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Abstract—False alarms generated by physiological monitors
can overwhelm clinical caretakers with a variety of alarms. The
resulting alarm fatigue can be mitigated with alarm suppression.
Before being deployed, such suppression mechanisms need to
be evaluated through a costly observational study, which would
determine and label the truly suppressible alarms. This paper
proposes a lightweight method for evaluating alarm suppression
without access to the true alarm labels. The method is based
on the data programming paradigm, which combines noisy and
cheap-to-obtain labeling heuristics into probabilistic labels. Based
on these labels, the method estimates the sensitivity/specificity
of a suppression mechanism and describes the likely outcomes
of an observational study in the form of confidence bounds. We
evaluate the proposed method in a case study of low SpO2 alarms
using a dataset collected at Children’s Hospital of Philadelphia
and show that our method provides tight and accurate bounds
that significantly outperform the naive comparative method.

I. INTRODUCTION

Alarm fatigue is a pervasive problem associated with physi-

ologic monitoring in the hospital setting [1]. Bedside monitors

continuously measuring heart rhythm, heart rate, respiratory

rate, blood oxygen, and other parameters often overwhelm

clinicians with very frequent non-actionable alarms. The end

result is that clinicians react slowly, if at all, to alarms that

have a small but nonzero probability of representing a critical

patient need [2]. Ideally, the clinicians should only be alerted

by the alarms that they will find informative or actionable (we

call such alarms non-suppressible), whereas the rest of the

alarms are deemed suppressible.

Alarm fatigue can be mitigated by reducing the number of

suppressible alarms through threshold tuning, customization,

integration, and other methods [3]. Researchers have proposed

novel algorithms for monitoring and suppressing unnecessary

alarms based on advanced data processing [4], [5], [6]. Such

improvements need to be carefully balanced with the possibil-

ity of missing non-suppressible alarms. Ultimately, algorithmic

methods and tuning can be seen as a suppression system
targeting a particular type of alarm.

The clinical investigation and deployment of suppression

systems is predicated on their expected performance. For ex-

ample, when deploying an alarm suppression system, hospital

policy makers need to confirm that its specificity to non-

suppressible alarms is above certain bounds, to be confident

that most non-suppressible alarms will continue to be reported.
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Measuring the performance of a suppression system typically

requires a representative dataset of alarms labeled with their

suppressibility.

It is time-consuming and expensive to create highly accurate

labeled datasets for evaluation and tuning of suppression sys-

tems. A common way to do so is to perform an observational

study [7] of many patients and manually label each time when

an alarm would be non-suppressible. Such a study is a major

commitment when it comes to an initial deployment of a novel

suppression system, in part due to the significant effort of

manual labeling. Furthermore, it is impractical to perform an

observational study for every adjustment of the settings of a

physiological monitor throughout its lifecycle. This cost can be

reduced with patient simulations [8], but precise and realistic

simulations of human physiology are notoriously difficult and

expensive to construct.

This paper introduces a cheap and rapid method of estimat-

ing the performance of a suppression system in the absence of
a dataset with highly accurate labels. This method can support

early-stage low-cost investigations of suppression systems in

a variety of ways. For example, it can prioritize observational

studies of systems with higher potential to alleviate alarm fa-

tigue so that the effort of manually labeling is spent optimally.

It can also guide the tuning of the system’s settings towards

effective alarm suppression, reducing the risk of missing non-

suppressible alarms.

A key element of our method is to probabilistically label

patient data according to the recently emerging paradigm of

data programming [9]. We start with a dataset of unlabeled

patient data, typically abundant in most clinical settings, and a

suppression system for some alarm type with tunable settings.

We then collect clinical intuitions about this alarm type and

encode them as labeling functions — weak classifiers of

suppressible/non-suppressible alarms that can abstain and need

not be comprehensive or non-contradictory. The data and the

labeling functions are put together via a generative model,
resulting in labels of varied confidence for each data point. Fi-

nally, the high-confidence subset of those labels is used to esti-

mate the sensitivity and specificity of the suppression system.

To appropriately communicate the uncertainty of our esti-

mates, we mathematically develop confidence bounds on the

sensitivity and specificity on the suppression system. These

bounds indicate, for a given level of confidence, the interval

of possible sensitivity/specificity values that one could obtain
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if they performed an observational study of a given size. These

bounds account for the uncertainty of the labeling process, the

randomness in the sampling of the dataset, and the amount of

data available for different clinical situations.

We validated our method through a case study of low

SpO2 alarms on a 551-hour labeled dataset from Children’s

Hospital of Philadelphia. The proposed method was used to

estimate the alarm performance for different values of the

SpO2 threshold. Our method’s estimated confidence bounds

almost always contain the true-label-based specificity and

sensitivity — and substantially outperform the naive estimates

based on each labeling function voting with an equal weight.

This study demonstrated how to negotiate the sensitivity-

specificity trade-off in an suppression system without investing

hundreds of hours into labeling the alarm data.

In summary, this paper makes three research contributions:

• A data programming-based method for estimating the

performance of alarm suppression,

• Confidence bounds on the performance estimates from

the above method,

• A successful application of the above method to a case

study of tuning the SpO2 alarm threshold.

The rest of the paper is organized as follows. The next

section presents the detailed motivation for low-cost estimation

of alarm suppression. Section III discusses the existing ways

to evaluate suppression systems. Section IV formulates the

mathematical problem at the heart of our method, which is

described in the following section. The case study of low

SpO2 alarms is described in Section VI, and its results are

found in Section VII. The paper concludes with Section VIII.

II. MOTIVATING SCENARIOS

This paper focuses on clinical alarms produced by physi-

ological monitors in a hospital setting. A monitor takes in a

combination of static inputs (e.g., demographic information)

and dynamic inputs (e.g., 5 seconds of vital sign waveforms),

and we refer to their combination as patient data. The alarm-
generating device implements an algorithm that responds to

patient data by either raising an alarm or not. All the inputs

where the device raises an alarm are referred to as alarm-
generating inputs, or alarms for short. The scope focuses on

alarm suppression systems that deactivate the raised alarms;

thus, the inputs that did not trigger any alarms in the first place

are not considered because their relevance is nearly impossible

to establish in most practical settings. Our concept of a

suppression system describes both standalone algorithms de-

ployed alongside alarm devices and any adjustments to the ex-

isting alarm device (e.g., reducing the SpO2 alarm threshold).

Suppose that some patient data is measured by or input into

an alarm device, and it generates a number of alarms. Any such

alarm belongs to one of the two mutually exclusive classes. A

suppressible alarm is one that can be disregarded by the clini-

cians without missing any important or actionable information.

The overabundance of suppressible alarms is both a cause of

alarm fatigue and an opportunity for alarm suppression. A non-
suppressible alarm is one that communicates valuable informa-

tion to the clinicians and should not be missed, regardless of

whether it is immediately actionable. Thus, when addressing

alarm fatigue, policy makers need to carefully balance the risk

versus reward of silencing suppressible alarms and missing

non-suppressible alarms.
Alarm suppression systems are typically evaluated in the

context of a labeled alarm dataset. The two key performance

characteristics of alarm suppression are

• The sensitivity of alarm suppression: the proportion of

suppressible alarms that were suppressed, also known as

the false alarm suppression rate.

• The specificity of alarm suppression: the proportion of

the non-suppressible alarms that were preserved (not

suppressed), which can also be calculated as one minus

the true alarm suppression rate.

Let us consider two clinical scenarios that motivate the

problem addressed in this paper.
Scenario 1: Pre-Trial Evaluation of Suppression System. Hos-

pital A, serving population P, is considering the deployment

of an alarm suppression system that has been successful at

Hospital B, which serves population Q. The system’s settings

can be transferred between the hospitals; however, the patient

data from population Q cannot be shared. Consequently, it is

unknown how well the system would perform on population P,

and it is likely to require alarm suppression. Before embarking

on a time-consuming and expensive clinical trial of that

system, Hospital A wants to estimate whether it can plausibly

deliver a sizeable fraction of the useful, non-suppressible

alarms while not significantly contributing to the alarm fatigue.

Hospital A executes the system on the representative patient

data from population P. Ideally, Hospital A would need to

label the produced alarms, but it is prohibitively expensive to

construct these labels manually. In other words, Hospital A

seeks to estimate the performance of a suppression system

given unlabeled alarms.
Scenario 2: Tuning of Deployed Suppression System. A hospi-

tal uses an alarm device in its ICU. The device’s operation is

configured with several tunable settings such as the acceptable

interval for each vital sign and the minimum time spent outside

of that interval to trigger the alarm. Due to reports of alarm

fatigue, the hospital considers a manual adjustment of the

device settings to reduce suppressible alarms. However, there

is a serious risk of missing important, non-suppressible alarms

as a result. To proceed with this adjustment, the hospital needs

to estimate the effects of various settings: what fraction of the

suppressible alarms would be silenced and what fraction of

the non-suppressible alarms will continue to be raised? The

hospital has abundant patient data but insufficient resources

to construct a representative labeled dataset of alarms. In this

situation, the hospital aims to predict the effects of a device’s
settings on its performance given only patient data and no

precise information whether an alarm is suppressible.
In both scenarios, the task is to evaluate a suppression

system, as illustrated in Figure 1. We are given an alarm

device and can collect a dataset of representative unlabeled

alarms. In an ideal situation, this data collection would be
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Fig. 1: A motivating scenario for this paper: a suppression system needs to be evaluated without true labels of alarms.

accompanied by patient observation, and each alarm would be

annotated with a suppressible/non-suppressible label based on

the clinical interpretation of the patient’s circumstances. As

the next section details, in practice, creating such annotations

is prohibitively time-consuming and expensive. Thus, there is

a need for lightweight means of predicting the performance of

alarm suppression.

The next section describes the existing ways of addressing

the motivating scenarios.

III. RELATED WORK

There exists a vast literature on clinical alarm suppression

and unsupervised/weakly-supervised learning. We focus on the

areas particularly relevant to our setting.

Alarm fatigue is a serious and well-known problem of phys-

iological monitors [1], [2]. A variety of approaches to suppress

unnecessary alarms have been proposed based on techniques

from signal processing, statistics, and machine learning [4],

[5], [6]. Many of such approaches need patient data labels to be

designed or trained, and all of them need the labels to be eval-

uated. This paper introduces a lightweight way of performing

these evaluations without investing in high-quality labels. Note

that the proposed method is not specific to any physiological

input, unlike many alarm suppression techniques.

The gold standard for evaluating the clinical effectiveness

of an alarm suppression system is an interventional study,

in which the researchers deploy the system and measure its

effects compared to a control group. To estimate the sensitivity

and specificity of suppression, a controlled observational study

would be sufficient: patient data is fed into a physiological

monitor with and without suppression, the results are observed

separately from the clinical context, and a comparison is made

based on the desired alarms (as defined by the clinical experts).

Both types of studies require substantial time and effort, in

part due to the need to label the suppressibility of alarms. For

example, nurses can review video feeds of patients as part of

the labeling process [10]. Our work is not meant to replace

either type of studies; instead, we aim to prioritize, guide, and

reduce the risk of observational studies by providing an early

and cheap estimation of the expected suppression performance.

High-precision methods of labeling alarm data include

patient simulations and computer-aided clinical trials [11].

To provide realistic data, these methods require detailed

physiological models, building which is a large investment.

For clinical alarms, an appropriate model is rarely available.

Our method is related to observational studies in the same

way as computer-aided clinical trials are related to traditional

clinical trials. That is, we perform a virtual algorithmic

evaluation of suppressibility. After that, our results can

provide the basis for an observational study of suppression

or a clinical trial of an alarm device.

Recently, a quick and inexpensive way of labeling data has

emerged, known as data programming [9]. A key element

of data programming is a set of quantitative intuitions about

how the data corresponds to labels. For example, a clinician

might say, “when a patient over 60 years old has had a heart

rate over 120 beats for over a minute, such an alarm is not

suppressible.” These intuitions, algorithmically represented as

labeling functions, are allowed to be incomplete, sometimes

incorrect, and contradictory. A labeling function returns a class

label or an “abstain” verdict for any input. Given a diverse

combination of many labeling functions and an unlabeled

dataset, data programming algorithms produce probabilistic

labels — a label and a confidence between 0 and 1 — for

each sample in the dataset. A prominent data programming

tool Snorkel [12] estimates an optimal weight for each labeling

function by using a generative graphical model. Our approach

encodes clinical intuitions about suppressible/non-suppressible

alarms as labeling functions, feeds them along with alarm data

into Snorkel, and relies on the resulting probabilistic labels to

quantify the uncertainty in the suppression of an alarm device.

IV. PROBLEM FORMULATION

This section states the problem addressed in this paper —

first at a high-level, and then mathematically.

A. High-Level Problem Statement

A suppression system takes an alarm as input and decides

whether to suppress it. The system can be configured with

various settings: thresholds, timeouts, and so on. The hospital

policy makers want to estimate the sensitivity and specificity of
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this suppression system at various settings. For this estimation,

they have collected a sample dataset of alarms; however,

they do not know which of those alarms should actually be

suppressed. Ideally, this information would be obtained from

an observational study, but it is not carried out for various

practical reasons.

The problem considered in this paper is to predict the

sensitivity/specificity of a suppression system that would result

from an observational study with perfect alarm annotations.

We aim to make that prediction in the form of tight sensi-

tivity/specificity bounds that would contain the observational

study’s estimates with high probability.

B. Technical Problem Statement

Given a set B, we write |B| to be the set’s cardinality and

Bm to be a Cartesian product of m sets B. We write � (C)
to be the indicator function for condition C.

Let X be the feature space of all possible alarms, Y =
{0, 1} be the label space for alarm suppression where 1
denotes suppressible and 0 denotes non-suppressible. A single

alarm is denoted as x ∈ X , and we consider a finite

dataset of alarms X ⊂ X generated by random variables

X̃ = {x̃ | x ∼ x̃, x ∈ X}. These alarms have respective

unknown true suppressibility labels Y ⊂ {y ∈ Y}.
A suppression system S : X → Y decides whether an alarm

is suppressible. For its evaluation, suppose the alarms are

indexed by an index set I ⊆ {1, 2, . . . }. The suppression ac-
curacy Rj of system S on class j evaluated on I is defined as

Rj(I) =
∑

n∈I � (yn = j ∧ S(xn) = j)∑
n∈I � (yn = j)

(1)

The above expression is the true rate of the suppression

system S on |I| samples with true label j. R1 is the sensitivity

of S, and R0 is the specificity of S, as described in Section II.

A labeling function (LF) λ : X → Ŷ produces a label in

the weak label space Ŷ = Y ∪ {−1} where −1 denotes an

abstain. Given a finite set of labeling functions, Λ ⊂ {λ : X →
Ŷ}, we denote a labeling outcome as a tuple of labels on a

given datapoint x by LΛ(x) =
(
λ1(x), . . . , λ|Λ|(x)

)
. The set

of all possible labeling outcomes for functions Λ is denoted

as LΛ = Ŷ |Λ|. Thus, LΛ : X → LΛ.

We will rely on a class of generative models H = {h :
LΛ → P(Y)}, where P(Y) is a space of all probability

distributions over Y . Each such model can be understood as

a pair of functions, a predictor f : LΛ → Y and confidence
estimator g : LΛ → [0, 1], by setting

f := argmaxh(LΛ(X)) g := maxh(LΛ(X)) (2)

such that, for a datapoint x, (f(x), g(x)) = (ŷ, p̂) is the label

prediction ŷ with confidence p̂. In the event that the produced

distribution over Y is uniform, f returns the suppressible label

(i.e., 1) and g assigns confidence of 0.5. 1

1In practice, alarm datasets are heavily skewed with suppressible alarms.
Therefore, assigning samples on which the model is uncertain to the majority
class does not significantly impact results.

In our method, we will consider subsets of our data X that

have high confidence g of labels f . Suppose that for class

j ∈ Y , we are willing to tolerate the label uncertainty of εj ;

in other words, for that class, we only use probabilistic labels

with confidence of at least 1 − εj . We denote some set of

indices with high confidence in label j as Ij and define it as

Ij ⊆ {n ∈ I | f(xn) = j ∧ g(xn) ≥ 1− εj} (3)

Analogously, a hypothetical observation study would manu-

ally label some samples in X and exactly determine their true

labels. We refer to these samples with a true-label index set
I∗j for class j:

I∗j ⊆ {n ∈ I | yn = j} (4)

Note that the sizes of sets I∗j determine the desired numbers

of samples of each class. These numbers are crucial to

observation studies and are computed up-front based on power

analysis and resource limitations.

We now formally state this paper’s technical problem.

Problem Statement 1 (Confidence Interval Estimation):
Given the following:

• Unlabeled alarms X , which have unknown true labels Y ,

• Predictor f : LΛ → Y and confidence estimator g :
LΛ → [0, 1], which operate over labeling functions Λ.

• The sizes of index sets |I∗j | for a hypothetical observation

study for j ∈ Y .

Our goal is, for any class j ∈ Y and confidence level pj , to

find the tightest interval Cj containing, with probability at least

pj , the observation-study estimate Rj(I∗j ) of the suppression

accuracy on class j; that is,

min
Cj

|Cj | subject to �(Rj(I∗j ) ∈ Cj) ≥ pj

V. ESTIMATION OF SUPPRESSION ACCURACIES

In this section we describe our approach for producing

confidence bounds for the sensitivity and specificity of a sup-

pression system. Figure 2 summarizes the steps our approach:

A. Collect unlabeled alarm and patient data

B. Elicit heuristic labeling functions from clinicians

C. Produce probabilistic labels for the alarm data

D. Estimate the suppression accuracies of the system

E. Quantify confidence bounds around those estimates

A. Unlabeled Data Collection

Our initial step is to collect a dataset of representative alarms

and the corresponding patient data, on which the suppression

system will be evaluated. The patient data includes the static

data (demographics, disease history, etc.) and the vital signals

that contextualize a raised alarm. Thus, there are two key

aspects of data: determining which alarm instances to use

and collecting the relevant vitals data. More formally, we

produce a set of representative unlabeled alarms and patient

data X = (x1, x2, . . . ) with indices I, with each datapoint

corresponding to the features of an alarm from X .
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Fig. 2: Our approach of estimating the performance of suppression systems.

When choosing the alarms, our goal is to get a sample

from the representative distribution in a particular clinical

setting. We use the state-of-the-art approaches for appropriate

sampling. Typically, alarms would be sampled from the sub-

types targeted by the suppression system (e.g., technical or

clinical, discussed in Section VI), based on their frequency

during different times of the day, and appropriately from the

target patient demographics.

The collection of patient and alarm data should be fully

automated and cheap as a result. Given full automation, we

aim for the data to be as complete as possible in a given

clinical context. More complete datasets, such as those that

include more patient information and diverse vitals, allow for

richer labeling functions in the next step, ultimately improving

the outcomes of our approach.

B. Eliciting Labeling Functions

We ask clinical experts (e.g., physicians and nurses) working

in the targeted alarm suppression context to describe the guide-

lines that they use to make decisions on whether an alarm is

suppressible or non-suppressible. Specifically, we seek quanti-
tative guidelines for determining alarm suppressibility (e.g., if

heart rate is above 200 then non-suppressible), as opposed to

qualitative guidelines (e.g., if a child is kicking/moving then

suppressible) which are often used by clinicians. Qualitative

guidelines are difficult to encode into our data-driven approach

and, hence, are excluded from this study — but may be

explored in future work. Intuitively, guidelines are not perfect;

they output noisy labels. However, very inaccurate labeling

functions can negatively affect performance down the line.

To address this, we ask clinicians stick to guidelines that,

in their expert opinion, are better than random chance at

identifying a suppressible or non-suppressible alarm. Better-

than-random labeling functions are a common requirement in

data programming [9].

Each guideline is implemented as one or more labeling

functions. Each labeling function takes patient data as input

and either emits a label (suppressible/non-suppressible) or

abstains for each sample in the unlabeled alarm dataset.

Formally, the labeling functions Λ are elicited and applied

to the data X to obtain the weak labels LΛ(X).

C. Probabilistic Labeling

In this step, we combine the weak labels from the labeling

functions into a single “strong” label. This strong label is

characterized by a confidence value, indicating the level of

certainty regarding the label’s accuracy. Mathematically, we

combine the weak labels LΛ(x) of each alarm x into a proba-

bilistic strong label f(x) with confidence g(x). Generally, this

can be achieved with a weighted combination over the weak

labels with a fixed vector of weights w.

We model the weighted combination as a generative graph-

ical model. Generative models are popular in state-of-the-

art data programming literature [9]. This model leverages

the agreements and disagreements of the labeling functions

to estimate their accuracies. The accuracies then inform the

weights (i.e., relative priorities) of labeling functions.

Our goal in this step is to train a generative model from

class H that represents a joint distribution w(LΛ(X̃), y)
between the random alarm variables X̃ and their hypothesized

true labels y — without any samples of the true labels. A

weighting scheme w is a function of the accuracy of each

labeling function, and thus unknown. This model also takes

into account the prior probability of each label occurring in

the data. Prior probabilities (Y) over classes Y can either be

specified if known or estimated from the labeling functions.

Training this model is equivalent to learning w, which is

estimated by maximizing the log-likelihood of the observed

labeling function outputs LΛ(X):

ŵ = argmax
w

log
∑

y∈Y|Λ|
w(LΛ(X̃), y)

Using this learned weight vector w, we can use the probabilis-

tic distribution over the labels output by the generative model,

hy(LΛ(x)) = ŵ(y | LΛ(x))

to encode a predictor f and confidence estimator g according

to Equation 2.

D. Estimation of Accuracies

Now we estimate the sensitivity and specificity of the sup-

pression system using the probabilistic labels. In this subsec-

tion, we are interested in finding a pair of numbers for one
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suppression system as its sensitivity/specificity estimates given

the probabilistic labels. Formally, for each j ∈ Y , we compute

point estimates of Rj(X,Y ) for suppression system S given

the data X , predictor f , and confidence estimator g. The main

challenge here is to balance the labeling uncertainty in g with

the sampling uncertainty related to the size of X .

First, we need to pick the data that was labeled in a

trustworthy manner. In our experience, using the whole dataset

X is inadvisable because low-accuracy/low-confidence labels

would bias the outcome. Therefore, intuitively, we place more

trust in samples that we label with high confidence (i.e., with

low uncertainty about their true label). Suppose that for label

j ∈ Y , we tolerate at most εj labeling uncertainty and, thus,

only select samples with confidence at least 1− εj . This leads

us to consider high-confidence index sets Ij parameterized by

εj as defined in Equation 3.

We can pick an arbitrary subset of high-confidence samples.

We cannot, however, pick an arbitrarily small εj : very few

samples would be available, and that would significantly in-

crease the sampling uncertainty of our estimates. In short, there

is a trade-off between the labeling and sampling uncertainties

(demonstrated in Appendix A). We resolve this trade-off by

searching for the value of εj that minimizes a combination of

those uncertainties as explained in the next subsection.

Then, given sets Ij , we estimate the suppression accuracy

on each class j by applying Equation 1 to the high-confidence

labels in place of yn:

Rj(Ij) =
∑

n∈Ij
� (S(xn) = j)

|Ij | (5)

This formula gives us a point estimate of sensitivity (for

j = 1) and specificity (for j = 0) of the suppression system.

E. Confidence Bounds

Our accuracy estimates from the previous subsection rely on

noisy labeling functions and, as a result, can be unreliable.

We quantify their reliability by providing confidence bounds
around our estimates — the intervals where the accuracy

estimated from true labels would be found with some given

confidence. More precisely, we interpret a confidence bound

as follows: it is an interval of likely estimates of suppres-

sion accuracy of some class using the true labels of that

class (from a gold-standard observation study) instead of our

high-confidence probabilistic labels. That is, for class j, we

aim to create an interval Cj = [Rj(Ij)− cj , Rj(Ij) + cj ]
containing, with probability of at least pj , the suppression

accuracy Rj(I∗j ) estimated from manually labeled samples in

I∗j . Notice that pj can differ between the classes and, hence,

reflect the acceptable clinical risks.

The interval size cj depends on two factors: the sam-

pling randomness between Ij and I∗j and the quality of

the probabilistic labels in Ij . The former will be estimated

as a function the sizes of Ij and I∗j using the standard

statistical bounds. For the latter, in our experience, with

appropriate labeling functions discussed Section V-B, high-

confidence labels correspond to the low-uncertainty situations

in which the suppression mechanisms are relatively consistent.

We formalize this intuition with the following assumption.
Assumption 1 (Consistent Accuracy across Datasets): Sup-

pression accuracies on high-confidence sets Ij do not differ
in expectation from those on the manually labeled sets I∗j by
more than the average uncertainty of the labels in Ij :∣∣∣∣∣∣

1

|I∗
j |

∑
m∈I∗j

� [S(x̃m) = j]− 1

|Ij |
∑
n∈Ij

� [S(x̃n) = j]

∣∣∣∣∣∣ ≤ 1− ηj ,

where ηj =
1

|Ij |
∑
n∈Ij

g(xn) is the average label confidence in Ij .

Leveraging the above assumption, we can derive the desired

bound cj on the difference between the estimates based on

our probabilistic labels and the potential observation-study

labels. The probability of exceeding that bound is given in

the following theorem.

Theorem 1 (Bounded Difference of Accuracy Estimates): For

any class j ∈ Y , the difference between the probabilistic and

manual estimates of suppression accuracy on j exceeds bound

cj with a bounded probability for any free parameter γj :

�
[∣∣Rj(Ij)−Rj(I∗j )

∣∣ ≥ cj
] ≤

2 exp
(−2|I∗j |(cj + ηj − 1− γj)

2
)
+ 2 exp

(−2|Ij |γ2
j

)
The proof can be found in Appendix B. This result means

that the chance of our estimates disagreeing with gold-standard

estimates by more than cj decreases with the increasing

number of samples in Ij and I∗j , larger cj , and the higher

confidence of our estimates ηj . The parameter γj can be cho-

sen as any value. This bound is contingent on the satisfaction

of Assumption 1 about probabilistic labeling.

We want to guarantee that the manually labeled estimate

Rj(I∗j ) is within cj of our estimate Rj(Ij) with probability

pj . Then, by equating pj with the bound and expressing cj in

terms of pj , we obtain the desired interval size cj exactly.

Corollary 1: For any desired confidence pj and any admis-

sible γj , the interval width cj can be chosen as

1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗j |
Now we return to the problem formulation from the end of

Section IV: our goal is to minimize the size of the interval cj
given a fixed confidence pj . So we optimize for the smallest
interval over the values γj and the choice of samples in Ij
(by changing εj in Equation 3), which then determines the ηj .
Thus, we pick the interval size cj as follows:

min
γj∈R, Ij⊆I

1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗
j |

In summary, the presented results give us a way to produce

uncertainty bounds for the accuracies of the suppression

system by putting a confidence bound around the accuracy

estimates from Section V-D. We pick the tightest interval given

Theorem 1. This interval captures both the uncertainty of our

probabilistic labels and the sampling uncertainty.
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VI. CASE STUDY: LOW SPO2 ALARM DATASET

To evaluate the performance of our method, we conducted

a case study for low SpO2 alarms. We consider an alarm

suppression system that suppresses a low SpO2 alarm if the

SpO2 measurement at the time of alarm is above a specified

threshold, otherwise it does not suppress the alarm. Our goal is

to establish and visualize the connection between the system’s

SpO2 threshold and its specificity/sensitivity, given a dataset

of patient vitals data and manually-annotated low SpO2 alarm

data. In this section, we overview the dataset and data prepro-

cessing approach, introduce the labeling functions collected for

labeling low SpO2 alarms, describe method implementation

details, and present a comparative approach for our analysis.

A. Data

We used a deidentified dataset originally collected as part

of a study approved by the Institutional Review Board of

the Children’s Hospital of Philadelphia (IRB #14-010846).

Researchers video-recorded 551 hours of patient care on a

medical unit at Children’s Hospital of Philadelphia during

July 2014 to November 2015 from 100 children whose fam-

ilies and nurses consented. In addition, the following data

was collected: patient background information, all physiologic

monitoring alarms with corresponding timestamps, and contin-

uously recorded vital signs:

• Blood oxygen saturation (SpO2 ) measured by a pulse

oximeter,

• Pulse rate measured by a pulse oximeter,

• Heart rate measured by a 3-lead electrocardiography

(ECG),

• Cardiac rhythm measured by a 3-lead ECG

• Respiratory rate measured by a 3-lead ECG,

• Noninvasive blood pressure (NBP) measured by a cuff,

from the physiologic monitoring network.

After the study, the alarms were reviewed along with

the video recordings and then annotated with three alarm

distinctions in mind: technical versus clinical alarms, valid

versus invalid alarms, and actionable versus non-actionable

alarms [10]. Technical alarms indicate an issue with a physi-

ologic monitor or its sensors, whereas clinical alarms indicate

an issue with a patient’s physiologic status (e.g., heart rate

is too high). Valid alarms are those that correctly identify

the physiologic status of a patient. Conversely, alarms that

are false are considered invalid. A valid clinical alarm that

results in or warrants clinical intervention or consultation can

be further classified as actionable, otherwise non-actionable.

Hence the alarms have the following annotations: technical

alarms, invalid clinical alarms, valid actionable clinical alarms,

and valid non-actionable clinical alarms.

A total of 9547 clinical alarms of 26 different types are in

the dataset. Low SpO2 generated the largest number of alarms

(34% of total alarms) and the largest number of invalid alarms

(81% of the low SpO2 alarms). Hence, adjusting the settings of

a low SpO2 alarm suppression system can help reduce alarm

fatigue, and we focus on these alarms in our case study.

B. Data Preprocessing

Our analysis only considers a subset of the original dataset:

• Patient age group: less than one month old, from one

month to less than two month, from two month to less

than six month, and six months and older;

• Patient vital signs: blood oxygen saturation, respiratory

rate, heart rate measured by an ECG, and heart rate mea-

sured by a pulse oximeter — all measured at maximum

sampling rate of 0.2 Hz;

• Annotated low SpO2 alarms with corresponding times-

tamps and durations.

The alarms data is annotated in terms of technical/clinical,

valid/invalid, and actionable/non-actionable alarms. We inter-

pret these labels with respect to suppressibility as follows.

Technical alarms, valid non-actionable clinical alarms, and

invalid alarms are interpreted as suppressible, whereas only

valid actionable clinical alarms are non-suppressible.

C. Labeling Functions for Low SpO2 Alarms

In unstructured interviews with two pediatric physicians, we

collected eighteen guidelines for deciding whether a low

SpO2 alarm is suppressible or non-suppressible. Six of the

guidelines are excluded from this study because the dataset

does not have sufficient information to implement them. The

guidelines are as follows.

1) Long alarm: If the alarm duration is longer than t
seconds, then the alarm is likely non-suppressible.

2) SpO2 below threshold for duration: If SpO2 is below

threshold x for longer than t seconds since the alarm

sounded, then the alarm is likely non-suppressible.

3) Heart rate above threshold for duration: If heart rate is

above threshold x for longer than t seconds since the

alarm sounded, then the alarm is likely non-suppressible.

4) Heart rate below threshold for duration: If heart rate is

below threshold x for longer than t seconds since the

alarm sounded, then the alarm is likely non-suppressible.

5) Respiratory rate below threshold for duration: If respira-

tory rate is below threshold x for longer than t seconds

since the alarm sounded, then the alarm is likely non-

suppressible.

6) Repeat alarms: If more than n alarms occurred within

t seconds of the alarm, then the alarm is likely non-

suppressible.

7) Short alarm: If the alarm duration is less than t seconds,

then the alarm is likely suppressible.

8) Immediate recovery: If SpO2 recovers to x within t
seconds after the alarm sounds, then the alarm is likely

suppressible.

9) Heart rate technical error: If the difference between ECG

heart rate and pulse oximeter heart rate is greater than

x at the time of the alarm, then the alarm is likely

suppressible.
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10) Bad SpO2 waveform: If the SpO2 waveform contains

anomalies 2, then the alarm is likely suppressible.

11) Bad heart rate waveform: If the ECG heart rate waveform

contains anomalies, then the alarm is likely suppressible.

12) Bad respiratory rate waveform: If the respiratory rate

waveform contains anomalies, then the alarm is likely

suppressible.

From these guidelines, we instantiated sixty-two total label-

ing functions for different values of parameters x, t, n, picked

in consultation with the two aforementioned physicians (see

Appendix C). Forty of them produce only suppressible labels,

and the rest produce only non-suppressible labels.

D. Implementation

We implement the labeling functions as Python functions,

taking in an alarm from the dataset and returning either a

label or an abstain. To generate probabilistic labels for the low

SpO2 alarms in the dataset we use a tool called Snorkel for

the generative model [12]. Snorkel is the state-of-the-art tool

for weak label combination and has been applied to several

applications. We use the current version at the time of this

publication, version 0.9.7 (www.snorkel.org). The only hyper-

parameter we specify within Snorkel are the prior probabilities

of labels. In interviews with physicians, it was determined that

80%/20% for suppressible/non-suppressible alarms, respec-

tively, is a reasonable default for alarm suppression (and is also

approximately consistent with our dataset). If the prior was un-

known, it could be estimated from the labeling functions [13].

Estimates of sensitivity and specificity of the low

SpO2 alarm suppression system are computed on the pulse

oximetry data. We consider only the timestamps for which an

SpO2 measurement is present (11300 samples in total). Then

we map the labels assigned to the known low SpO2 alarms

onto these samples. For each alarm, we assign all timestamps

that occur during this alarm with its own labels (true and prob-

abilistic). Lastly, we simulate applying the alarm suppression

system to the samples for SpO2 thresholds of 0 to 100, and

save the result as a label. Thus for each sample we have,

• A timestamp,

• A SpO2 measurement,

• A ground-truth label (from the original annotations),

• A label and its confidence from the generative model,

• A label from the suppression system for each

SpO2 threshold.

For the optimization problem for finding the best confidence

bounds, we use the SciPy Python library (www.scipy.org).We

minimize a closed-form function with bounded parameters.

E. A Comparative Approach

We compare the performance of the confidence bounds pro-

duced by our approach with a majority vote approach. Ma-
jority vote is a widely-used and straightforward method for

combining multiple discrete signals into one. In this case we

2Waveforms with artifacts are generally unreliable. We look for anomalies
(e.g., spikes and outliers) in the waveform to determine if it is bad or not.

apply it to weak labels produced by labeling functions. In this

method, each labeling function is assigned equal weight and

thus has equal influence on the label prediction. The label

prediction is determined as the weak label that received the

most votes. The confidence of a particular label is computed as

the fraction of non-abstaining labeling functions that voted for

this label. We assume that Assumption 1 holds for majority

vote since, intuitively, as more labeling functions agree on

a particular label, the more we trust that that label reflects

the true unknown label. Hence in this comparative approach,

steps A, B, D, and E are performed exactly as described in

Section V, while step C is replaced with probabilistic labeling

via majority vote.

A primary challenge of the majority vote approach is, if

many of the labeling functions are inaccurate, the label pre-

diction can often be incorrect but still have a high confidence.

Since the labeling function accuracies cannot be known a

priori due to the absence of true labels, there is no clear

way of preventing this situation. Due to this challenge, we

use the majority vote approach only for comparison and do

not recommend using it in practice.

VII. RESULTS

In this section we present the results of our case study for

low SpO2 alarms. Specifically, we evaluate the performance

of the confidence bounds for suppression accuracies of a low

SpO2 alarm suppression system produced by our approach.

A successful application of our approach would result in tight

confidence bounds that contain the true suppression accuracies

that would be produced in an observational study.

We consider a 5%, 10%, and 20% chance of the confi-

dence bounds not containing the true suppression accuracies,

i.e., pj ∈ {0.05, 0.10, 0.20}. Label uncertainty εj determines

which samples are used to estimate the suppression accuracies

and compute the confidence bounds, and hence is an important

parameter of our approach. We considered the uncertainty of

at most 10% to avoid violating Assumption 1. Now, for each

pj , we perform an optimization to find the tightest bounds

with constraints εj ∈ [0.01, 0.1] and γj ∈ [0, 1].

The confidence bounds for sensitivity and specificity us-

ing our approach are depicted in Figure 3 and using the

comparative approach in Figure 4. We also illustrate the

estimated trade-off between sensitivity and specificity in Fig-

ure 5. To draw the bounds in this figure, for each confi-

dence level pj , then for each SpO2 threshold, we plot the

(specificity + c0, sensitivity + c1) for the upper-bound and

(specificity − c0, sensitivity − c1) for the lower-bound. Since

we have access to true labels (i.e., the labels extracted from

the alarm annotations), we use them to plot the true curve
for the sensitivity/specificity/trade-off, which represents the

results of an observational study. Table I presents the average

width of the sensitivity and specificity confidence bounds.

Table II summarizes the percentage of these true curves that

are contained in each of the confidence bounds. We note that

only SpO2 thresholds between 80 and 95 can plausibly be
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adopted into a clinical setting, and hence only portions of these

curves are clinically relevant.

We observe that our approach successfully produced

narrow confidence bounds with high containment, whereas

the comparative approach produced narrow bounds that

suffer from low containment. Our approach’s confidence

bounds for sensitivity are tighter than that of the comparative

approach (4-5% and 5-7% in average width, respectively).

Furthermore, our bounds contain all of the true curve (with

the exception of 6% of the curve’s length for pj = 0.2),

whereas the comparative bounds contain only 80-81%. For

specificity, our approach produced looser bounds (18-21%

average width) than the comparative approach (6-8% average

width). However, our approach achieved full containment

of the true specificity curve as opposed to the comparative

approach which contained 76-78%. The difference in true

curve containment between the approaches is even more

exaggerated in the clinically relevant region. Most of the

true sensitivity and specificity curves in this region are not

contained by the comparative approach’s bounds.

In practice, hospital policy makers would select an

SpO2 threshold for this suppression system based on the

trade-off between its sensitivity and specificity (illustrated in

Figure 5). The advantage of using our approach over the

comparative approach is clear here. While the comparative

approach’s bounds are tighter than our approach’s bounds, they

contain less than 12% of the true trade-off curve, which can

lead to a misguided policy. On the other hand, the bounds

from our approach have low-to-moderate width (which appro-

priately indicates the uncertainty) and contain the entire true

curve. The region of the plot where specificity is greater than

50% corresponds to the clinically relevant region, and even

here, our approach outperforms the comparative approach.

Since the bounds from our approach effectively capture the

true sensitivity/specificity trade-off of the suppression system,

a policy maker could use our bounds to select the system’s

SpO2 threshold. A good SpO2 threshold would produce speci-

ficity close to one (i.e., not suppress any non-suppressible

alarms) while maximizing sensitivity (i.e., silence as many

suppressible alarms as possible). This corresponds to the

lower-right region of Figure 5a. Suppose policy makers decide

to allow a minimum of 90% specificity. Our approach deter-

mines that an SpO2 threshold of at least 92 is required which

can suppress up to 6% of false alarms (based on the sensitivity)

Using the true curve, a minimum SpO2 threshold of 91 is

required and at most 3% of false alarms would be suppressed.

Trade-off curves generally bow inward, but we observe in

Figure 5b that the comparative approach’s confidence bounds

bow outward. If we consider flipping the labels that majority

vote outputs in our comparative approach, the bounds would

go inward and exhibited slightly improved containment of the

true curve. This implies that majority vote, on the samples

it labeled suppressible/non-suppressible, was mostly incorrect

with high-confidence.

Limitations: our confidence bounds are accurate when sup-

pression accuracy is relatively consistent on different high-

pj Sensitivity Specificity

Our Approach 0.05 0.049 0.211
0.10 0.045 0.201
0.20 0.041 0.187

Comparative Approach 0.05 0.065 0.078
0.10 0.060 0.072
0.20 0.054 0.065

TABLE I: Average width of the confidence bounds.

pj Sensitivity Specificity Trade-off

Our Approach 0.05 1.0 1.0 1.0
0.10 1.0 1.0 1.0
0.20 0.940 1.0 1.0

Comparative Approach 0.05 0.810 0.780 0.115
0.10 0.800 0.780 0.115
0.20 0.800 0.760 0.109

TABLE II: Percentage of the true sensitivity/specificity/trade-

off curve contained in the confidence bounds.

confidence labels, as stated in Assumption 1. This assumption

may be violated in contexts with few available samples or

when high-confidence labeling is particularly biased/inaccurate

— and then our theoretical guarantees might not hold. Our

case study has been performed on a dataset collected from

pediatric patients on a medical floor in a hospital, and the

alarms were labeled for being actionable. To apply our method

to a different setting, one may need to elicit different/more

labeling functions, and so the tightness and accuracy of the

confidence bounds may vary.

VIII. CONCLUSION

In this paper, we proposed an approach for estimating the

performance of a physiologic alarm suppression system with

access only to unlabeled data. Generative modeling is used to

produce probabilistic labels that serve as proxy to the unknown

ground-truth labels when computing suppression accuracy es-

timates. We then provide a confidence bound on these accuracy

estimates. Finally, we evaluated our method in a case study

for low SpO2 alarms and showed that we find mostly tight

confidence bounds that contain the true curve almost always.

This work suggests a handful of directions for future work.

First, we plan to automate the extraction of weak labeling

functions to satisfy the consistency assumption of generative

models, which will likely require explicitly encoding the de-

pendencies between labeling functions. Second, over-confident

(poorly-calibrated) probabilistic labels can have adverse effects

on the results of our method, hence we plan to explore

unsupervised calibration for data programming and/or develop

alternative approaches to producing probabilistic labels. Fi-

nally, we also seek to validate our approach on other alarm

types (e.g., tachycardia and high/low respiratory rate).
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APPENDIX A

OVER-CONFIDENT PROBABILISTIC LABELS

Neural networks have been shown to be over-confident on

their predictions [14]. This is problematic, especially in safety-

critical applications like medicine, because the predictor can be

wrong with high confidence. Our preliminary analysis shows

that state-of-the-art data programming is also generally over-

confident in its probabilistic labels. High-confidence, misla-

beled samples have the potential to negatively impact our

suppression accuracy estimates and confidence bounds.

We demonstrate miscalibration in data programming on the

low SpO2 alarm dataset from our case study. Figure 6 shows

the average confidence and actual accuracy of high-confidence

alarm subsets of the dataset generated via a generative model.

For suppressible alarms, we observe over-confidence in the

labels of approximately 10% for ε less than 0.42, and under-

confidence of approximately 2% for ε greater than 0.44.

Fig. 6: Average confidence versus accuracy for high-

confidence data subsets of varying label uncertainty epsilon.

For non-suppressible alarms, we observe significant over-

confidence for all choices of ε.
While there exist state-of-the-art methods to calibrate super-

vised models like neural networks [14], [15], there are no well-

established calibration techniques for unsupervised or even

weakly-supervised models. We aim to explore this direction

in future work.

APPENDIX B

THEOREM AND COROLLARY PROOF

We start with some indices I of datapoints X . We pick some

subsets of true-labeled indices and high-confidence indices:

I∗j ⊆ {n ∈ I | yn = j}
Ij ⊆ {n ∈ I | f(xn) = j ∧ g(xn) ≥ 1− εj}

Recall our assumption of consistent suppression accuracy:∣∣∣∣∣∣
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Then, let δj = 1− ηj , and for any suppression S : X → Y ,
the following holds:
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The steps taken above are justified as follows:

• The first step rewrites the expression based on the defi-

nition of Rj .

• The second step equivalently adds and subtracts several

expressions.

• The third step uses a triangle inequality:

� [|A+B + C| ≥ a+ b+ c] ≤
� [|A| ≥ a] +� [|B| ≥ b] +� [|C| ≥ c]

• The fourth step eliminates the second probability due to

our consistency assumption.

• The fifth step applies the Hoeffding’s inequality twice to

sums of Bernoulli variables and their expectations.

For the corollary, we are given a desired confidence pj :

pj = 2 exp
(−2|I∗

j |(cj − 1 + ηj − γj)
2)+ 2 exp

(−2|Ij | (γj)2)

We solve the above in terms of cj , obtaining the expression

for the bound size:

cj = 1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗j |
APPENDIX C

CASE STUDY LABELING FUNCTIONS

In this section, we describe how the guidelines from our

case study are encoded as sixty-two labeling functions.

1) LF-long-alarm-T labels non-suppressible if the

alarm duration is at least T seconds, otherwise it abstains.

LFs 1 to 3 use T = 60, 65, and 70 respectively.

2) LF-spo2-aboveX-belowY-overT labels non-

suppressible if SpO2 is in range (X,Y ] for longer

than T seconds since the alarm start, otherwise it

abstains. LFs 4 to 9 use parameter tuples (X,Y, T ) =
(80, 85, 120), (0, 80, 120), (70, 80, 100), (60, 70, 90),
(50, 60, 60), and (0, 50, 30) respectively.

3) LF-hr-aboveX-overT labels non-suppressible if

heart rate is above X for longer than T seconds, otherwise

it abstains. LF 10 uses X = 220 and T = 10.

4) LF-hr-aboveX-belowY-overT labels non-

suppressible if heart rate is in range (X,Y ] for

longer than T seconds, otherwise it abstains. LFs 11 to

14 use parameter tuples (X,Y, T ) = (0, 50, 10), (40 ·
α, 50 · α, 120), (30 · α, 40 · α, 60), and (0, 30 · α, 0)
respectively, where α is a scaling age factor taking value

of 3.833 for less than one month, 3.766 for one month

to less than two month, 3.733 for two month to less than

six month, 3.533 for six months and older.

5) LF-rr-aboveX-belowY-overT labels non-

suppressible if respiratory rate is in range (X,Y ]
for longer than T seconds, otherwise it abstains. LFs 15

to 18 use parameter tuples (X,Y, T ) = (0, 10, 120), (40·
α, 50 · α, 120), (30 · α, 40 · α, 60), and (0, 30 · α, 0)
respectively, where α is a scaling age factor taking value

of 0.933 for less than one month, 0.9 for one month to

less than two month, 0.866 for two month to less than

six month, 0.8 for six months and older.

6) LF-repeat-Xalarms-inT labels non-suppressible if

there has been at least X other low SpO2 alarms

within T seconds of the alarm, otherwise it ab-

stains. LFs 19 to 22 use parameter pairs (X,T ) =
(1, 15), (1, 30), (1, 60), and (10, 300) respectively.

7) LF-short-alarm-T labels suppressible if the alarm

duration is at most T seconds, otherwise it abstains. LFs

23 to 25 use T = 5, 10, and 15 respectively.

8) LF-recoverX-inT labels suppressible if

SpO2 recovers by more than X points within T
seconds of the alarm, otherwise it abstains. LFs 26 and

27 use parameter pairs (X,T ) = (20, 10) and (20, 15)
respectively.

9) LF-hr-tech-error-X labels suppressible if the ab-

solute difference between ECG heart rate and pulse

oximeter heart rate is greater than X at the time of alarm,

otherwise it abstains. LFs 28 and 29 use X = 20 and 30
respectively.

10) LF-bad-spo2-waveform-X-T labels suppressible

if there exists an outlier with value larger than

X within a T seconds window of the alarm in

the SpO2 waveform matrix profile, otherwise it ab-

stains. 3 LFs 30 to 40 use parameter pairs (X,T ) =
(8.4, 120), (7.8, 110), (7.2, 100), (6.6, 90), (6.0, 80),
(5.3, 70), (4.6, 60), (3.8, 50), (2.9, 40), (2.1, 30),
and (1.0, 20) respectively.

11) LF-bad-hr-waveform-X-T labels suppressible

if there exists an outlier with value larger

than X within a T second window of the

alarm in the heart rate waveform matrix profile,

otherwise it abstains. LFs 41 to 51 use (X,T ) =
(9.0, 120), (8.5, 110), (7.8, 100), (7.3, 90), (6.7, 80),
(6.0, 70), (5.4, 60), (4.7, 50), (3.9, 40), (3.1, 30),
and (2.1, 20) respectively.

12) LF-bad-rr-waveform-X-T labels suppressible

if there exists an outlier with value larger than

X within a T second window of the alarm

in the respiratory rate waveform matrix profile,

otherwise it abstains. LFs 52 to 62 use (X,T ) =
(8.7, 120), (8.1, 110), (7.6, 100), (7.1, 90), (6.5, 80),
(6.0, 70), (5.4, 60), (4.7, 50), (3.9, 40), (3.0, 30),
and (2.0, 20) respectively.

3To find anomalies in time-series (waveform) data we analyze their matrix
profiles. At a high-level, a matrix profile represents the dissimilarity between
each vital sign measurement in the data and the rest of the data. Hence large
values in the matrix profile correspond to outliers. We use the matrixprofile-ts
Python library (github.com/matrix-profile-foundation/matrixprofile).
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