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Abstract—Medical professionals spend extensive time collect-
ing, validating, reviewing, and analyzing medical device data.
These devices use vendor-specific applications with lengthy trou-
bleshooting times, causing extended downtimes where medical
professionals have to manually document patient data in the
electronic health record (EHR). Manual logging of this data
creates delays and leaves it vulnerable to errors, manipulation,
and omissions. In this paper, we present VitalCore, a medical
device integration platform that supports access to medical device
data in real-time. We deploy VitalCore in three applications at
Penn Medicine: Medical Device Dashboard, Ventilation Alert,
and Anomaly Detector. In the Medical Device Dashboard, we
reduced, by up to six times, the amount of time required of
medical professionals, clinical engineers, and IT analysts by
simplifying the troubleshooting workflow, thus decreasing down-
times and increasing clinical productivity. In Ventilation Alert,
we demonstrated the ability to assist medical professionals by
alerting them to newly ventilated patients. In Anomaly Detector,
we showed that we could predict anomalous patterns in our data
with 93% accuracy.

I. INTRODUCTION

The Internet of Medical Things (IoMT) is a complex system

of networked medical devices that share medical device data

with healthcare professionals to enable new and innovative

medical services. These devices range from wearables (e.g.,

Fitbit) to implantables (e.g., pacemakers) and medical equip-

ment (e.g., magnetic resonance imaging (MRI) machines and

ventilators). It is even expected that upwards of 68% of all

medical devices manufactured will be connected by 2022 [1].

Further, IoMT is expected to continue growing as forecasts

predict it will reach a market value of over $135 billion by

2025 [2]. As the IoMT market continues to grow, the systems

that support these devices will need to adapt, bringing new

software, hardware, and cybersecurity solutions.

As medical devices come online, systems are developed

to support the storage, transmission, and security of medical

device data. This has led to non-standardized vendor-specific

applications that require specialized training. Thus, medical

professionals spend excessive time interfacing with medical

devices to collect, validate, review, and analyze medical device

data. When these devices malfunction, not only are there

extended downtimes for the device, medical professionals

have to manually document device data in the electronic

health record (EHR), distracting them from direct patient care.

Consequently, manual logging of this data leaves it vulnerable

to errors, manipulation, and omissions.
The integration of medical equipment in the IoMT has led

to massive improvement in the quality of patient care [3]–[7].

It has also led to the coordination of Medical Cyber-Physical

System (MCPS) and IoMT to provide better information to the

caregiver, detect failures of individual devices, and improve

patient safety and treatment effectiveness. Thus, researchers

have started developing integration platforms that allow for

a large number of medical devices. These platforms focus

on bringing old hardware online [8] and interoperability be-

tween devices [9]–[11]. VitalCore outperforms these software

platforms by ensuring clinical devices are operational while

providing a user-friendly dashboard for caregivers without

technical backgrounds. Its dashboard is designed with trou-

bleshooting in mind to minimize downtimes creating a more

efficient workflow in medical environments.
Currently, Penn Medicine has over 3,000 integrated medical

devices over thirteen facilities from seven different vendor

networks. Consequently, this extensive network of medical

devices has led to the many challenges discussed previously.

To address these challenges, we developed VitalCore, a plat-

form to manage clinical devices and proactively keep them

operable while improving the workflow for the IT analysts

and clinical engineers. VitalCore not only has clinical ben-

efits but technical and research benefits as well. Clinically,

manual documentation is reduced, providing time savings and

real-time, accurate data is fed to clinical decision support

systems. To demonstrate this, we build three applications

Medical Device Dashboard, Ventilation Alert, and Anomaly

Detector. Technically, troubleshooting efficiency is increased

to minimize downtime, and responses are moved from reactive

to proactive. This efficiency has led to a decrease of three to

six times the time needed for troubleshooting. Additionally,

data is archived to support future research and analysis.
Specifically, our contributions are:

1) Development of VitalCore, a vendor-neutral platform

that, to our knowledge, is the first of its kind in the

industry that manages clinical devices and proactively

keeps them operable while improving the workflow for

IT analysts and clinical engineers.

2) The VitalCore system architecture supports the devel-

opment and deployment of various applications, includ-
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ing user-friendly dashboards, clinical alert systems, and

anomaly detection.

The remainder of this paper is structured as follows: First,

we summarized the work related to this paper in Section II. In

Section III, we describe the VitalCore system. Then, Section

IV describes applications in which VitalCore is being used. In

Section V, we evaluate our system. Finally, we conclude our

paper in Section VI.

II. RELATED WORK

The tendency of migrating medical devices online has

become more and more prominent in the world of the Internet

of Medical Things. Devices such as ventilators [3], pulmonary

monitors [4], medical equipment in ambulances [6], and sur-

gical devices in operating rooms [5] are being brought online.

Additionally, integrating devices with an online platform has

made remote health monitoring more convenient. Devices

such as ECGs [12], [13], insulin pumps [14], and heart rate

monitoring via Apple Watches [7] track a patient’s health in

the comfort of their own home and send this data back to clin-

icians for further analysis. As IoMT brings these monitoring

devices online, the resulting Medical Cyber-Physical System

(MCPS) has the ability to provide more intelligent information

to clinicians and caregivers, detect failures of devices, and

improve patient safety and treatment effectiveness.

Researchers and engineers have begun developing integrated

systems that manage a large number of heterogeneous medical

devices spanning the domains of hardware and software. For

instance, Prudenzi et al. [8] implemented a hardware system

that installed a Raspberry Pi 3 near medical devices of interest

and connected them to an online supervisory system. Asare

et al. provides a dongle to connect previously unconnected

medical devices [15]. In addition, software frameworks tackle

the interoperability challenges between devices. OpenICE [9]

is an open-source Integrated Clinical Environment (ICE) that

assists in research for connecting IoMT devices. Expanding

on that, OpenICE-lite [10] provides security guarantees and

real-time data visualization and analysis. HIP [11] is an end-to-

end software integration platform that generalized the wireless

body sensor framework to test for correctness and performance

in health applications. VitalCore outperforms other software

platforms because it not only maintains clinical devices and

ensures that they are operational but also provides a user-

friendly GUI dashboard for caregivers without technical back-

grounds. This is a critical functionality to maintain efficient

workflows in medical environments where users may not be

technology experts.

III. VITALCORE SYSTEM

The overall architecture of VitalCore is depicted in Figure

1. VitalCore takes as input the HL7 data feed streaming from

medical devices. This data is fed into the stream processor for

processing and routing. Then, data is stored to be displayed in

the dashboard and for future analysis. Next, the communica-

tion protocols provide the processed data to the applications.

Applications can send additional data back to VitalCore, in

Fig. 1: VitalCore System Architecture

which the communication protocols can route this data to our

storage.

a) HL7 Data: Health Level Seven, commonly known as

HL7, is a set of widely supported international standards that

promote the transfer of medical data between software ap-

plications used by various healthcare providers. By providing

commonly supported data transfer guidelines, medical data can

be exchanged across EHRs and other software applications

without ambiguity and risk of misinterpretation. In our test

environment, we received the HL7 Data stream not directly

from the medical devices but from the integrated middleware

system. However, VitalCore supports any medical devices that

are capable of networking or support a network integration

adapter (e.g., Capsule Neuron [16]).

b) Stream Processor: The Stream Processor accom-

plishes two tasks: it generates and updates meta-data and

routes the data to storage and the communication protocols.

To generate metadata, we extract the device identifier and the

arrival time of the message to VitalCore. With this information,

we generate two meta-data tables: the timestamp history for

each device and the latest timestamp for each device. Then,

the data and meta-data are sent to storage and the applications.

c) Storage: VitalCore uses TimescaleDB for HL7 Data

and MongoDB for any other data. HL7 data is time-series as

each medical device is sending its HL7 data repeatedly over

time. Hence, there are performance and scalability benefits

to storing HL7 data in a time-series database. MongoDB

stores our non-time-series data such as user accounts, meta-

data, application-specific data, etc. While these databases are

separate, we use common identifiers to provide connections

between the data.

d) Communication Protocols: Communication Protocols

include REST-API (REpresentational State Transfer API) and

Web-Socket. REST-API uses queries to access data from

storage. But, some of the applications need a real-time stream

of HL7 data. In this case, HL7 Stream Processor forwards the

HL7 data directly to the applications via a Web-Socket. The

streaming data is directly sent from the HL7 Stream Processor

bypassing the database. This data can also be sent back from

the applications to the communication protocols for further

routing to storage or other applications.

e) Applications: In VitalCore, we prioritized flexibility

and modularity to promote the support and creation of many

applications. Thus, applications with varied functionalities can

be built on top of the VitalCore system. This allows for

custom, tailored applications that meet the specific needs of

clinicians and IT staff to be built. In this paper, we will discuss

83



Fig. 2: VitalCore Integration

the following scenarios: medical device dashboard, ventilation

alert, and anomaly detection. Detailed functionalities of the

applications will be explained in Section IV.

IV. APPLICATIONS

VitalCore is used in three applications: Medical Device

Dashboard, Ventilation Alert, and Anomaly Detector. The

Medical Device Dashboard provides clinicians access to real-

time, accurate data in the EHR with a user-friendly GUI.

Further, it streamlines the troubleshooting process for IT staff.

Ventilation alert showcases the integration of medical devices,

in this case, ventilators, to send data in real-time to the

EHR and generates alerts sent to medical professionals. The

anomaly detector detects anomalies in the usage patterns of

medical devices and groupings of medical devices.

A. Medical Device Dashboard

The medical device dashboard shown in Figure 3 is a

graphical user interface (GUI) designed to allow users (e.g., IT

analysts and clinical engineers) to find and identify essential

information (e.g., device name, location, vendor, etc.) within

the timespan of a minute. To tailor the dashboard to those

using it, we analyzed the usage patterns of our users to identify

important functionalities that support the navigation of existing

tools. After discovering the most valuable features, we created

a mock-up user interface (UI) which was employed to collect

user feedback. From this feedback, we redesigned our UI and

tested it with real-time data.

First, we observed the troubleshooting workflow of the IT

analysts with the goal of saving their time by improving

the workflow with an integrated approach to medical device

management. We found that when a device needed trou-

bleshooting, the IT analysts, in general, performed the seven

steps shown in Figure 4. Among these steps, we identified

where improvements could be made. Three steps were deemed

unnecessary and time-consuming. We determined that they

could be accounted for in a single login to the VitalCore

system: identifying device info, retrieving server information,

and launching HL7 tests. This reduced our troubleshooting

workflow to four steps, as shown in Figure 4. VitalCore

reduced the need for analysts to use an excel spreadsheet, look

for login credentials and server names, run lengthy searches, or

contact other teams for support. Further, analysts were limited

in the past by relying on vendor solutions and tools that were

specific to each vendor’s medical technology. For example,

one vendor’s app displayed the HL7 data output status for their

technology, while other vendors did not. VitalCore reduced the

need to learn to use multiple solutions and provides a single,

standardized platform for our users.

B. Ventilation Alert

Respiratory Therapists (RT) in the ICU manage patients on

ventilators based on clinician-developed treatment plans. A

large portion of their job revolves around monitoring these

patients to evaluate their treatment. When a patient is not

reacting as expected, the RT troubleshoots the issue and

consults with clinicians to make changes to the ventilator

settings. To free up the RT to focus on the more critical,

troubleshooting portion of their job, a telemedicine respiratory

therapist (eRT) is stationed at the virtual intensive care unit

(VICU) to remotely monitor newly intubated patients. When

a patient is not reacting well to treatment, the eRT contacts

the RT for troubleshooting.

Currently, ventilators do not send a start status message to

the EHR, and thus the eRT is not notified through the VICU.

The eRT relies on calls from the onsite nurse or respiratory

therapist (RT) or validated data in the EHR, which is not real-

time. As a result, patient monitoring via the VICU is delayed.

To solve this problem, ventilation start time can be extracted

from the real-time HL7 messages sent every minute from the

ventilators. Within these messages, a variable ID, expired tidal

volume (TV), can be used as an indicator that a patient has

been intubated. Expired TV is the volume of air that a patient

breathes out. If an expired TV has a value greater than zero,

the receive time for the message is noted as the ventilation

start time. To alert the eRT, an intubation alert is sent as a

text message to the eRT’s phone.

When only using the expired Tidal Volume to determine

start time, we noticed many false positives, largely with

patients who were already ventilated. To minimize these false

positives, the following logic was implemented:

1) If the patient-name is different from the other devices,

update the patient-name and always send an alert

2) If the patient-name is the same as the other devices and

the previous stop time is less than an hour, skip the alert.

3) Otherwise, send an alert

The alert system is currently under evaluation for its effective-

ness and safety.

C. Anomaly Detector

An important factor in changing reactive troubleshooting

to proactive is monitoring anomalies in the usage pattern

of medical devices. For example, a medical device sends

a message every minute during business hours but sends a

reduced number of messages after business hours and during

weekends. But when unexpected events occur, such as an

emergency for a patient or a network outage, we should detect

and respond appropriately to the event. VitalCore detects

these anomalous situations in real-time to bring nursing or

IT personnel to investigate them. Moreover, some anomalies

appear in several devices within the same group (e.g., room,
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(a) Dashboard Home (b) HL7 Messages

Fig. 3: Medical Device Dashboard

Fig. 4: Troubleshooting Workflow

floor, nursing units). VitalCore detects these patterns as well,

allowing for a more comprehensive view of the anomalies.

We train machine learning models to learn the normal usage

patterns of devices. We monitor the usage patterns of 60-

second intervals, weekday, and weekend, where each pattern

has its own model. The trained models retain a compressed

representation of the patterns and use it to reconstruct the

input. After that, we compute the Mean Absolute Error (MAE)

between the reconstructed input and the raw input. Then,

during training, we fed all training instances to the model

and choose the maximum reconstruction error as the threshold

T to determe anomalies. During testing, each new instance i
received in real-time is fed to the trained models where the

maximum reconstruction error erri among all pattern models

is calculated. If erri > T , we declare anomaly. Otherwise, we

consider it normal.

V. EVALUATION

We evaluate our system in each of the applications described

in the previous section. First, we consider the impact the

Medical Device Dashboard has on the troubleshooting work-

flow. Second, we assess the ventilator alert system. Finally,

we analyze the anomaly detector.

A. Medical Device Dashboard

A goal of VitalCore is to increase troubleshooting effi-

ciency to minimize downtimes. To do this, we simplified the

troubleshooting workflow as shown in Figure 4. We evaluate

the improved workflow by comparing the time it takes to

troubleshoot using VitalCore to using vendor-specific software.

Figure 5 shows a direct comparison between multiple vendors

and VitalCore. Overall, we see a decrease of three to six times

the amount of time(4.5 minutes to 50 seconds) needed to

troubleshoot for these vendors exemplifying the benefits of

using VitalCore during the troubleshooting process.

Fig. 5: Troubleshooting Time Comparison

B. Ventilation Alert

With device integration, respiratory therapists spend five

minutes per ventilator check to validate ventilator data in the

EHR. When there is a disruption in the HL7 data flow from

the ventilator to the EHR, respiratory therapists must manually

document readings and settings, which takes three times longer

(15 minutes) per ventilator check. The longer it takes for

analysts to troubleshoot and restore data flow, the more time

respiratory therapists must spend on manual documentation

instead of directly caring for their patients.

We conducted a pilot study using 139 ventilators where

a telemedicine respiratory therapist (eRT) is stationed at the

virtual intensive care unit (VICU) to remotely monitor newly

intubated patients. Over the course of three months, 3196 alerts

were sent in total. Of these alerts, we were able to successfully

filter out 872 false alert messages by the filtering logic given

in the previous section. While we filtered out most of the

false alerts, it was reported by the eRT’s that not all of them

were filtered out. In general, these were patients that were

already intubated. While it is not difficult for the eRT to ignore

this message, we plan to improve our filtering logic further to

distinguish between new and continued intubation.

C. Anomaly Detector

The anomaly detector module of VitalCore identifies the

abnormal usage pattern of medical devices while avoiding

raising excessive false alarms that cause alarm fatigue. We

train machine learning models to learn the normal usage

patterns of devices. We monitor the usage patterns of 60-

second intervals, weekday, and weekend, where each pattern

has its own model. Our training data is collected over five
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monitoring devices, which are composed of 48,096 samples

of constant 60-second-intervals pattern and 6,791 samples

of reduced activity after business hours on weekdays and

weekends. Note, no abnormal sample is fed to the models

at training. In other words, we want the models to learn

the normal pattern and test their performance on abnormal

instances. During testing, we provide the trained models with

48,969 samples, of which 8% are anomalous. Each model

classifies each instance as anomalous or not. If any of the

trained models declare a test instance to be an anomaly, we

consider the classification result to be anomalous.

TABLE I: Performance Comparison of Anomaly Detection

Algorithms. ACC: accuracy, F1: f1-score, PRE: precision,

REC: recall, FPR: false positive rate, FNR: false negative rate,

T: training time.

ACC F1 PRE REC FPR FNR T

Autoencoder 0.93 0.87 0.84 1.00 0.08 0.00 787.41
1-class SVM 0.81 0.57 0.42 1.00 0.21 0.00 280.04
Matrix Profile 0.99 - 0.00 0.00 0.00 1.00 295.88
tsmoothie 0.99 - 0.00 0.00 0.00 1.00 -

To choose the most suitable anomaly detection algorithm

for each application of VitalCore, we tested four state-of-the-

art algorithms, namely convolutional autoencoder [17], one-

class SVM [18], matrixprofile [19] and tsmoothie [20], and

evaluate their performance as shown in Table I. We chose these

algorithms because they are benchmark algorithms used for

unsupervised time-series anomaly detection. One-class SVM

sacrifices accuracy for efficiency in run time. Matrix profile

gives higher accuracy with a longer run time. Tsmoothie runs

offline hence the time is not listed here for comparison. Matrix

profile and tsmoothie give zero for precision, recall, and false

positive rate, because they do not fit our dataset well and fail

to predict any anomaly. Overall, the convolutional autoencoder

provides the best performance for our application as it exhibits

the minimum false alarm rate while performing highly in

overall accuracy, recall, and false-negative rate.

VI. CONCLUSION

In this paper, we presented VitalCore, a medical device

integration platform that supports clinical decisions by re-

ducing the manual documentation of medical device data

and providing access to real-time, accurate data in the EHR.

We deployed VitalCore in three real world applications at

Penn Medicine: Medical Dashboard, Ventilation Alert, and

Anomaly Detector. After evaluation, we found that VitalCore

reduced the amount of time required of medical professionals,

clinical engineers, and IT analysts by up to six times when

troubleshooting. Further, we could accurately and in real time

extract ventilation information and alert appropriate personnel.

Finally, we detected anomalies in device usage to change

troubleshooting responses from reactive to proactive.
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