point in the goal area of the primitive. 
This process continues until the UAV 
reaches its final destination.

Figure 11(a) shows the trajectory fol-
lowed by the quadrotor in this environ-
ment. The queried intermediate goal 
positions found by the NN to be unsafe 
are shown by red dots in the goal regions 
in the primitives areas, while the safe 
intermediate goals traveled to by the 
UAV are shown by cyan dots. Wind dis-
turbance is present throughout the 
entire mission, blowing in the north-
east direction, as shown by the orange 
arrow inside the figures. The UAV is 
able to complete the mission without 

any collision. In Figure 11(b), we repeat the same case without 
using the NN decisions; here,  the UAV moves to the interme-
diate goal positions even if the NN decision is unsafe. As 
expected, there are instances where the UAV crashes or gets 
very close to the obstacles. These results confirm that NNs 
can be used to monitor safety properties of motion planning 
operations using the composition of smaller verified regions into 
larger, more complex, and untrained environments.

Experimental Results
The same case study was also performed in experi-
ments following a similar setup as the one presented in 
the previous example. NN training was done on a 
smaller primitive environment with one obstacle by 
performing 100 flights with our aerial testbed under a 
wind disturbance blowing in the +y direction. An ini-
tial–final position pair was labeled unsafe if the reach-
able sets generated using the approach explained in the 
“Simulation-Based Reachability” section collided with 
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the obstacle. Using these safe-/unsafe-labeled initial–final 
position pairs, a conservative NN was trained to make safe-
ty decisions about untrained initial–final position pairs at 
runtime. Figure 12 shows the safe and unsafe initial–final 
position pairs and corresponding NN decisions, using the 
same color coding as the previous cases.

The safe navigation approach was validated in an envi-
ronment with three obstacles and two fans blowing air in 
the +y direction, as seen in Figure 13. Obstacles in Figure 13 
are represented as circles having a radius equal to the actual 
obstacle size plus the size of the UAV. In Figure 13(a), the 
intermediate goal positions queried by the NN are shown 
using the same color code as the simulation results. The 
UAV queried 20 points to avoid the first obstruction until it 
found a safe intermediate goal and repeated this operation 
until it reached its final destination. Using this NN-based 
framework, it takes a few milliseconds to search for a safe 
target. The experimental results of the proposed approach 
are compared with the ones in which the NN is not utilized 
to make safety decisions about intermediate goal positions. 
As expected, in Figure 13(b), the UAV fails to complete its 
mission safely, as it crashes and gets very close to the other 
obstacles. These experiments were executed without the 
obstructions, which are overlaid in the figure for reference.

Conclusions
The recent interest in LECs and their rapid introduction in 
our society, in particular in autonomous systems technolo-
gies, reveal considerable potential and benefits, especially in 
terms of computation overhead and decision-making applica-
tions. However, new challenges have emerged due to the lack 
of models and the complete reliance on data that do not pro-
vide the assurance and guarantees necessary for their deploy-
ment in safety-critical operations.

The framework for verification discussed in this arti-
cle moves toward this assurance-driven design of LECs. 

However, many challenges remain that need to be ad -
dressed to fully integrate these technologies in safety-
critical operations. In this section, we provide an 
overview of these challenges and offer some possible 
solutions and directions for future research on assured 
runtime monitoring.

Discussion
A first challenge typical of LECs centers around how to 
select the appropriate training set. The accuracy of any 
machine learning technique depends largely on the type, 
amount, and heterogeneity of the data used during the 
training phase. A poorly trained NN results in poor per-
formance, leading to unsafe or overconservative behavior 
of autonomous systems. Similarly, overfitting can intro-
duce overhead and poor prediction. To deal with these 
issues, it is possible to perform sensitivity analysis [18] and 
nonconformity analysis [19] on the system prior to train-
ing to better interpret and select data. It is also possible to 
leverage knowledge about the system dynamics to perform 
verification before the deployment of the LEC, as suggest-
ed in this article.

Verification provides safety guarantees for the outputs 
of such LECs; however, it does not provide any robustness 
guarantees against changes between training and testing 
conditions. Currently, state-of-the-art verification tech-
niques, beyond machine learning applications [20], require 
knowledge about system model and bounded conditions. 
However, no guarantees can be provided if, for example, 
the disturbance acting on a system is above or below the 
bounds for which training was performed. This challenge 
becomes even more evident when dealing with real sys-
tems. In fact, typically (including in our setup in this arti-
cle), verification considers a specific model that may and 
will change from the actual model of a real system. Even 
precise system-identification techniques are not able to 

Figure 12. The safe and unsafe final positions and NN results from different initial locations in the experimental setting. The NN here 
is composed of four input nodes (an x-y initial position and x-y final position pair), one hidden layer of 40 nodes, and one output for 
the safety decision. The NN performed with 0% FPs and roughly 16% FNs. 
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provide fully accurate models and often rely on specific 
operating conditions.

One way to provide verification for systems with model 
uncertainties is to consider a conservative abstracted model 
and verify that the real system is equivalent to or safer than 
this abstraction. Building on the intuition in [21], if the sys-
tem performance and behavior are verified to be closer to the 
desired behavior than the abstraction, verifying the abstrac-
tion also verifies the real system. Note that, since these con-
servative abstractions capture the worst-case behavior of the 
system, failing to verify the abstraction may lead to the belief 
that the actual system is not safe, which may not necessarily 
be true but safe.

Training and verification operations require heavy com-
putation time; although this is a minor problem since these 
operations occur offline, it is still a concern, especially 
when dealing with high-order dynamical models and large 
unknowns in the system. Several services, such as Amazon 
Web Services (used in this article), Microsoft Azure 
(https://azure.microsoft.com), and Google Cloud Platform 
(https://cloud.google.com), are available and projected to 
become faster and more accessible in the future. 

Lastly, we note that, similar to the approach presented in 
the second case study in this article, although verification is 
done for a static model, the approach that we presented could 
be generalized to other settings where verifying a subset of the 
state space can be sufficient for use compositionally to check 
safety properties about larger spaces.

Future Work
The framework proposed in this article enables fast and 
assured predictive and proactive monitoring of autonomous 
systems operations in cluttered and uncertain environments 
at runtime. NNs are leveraged to make decisions about the 
safety of planned trajectories at runtime and perform replan-
ning accordingly. RA is used during the training phase and 
for verification purposes, bypassing its usage at runtime. In 
this way, most of the computation burden is limited to offline 
operations, leaving the fast decision-making and replanning 
tasks for the online application.

The applicability of the proposed framework was demon-
strated in two case studies, and the designed NNs were veri-
fied using our recent Verisig tool to produce decisions that 
never lead to unsafe states. Safety was the main concern in 
this article. Possible future directions include adding energy 
constraints while designing safe operations, developing robust 
NNs to deal with changes in environments, and, as discussed 
in the previous section, diving deeper into the problem of ver-
ifying real systems.
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