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Abstract—The anterior cruciate ligament (ACL) is the most
commonly injured ligament in the body, accounting for more than
200,000 ACL tears occurring annually in the US and upwards
of 90% of patients choosing to undergo reconstruction surgery.
After the reconstruction surgery, approximately 30% of youth
patients go on to re-tear their ACL, and it has been proven
that repeated ACL reconstructions not only have inferior results
but can be devastating for all those involved. In this paper, we
propose RT-ACL, a system that enhances patient outcomes by
reducing their risk of an ACL re-tear by providing personalized
recommendations of modifiable risk factors that can be altered
during the patient’s recovery process. Our system leverages the
RT-ACL model that uses labeling functions designed by clinicians
to classify the risk level of an ACL re-tear. Further, it identifies
modifiable risk factors and suggests interventions to minimize
adverse outcomes and complications. We evaluated our system on
a dataset of 441 youth patients, 8-21 years of age, that underwent
an ACL reconstruction at the Children’s Hospital of Philadelphia.
The results indicate patients classified as low risk re-tear at a
rate of 12%, medium risk at a rate of 30%, and high risk re-
tear at a rate of 59%. This demonstrates those classified by our
system as high risk are 4.6 times as likely to re-tear their ACL
than those classified as low risk.

I. INTRODUCTION

The anterior cruciate ligament (ACL) functions to stabilize

the knee by resisting the combined motions of anterior tibial

translation and internal tibial rotation, thus providing rotational

stability to the knee [1]. Injuries to the ACL are common, and

if torn, the injured knee has a significant risk of instability,

increased risk of injury to other parts of the knee, and future

osteoarthritis [2]. Reconstruction of a torn ACL is a surgical

procedure that restores stability to the knee and decreases

the risk of subsequent injury. Approximately 200,000 ACL

reconstructions are performed annually in the United States,

costing more than two billion dollars; inclusive of surgery,

rehabilitation, physical therapy, etc. [3]. Recovery from an

ACL reconstruction generally takes more than six months and

requires a significant financial and time investment from the

patient [4]. Therefore, a repeat tear of the ACL is devastating

for the patient as well as their family, trainer, and surgeon.

re-tears occur in approximately 20% of patients [5], and it

has been demonstrated that repeated ACL reconstructions have

inferior results compared with the original [6].

ACL tears in youth patients have been rising [7] due to

increased and earlier participation in year-round sports [8],

higher clinical awareness of and recognition of the symptoms

of ACL tears [9], and diagnostic technologies such as magnetic

resonance imaging [10], [11]. Additionally, age is a recognized

risk factor for the re-tear of an ACL, with younger patients

being at a higher risk, approximately 30% compared to 4-

17% [12]–[15]. Further top-level athletes, such as those com-

peting at the National Collegiate Association Division 1 level,

have even higher re-tear rates at 37% [16]. The high reinjury

rates in younger patients have drawn significant concerns

from the research community prompting further exploration to

determine risk factors and the design mitigation strategies [17].

To date, researchers have identified risk factors [18]–[20],

created clinical protocols [18], [21], [22], and developed

technical algorithms [23], [24] to decrease the number of

re-tears after ACL reconstruction. Risk factors aid in the

identification of weaknesses in individual patients. However,

interactions between the risk factors still need to be explored

to gain a holistic understanding of the overall risk of specific

patients. Clinical protocols have been developed to determine

patients risk at the time of discharge. Similar to risk factors, the

clinical discharge protocols are highly variable and specialized

to specific subgroups of patients and clinical environments. To

our knowledge, a system that holistically evaluates a patient’s

overall risk, identifies modifiable risk factors, and suggests the

most significant risk factors to clinicians to develop interven-

tion methods from does not exist.

In this paper, we propose to identify patients at high risk

for re-tear after ACL reconstruction by developing the RT-

ACL model that leverages domain knowledge to classify the

risk level of a patient. Domain knowledge is collected from

clinicians and encoded in the form of labeling functions that

classify high vs. low risk of re-tear. These labeling functions

are weighted based on their calculated risk of re-tear. The

RT-ACL model outputs an overall vote used to determine a

patient’s risk level: high, medium, or low.
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Next, we evaluate the proposed classifier on a dataset

obtained from the Children’s Hospital of Philadelphia. The

dataset includes 442 youth patients, 8-21 years of age, that

have undergone an ACL reconstruction surgery. Consistent

with previous studies [12], [13], 27% of the patients in our

dataset have gone on to re-tear their ACL after their recon-

struction surgery. The dataset includes patient demograph-

ics, injury information, family history, surgery information,

recovery information, re-tear information, and rehabilitation

information. The results indicate patients classified as high

risk re-tear at a rate of 59%, medium risk at a rate of 30%,

and low risk at a rate of 12%. This demonstrates high-risk

classifications are 4.6 times as likely to re-tear than low-risk

classifications.

Finally, we create a feedback system that provides person-

alized recommendations for modifiable risk factors. These risk

factors can be altered during the patient’s recovery period to

decrease their risk of re-tear. The most significant risk factors

are chosen based on their impact and the ease with which

they can be modified. The weight of each risk factor and

category from the RT-ACL model determines the impact, and

the clinicians set the ease with which each risk factor can be

modified. The top five risk factors are chosen and displayed

to the clinicians for interpretation and conveyance back to the

patients.

The goal of this paper is to develop a system that can be

utilized to reduce the risk of ACL re-tears after reconstruction.

To achieve this goal, this system should holistically evaluate

a patient’s overall risk, identify modifiable risk factors, and

suggest the most significant risk factors to clinicians to develop

intervention methods from to reduce the risk of complications.

Specifically, the contributions of this work are as follows:

1) Development of the RT-ACL model that identifies youth

patients at high risk for re-tear by leveraging domain

knowledge in the form of labeling functions designed

by clinicians.

2) An evaluation of the RT-ACL model on a dataset ob-

tained from the Children’s Hospital of Philadelphia and

a comparison with other algorithms.

3) A clinical decision support system that provides person-

alized recommendations for modifiable risk factors to

lessen the risk of an ACL re-tear.

The remainder of this paper is structured as follows: Section

II summarizes the work related to this paper. In Section III,

we formulate our problem. Then, Section IV describes the

the RT-ACLSystem. In Section V, we evaluate our method

and compare it to other state-of-the-art methods. Finally, we

conclude our paper in Section VII.

II. RELATED WORK

In recent years, the high reinjury rate of patients who have

undergone ACL reconstruction surgery has drawn the interest

of the research community, particularly in younger patients.

This section discusses the results of that interest, including

the identification of risk factors, the establishment of clinical

protocols, and the development of technical algorithms.

A. Risk Factor Identification

The first step to understanding the high reinjury rate of

ACL reconstruction patients is to identify risk factors. A

systematic review of risk factors associated with ACL recon-

structions over 66 studies identified risks factors over three

categories: technical factors, patient-related factors, and the

factors associated with the status of the knee joint [25].

Technical factors are factors related to the graft itself, such

as graft size and tension. Patient-related factors are factors

related to a patient’s demographics, such as age and BMI.

Status of the knee joint takes into account other parts of

the knee, such as meniscus damage. Further, research has

been done into kinematic factors that are tested throughout a

patient’s recovery process, such as strength [26], mobility [27],

[28], and stability [29], [30]. These risk factors help identify

shortcomings in individual patients. Additional analysis should

combine risk factors and analyze their interactions to fully

understand the patient’s overall risk. RT-ACLleverages risk

factors such as those discussed here to determine a patient’s

overall risk. Additionally, we combine multiple risk factors

such as age and sex to further capture a patient’s risk.

B. Clinical Clearance Protocols

Once risk factors have been established, clinical protocols

for clearance to return to full activity can be developed.

Surveys [31]–[33] have highlighted this problem and noted

that protocols use factors such as isokinetic testing, time since

surgery, and functional performance. While clinical protocols

lead to better outcomes, they can be highly variable and

specific. Grindem et al. [24] created a discharge protocol

that leveraged quadriceps strength, hop testing, and symmetry

scores to determine if a patient was at high risk for re-tear

or other injuries at the time of return to sport. In a study of

male professional soccer players [22], a discharge protocol was

established that tested players’ isokinetic strength, dynamic

running, and functional hopping. These studies found that

a patient who did not meet all the requirements of these

protocols would be at four times higher risk than those who

did. As with risk factors, these clinical discharge protocols

are highly variable and are frequently specialized to specific

subgroups of patients or clinical equipment. RT-ACLseeks to

account for subgroups of patients with additional features and

risk factors. For example, we use sport played as a risk factor.

This allows for a more versatile re-tear prediction system.

C. Technical Algorithms

Further, technical contributions have been made via machine

learning and data analytics. In a study of 503 athletes, Nguyen

et al. [34] used a multivariate logistic regression over sex, age,

and graft size while keeping other variables such as surgical

technique and rehabilitation protocol stable. They found that

female patients younger than 25 with a graft size less than

8 mm were at higher risk of a re-tear. Paterno et al. [23]

used classification and regression tree to classify the risk of

re-tear for patients based on clinical measures such as age,

sex, knee-related confidence, and performance of triple hop
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for distance. Their results show that their high-risk group is

five times more likely to suffer a second ACL injury. In a study

of over 700 high school and college-age athletes (14-22 years),

the MOON knee group used a multivariable regression model

to demonstrate a hamstring autograft was 2.1 times more

likely to fail than a bone tendon bone autograft [35]. While

their study shows the predictive ability of non-modifiable

risk factors, it does not account for postoperative factors that

can be modified to support a better rehabilitation outcome,

such as neuromuscular training, changes in activity level, and

time to return to sport. In RT-ACL, we account for these

factors allowing us to present a more holistic view of the

patient’s recovery which can have an even greater contribution

to the risk prediction of graft rupture. These models establish

groupings of patients that are at higher risk for re-tear. While

this information is useful and can be incorporated into RT-

ACLas additional risk factors, it is not always helpful to each

individual patient. RT-ACLassesses each patient’s risk of re-

tear based on their individual statistics on their risk factors.

III. PRELIMINARIES AND PROBLEM FORMULATION

This section describes the dataset used for training and

evaluation in this paper, the labeling functions used to encode

clinical knowledge, and the formulation of the problem we

solve. First, we discuss our dataset and its limitations. Next,

we describe the expert knowledge on the risk of ACL re-tear

collected from the clinicians and our encoding method. Lastly,

we present the problem we address in this research.

TABLE I: Dataset Information

Category # Missing Example

Demographics 6 5% Age, DOB
Injury Inforation 2 2% Date, Sport Played
Family History 2 43% Relative with ACL Tear?
Surgery Information 20 9% Type of Reconstruction
Recovery Information 2 14% Date of Release to Activity
Re-tear Information 7 59% Time to Repeat ACL Tear
Rehab Information 213 79% Triple Hop LSI

A. Dataset

This study was approved by the Institutional Review Board.

Our dataset was collected in a retrospective analysis of 441

youth patients, 8-21 years of age, that have undergone a

primary ACL reconstruction surgery. Overall, in our entire

dataset, 27% of patients went on to re-tear their ACL. This

data was sampled from a more extensive database of patients

from the Children’s Hospital of Philadelphia, over which there

was approximately a 15% re-tear rate. We discuss the disparity

in these numbers in the following paragraph. Overall, there

are 223 males and 218 females in this dataset. In total, there

are 252 features that we break down into seven categories as

shown in Table I. Individual patients had different approaches

to their rehabilitation, causing many patients in our dataset to

have missing data points. This missing data will need to be

accounted for in our system. We show the amount missing

data per category in Table I.

We split our data Z = (X,Y ) into three portions Z1 =
(X1, Y1) and Z2 = (X2, Y2), and Z3 = (X3, Y3). Z1 is the

training dataset comprised of 60% of our total data. Z2 is

the testing dataset comprised of 20% of our dataset. Z3 is

comprised of 20% of our dataset and will be used in our

evaluation as a hold-out set. Since there is a class imbalance

between patients who re-tear and those who did not, we asked

for a larger portion of re-tears for our training dataset, Z1. The

percent of re-tears in each dataset are as follows- Z1: 32%, Z2:

32%, Z3: 6%. Overall, 32% of our test set, Z2, or 28 patients

go on to re-tear. This ensures that we will have re-tears in the

high, medium, and low categories. Our hold-out set has a re-

tear rate of 6%; this gives us 5 patients for evaluation between

the three risk categories.

B. Labeling Functions

As shown above, our dataset includes a high number of

features. We collected a list of the most important features or

combinations of features that we will refer to as risk factors

from our clinicians. Next, we asked clinicians to develop a set

of labeling functions such that for each risk factor, labeling

functions were developed to distinguish between high and low-

risk patients. Additionally, any patient not encompassed in the

high or low risk is considered unknown. This can be due to

missing data or a patient being outside of the bounds set by

the high and low-risk labeling functions.

In total, the clinicians distinguished 34 risk factors across

all seven categories of data. To understand the correlations

between these risk factors, we calculate the correlation coef-

ficient between each pair of risk factors. The results of this

are shown in Figure 1a. In this figure, negative one indicates a

negative linear correlation, zero indicates no linear correlation,

and one indicates a positive linear correlation. Most pairs

of risk factors show no to low linear correlation. There are

three types of correlated pairs in our system: timing pairs,

encapsulated pairs, and symmetry pairs.

• Timing Pairs are pairs of correlated risk factors that

occur in the same time frame. For example, Age at
Surgery and Age at Return to Sport are expected to occur

between six months and a year of each other. This is due

to recovery processes being approximately six months.

• Encapsulated Pairs are pairs of correlated risk factors

where one risk factor is a subset of another. For example,

Sex and Age & Gender or 1st degree relative with ACL
tear and Any relative with ACL tear encompass one other

so their correlation is expected to be high.

• Symmetry Pairs are pairs of correlated risk factors where

the patient targets symmetry between the risk factor

during their recovery process. The recovery process aims

to develop symmetry in strength and flexibility between

the Involved (IL) and Uninvolved limb (UL). As seen

in figure 1a, this occurs in a few pairs including 180
deg/s UL peak torque Hams Normalized to Body Weight
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(a) Risk Factor (b) Labeling Function

Fig. 1: Correlation Matrices. IL: Involved Limb, UL: Uninvolved Limb, LSI: Limb Symmetry Index, *: Normalized to Body

Weight, **: Normalized to Body Height

and 180 deg/s IL peak torque Hams Normalized to Body
Weight.

While the risk factors themselves may be correlated, the

labeling functions tell a different story. For example, the high-

risk for Age at Surgery is 12-17 years of age, and low-risk is

less than 12 and greater than 17 years of age. For, Age at
Return to Sport, high risk is between 13 and 18 years of age,

and low-risk is over 18. It is unknown what risk those under

the age of 13 are at. Since these labeling functions provide

more information than the data itself, we do not remove any

risk factors from our dataset based only on this. We further

evaluate correlations based on the labels set by our labeling

functions where one is a high risk, zero is unknown, and

a negative one is a low risk. Correlations between pairs of

datapoints drop drastically using this comparison. The results

are shown in Figure 1b.

From these figures, we determine that we should drop a few

risk factors. A single timing pair remains highly correlated:

Age at Surgery and Age at Return to Sport. Age at Surgery
is also encapsulated in Age & Gender. Additionally, we see

that Sex and Age & Gender are still highly correlated. To

resolve these high correlations, we remove Age at Surgery and

Sex from our risk factors. While no symmetry pairs remain

highly correlated, they should not be removed as they are a

goal of rehabilitation. Instead, new features should be devised

that encompass this symmetry. For example, many of the risk

factors already do this with a Limb Symmetry Index.

C. Problem Formulation

Our dataset described above gives us our input space X of

patient information, such that each x ∈ X describes a feature

related to a patient’s demographics, injury information, family

history, etc. The features are limited to those encompassed

by the list of risk factors obtained from the clinicians. Addi-

tionally, we have a label space Y = {−1, 1} that represents

whether a patient has gone on to re-tear their ACL after their

reconstruction. Thus, the ground truth labeling function can

be described as fgt : X �→ Y .

Additionally, we collected a set of labeling functions from

clinicians that distinguish high and low risk factors for re-

peat ACL tears. These labeling functions use a label space

Ȳ = {high, low} corresponding to two conclusive and mu-

tually exclusive risk levels of ACL re-tear: high and low.

To make the system intuitive, we extend our label space

to Ŷ = {high,mid, low} by adding a label for medium-

level risk. Thus, we have two sets of binary partial label

functions: (1) a set H such that ∀fh ∈ H , fh : X �→ Ŷh

where Ŷh = {high,¬high} such that ¬high = {low,mid}
and (2) a set L such that ∀fl ∈ L, fl : X �→ Ŷl where

Ŷl = {low,¬low} such that ¬low = {mid, high}.
The goal of this paper is to evaluate each patients’ risk for

re-tearing their ACL. By using X , Y , H and L, we seek a

labeling function f∗ : X �→ Ŷ such that f∗ the probability

of a re-tear occurring decreases from the high to medium to

low-risk category. From the literature, we found that ACL re-

tears occur in approximately 30% of patients. In our dataset,

we saw a similar occurrence at 32% of patients. We define

the rate of occurrence as r. Thus, optimally, we seek to find

a labeling function such that

Pr[fgt(x) = 1|f∗(x) = high] > 2r

Pr[fgt(x) = 1|f∗(x) = mid] = r

Pr[fgt(x) = 1|f∗(x) = low] <
1

2
r

(1)
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In the following section, we introduce RT-ACL as a solution

to the problem statement above.

IV. RT-ACL SYSTEM

The RT-ACL System leverages domain knowledge from

clinicians and machine learning techniques to identify a pa-

tient’s risk level for ACL re-tear. Once the risk level has been

determined, it recommends modifications that can be made to

lessen this risk level. It is comprised of three components:

the RT-ACL model, risk factor identification, and feedback

system. The RT-ACL model classifies the risk level of each

patient and outputs impact scores for each risk factor. Risk

factor identification determines which risk factors most impact

a patient’s risk level by using the ease and impact of each

risk factor combined with a label of modifiable/not modifi-

able. The feedback system displays the risk level and most

significant risk factors back to the clinician for interpretation

and conveyance back to the patient. An overview of the RT-

ACL system is depicted in Figure 2.

A. RT-ACL Model

The RT-ACL model uses majority vote to classify the risk

level of each patient and outputs impact scores for each risk

factor as shown in Algorithm 1. It is trained using training

data, Z1, from which weighting is derived. This weighting

determines the impact score for each risk factor. Once trained,

it takes as input a patient’s data and outputs their risk level:

high, medium, or low.

First, we split our data Z = (X,Y ) into three portions

Z1 = (X1, Y1) and Z2 = (X2, Y2), and Z3 = (X3, Y3). Z1

is the training dataset comprised of 60% of our total data. Z2

is the testing dataset comprised of 20% of our dataset. Z3

is comprised of 20% of our dataset and will be used in our

Evaluation Section in a hold out set evaluation. Since 32% of

our dataset or 114 patients go on to re-tear, we must assure

that enough re-tears are in the test set so that can be test high,

medium, and low categories. Using 20% of our patients as a

test set gives us approximately 20 re-tear patients. By inputting

all x ∈ X1 into the labeling functions in H and L, we can

compute a weight corresponding to each function as follows:

Given a labeling function fh ∈ H , its weight wfh is

wfh =

∑
x∈X1

1(fh(x) = high ∧ fgt(x) = 1)∑
x∈X1

1(fh(x) = high)
(2)

i.e. the percentage of patients that actually go on to re-tear out

of the patients labeled as high risk by fh.

Similarly, given a labeling function fl ∈ L, its weight wfl

is

wfl =

∑
x∈X1

1(fl(x) = low ∧ fgt(x) = 1)∑
x∈X1

1(fl(x) = low)
(3)

i.e. the percentage of patients that go on to re-tear out of

the patients labeled as low risk by fl. We can see that the

weights wfh , wfl ∈ [0, 1] as they are percentages. Moreover,

the weights measure a labeling functions actual risk using the

ground truth fgt in the dataset X1. For every fh ∈ H , as wfh

approaches 1, the calculated risk level increases. On the other

Algorithm 1 RT-ACL Model Algorithm

Input: Training Dataset Z1 = (X1, Y1), High-Risk Label-

ing Functions H , Low-Risk Labeling Functions L, Hyper-

parameters ch, cl, Thresholds tlm, tmh

Output: Risk Estimation Function f∗

Obtain the ground truth labeling function fgt from Z1

Initialize empty lists wL, wH , s
for fh in H do
wfh =

∑
x∈X1

1(fh(x)=high∧fgt(x)=1)
∑

x∈X1
1(fh(x)=high)

wH .append(wf h)
end for
for fl in L do

wfl =
∑

x∈X1
1(fl(x)=low∧fgt(x)=1)

∑
x∈X1

1(fl(x)=low)

wL.append(wf l)
end for
for x in X1 do

sx = ch
∑

wfh∈wH

wfh1(fh(x) = high)

+cl
∑

wf l∈wL

wfl1(fl(x) = low)

s.append(sx)

end for
for sx in s do

Define f∗(x) as

⎧⎪⎨
⎪⎩

low sx < tlm

mid tlm ≤ sx < tmh

high sx ≥ tmh

end for
return f∗

hand, for every fl ∈ L, as wfl approaches 0, the calculated

risk level decreases.

Next, we compute the majority vote by applying the fol-

lowing equation to each x ∈ X:

s(x) = ch
∑
fh∈H

wfh1(fh(x) = high)

+cl
∑
fl∈L

wfl1(fl(x) = low)
(4)

where ch and cl are hyperparameters chosen as coefficients.

The sum s(x) ∈ R shows an estimated numerical value of

ACL re-tear risk: the larger s(x), the higher risk the patient

has. Ideally, ch > 0 and cl < 0 for a system given highly

accurate labeling functions.

Finally, we will pick two thresholds tlm and tmh ∈ R to

split the low, medium and high risk levels based on the s(x)
computed. The final ACL re-tear risk estimation function f∗ :
X �→ Ŷ is

f∗(x) =

⎧⎪⎨
⎪⎩

low s(x) < tlm

mid tlm ≤ s(x) < tmh

high s(x) ≥ tmh

(5)
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Fig. 2: System Architecture

B. Risk Factor Identification

Once a patient’s risk level is determined, our system identi-

fies the most significant risk factors that can be altered during

the patient’s recovery process to decrease their risk of re-tear.

First, we must determine whether a risk factor is modifiable or

not. Then, we rank the risk factors by their impact on their risk

level and the ease at which they can be modified. The most

important modifiable risk factors are chosen based on their

impact and ease of modification. These risk factors are then

presented to the clinicians for interpretation and conveyance

back to the patient.

Most Significant Risk Factors Performance Metrics:
For each risk factor, we consider the following performance

metrics

• Modifiable (m) The clinicians labeled each of the risk

factors used in our system as modifiable(1) or not

modifiable(0). Thus, m = {0, 1} Examples of modifiable

risk factors include body mass index(BMI), single-leg

hop limb symmetry index, and time to release for activity.

Examples of non-modifiable risk factors are first-degree

relative with an ACL tear, Meniscus tear, and sex.

• Impact (i) is determined by the weight of the risk factor

used in the RT-ACL model. Thus i = wfh or wfl based

on whether a low risk or high risk labeling function was

used.

• Ease of Modification (e) is set by the clinicians, where

risk factors are ranked from one to five, with one being

the easiest to modify and five being the most difficult.

Leveraging these metrics, for a given patient, RT-ACLaims

to solve the following optimization problem,

j∗ = arg max
j∈dim(x)

m(x[j]) ∗ (i(x[j]) + e(x[j])) (6)

Where dim(x) is dimensions of x that have been normalized

and j∗ is the top risk factor identified for our patient. For each

patient, we identify the top k risk factors. Once the top risk

factor is identified, we remove it from the set of possible risk

factors and repeat this process k−1 additional times. Once the

most significant risk factors have been determined, we display

them to the clinician for interpretation and conveyance to the

patient.

C. Feedback System

Once the risk level has been determined and the most

significant risk factors have been identified, we convey this

information to the clinicians. Currently, we display the five

most significant risk factors based on their modifiability, im-

pact, and ease of modification. They are ordered from most to

least significant. Each significant risk factor is displayed with

the labeling functions showing the high and low risk categories

along with their absolute risk. They use this information to

formulate a rehabilitation program specifically tailored to each

individual patient. Patients are then monitored continuously

throughout their rehabilitation process. Based on the ongoing

data collection, risk levels and risk factors can be reassessed as

the patient progresses. As this occurs, rehabilitation programs

can be updated to provide an optimal patient outcome.

V. EVALUATION

In this section, we evaluate the performance of our RT-

ACL model. First, we analyze our labeling functions and their

predictive capabilities over the dataset. Then, we consider

four weighting methods and two hyperparameter schemes

for our RT-ACL model. The weighting methods allow us to

assign greater importance to risk factors or labeling functions

that are more predictive of re-tear. Hyperparameters allow

for exploration of the impact of high vs. low-risk factors.

Once weights and hyperparameters are chosen, we perform

cross-validation over our dataset obtained from the Children’s

Hospital of Philadelphia. Finally, we further evaluate the RT-

ACL algorithm over a hold-out set.

A. Labeling Function Accuracy

The labeling functions encoded by the clinicians allow us

to incorporate professional insight into the RT-ACL model.

The purpose of the labeling functions used in this research is

to distinguish high and low-risk patients based on individual

risk factors. For example, a high-risk labeling function for

the feature Age at Surgery would be an age between 12 and
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TABLE II: Labeling Function Analysis. W: Weight, #: Total

Number of Patients in the Risk Level, IL: Involved Limb,

UL: Uninvolved Limb, LSI: Limb Symmetry Index, PT: Peak

Torque, *: Normalized to Body Weight, **: Normalized to

Body Height

Risk Factor
High Risk Low Risk Unlabeled

W # W # #

Age at Return to Sport 37 188 11 27 139
Delay to Surgery 32 31 14 14 323
Time to Release for Activity 33 227 23 51 76
Time to repeat ACL tear 92 36 69 22 296
Age and Sex 29 193 37 161 0
BMI 32 284 25 8 62
1st Degree Relative ACL Tear 23 40 31 87 227
Any relative ACL tear 26 31 30 96 227
Meniscus tear 28 226 37 71 57
Meniscus resection 23 92 33 205 57
Graft Size 18 11 38 126 57
180 deg/s LSI Quads 31 101 41 130 123
IL Hams/Quads Ratio 32 307 34 44 3
UL Hams/Quads Ratio 32 304 36 47 3
180 deg/s IL PT Quads* 28 110 35 241 3
180 deg/s IL PT Hams* 26 109 36 242 3
180 deg/s Ttl Work LSI Quads 28 139 36 129 86
180 deg/s Ttl Work LSI Hams 34 173 29 80 101
180 deg/s IL Ttl Work Quads 36 110 31 240 4
180 deg/s UL PT Quads* 26 221 43 131 2
180 deg/s UL PT Hams* 33 109 32 242 3
Single Leg Hop LSI 19 32 43 129 193
Triple Hop LSI 31 29 36 140 185
Crossover Hop LSI 54 13 53 69 272
Timed Hop LSI 18 11 53 86 257
Vertical Hop LSI 34 62 40 111 181
IL Triple Hop Distance(cm)** 43 101 39 106 147
IL Vertical Jump(cm)** 44 18 47 82 254
IL Triple & Crossover Hop Dif 52 42 54 82 230
UL Triple & Crossover Hop Dif 54 46 53 78 230
IL Timed Hop 49 102 55 45 207
Sport Played at Injury 37 253 11 34 67

17. Given a data point a, we would encode this as 12 ≤
a < 17. A complete list of the labeling functions used in our

analysis is given in the Appendix in Table VI. We calculate

the weight of these risk factors, as shown in Equation 2 and

Equation 3 which is used in our RT-ACL model. The weights

for our labeling functions are shown in Table II. We display the

number of patients in each category in the # columns. Further,

we present the number of data points that remain unlabeled

by our high and low-risk labeling functions in the unlabeled

column of this table. These data points can either be missing

or do not satisfy the conditions of high or low risk.

We limited our experts to a single opportunity to design our

labeling functions. This creates an environment in which the

experts are able to impart their domain specific knowledge

without biasing it based off of labeling function perfor-

mance on our specific dataset. This creates labeling functions

that should be more easily extrapolated to more generalized

datasets. Individually, our labeling functions do not always

perform as expected. 20 out of 32 total labeling functions can

be considered reversed where the low-risk labeling function

has a higher accuracy or predictive capability than the high-

risk labeling function. For example, Age and Sex has a higher

predictive capability for the low-risk labeling function at

37% compared to the high-risk labeling function at 29%.

Additionally, some labeling functions cover a low number of

data points. Four of the thirty-two total labeling functions do

not cover at least two-thirds of our dataset.

B. Weighting Methods

Weighting of risk factors or individual labeling functions

allows greater importance to be assigned to those that are more

predictive of re-tear. We evaluated four different weighting

methods for our RT-ACL model: equal weighting, risk factor

weighting, calculated risk weighting, and clinician weighting.

As stated in Section IV, our algorithm has two weights, wfh

for the high risk labeling functions and wfl for the low risk

labeling functions. The calculation as well as a discussion of

the intuition of each weighting method are as follows:

• Equal Weighting is the simplest weighting method. Each

labeling function is given an equal vote, i.e. wfh = wfl =
1 where each labeling function gets one vote. This method

puts equal weight on each risk factor and risk category.

This indicates that being classified as high risk in BMI

is just as important as being classified low risk in graft

size or high risk in delay to surgery.

• Risk Factor Weighting weights each risk factor individ-

ually by calculating the overall risk of those classified

in either the high or low risk labeling functions. The

weight for each risk factor is calculated by averaging

the weights for the high and low risk labeling function

given by Equation 2 and Equation 3. In this method,

the importance is placed on the risk factor. If a patient

moves from a high risk category to a low risk category

for a single risk factor, the high risk is assigned the same

importance as the low risk.

• Labeling Function Weighting weights each labeling

function individually. We calculate the weight for the

high-risk labeling functions using by Equation 2 and low-

risk labeling functions using Equation 3. The values for

the weights are shown in the W columns in Table II. In

this method, the importance is placed on the risk category.

It allows for a distinction between the importance of

being in a high or a low risk category in a single risk

factor. For example, high risk weight is 37 and low risk

weight is 11 for sport played at injury. In the case of this

risk factor, it is more important to not be in the high risk

category than to be in the low risk category.

• Clinician Weighting allows for additional domain

knowledge to be incorporated into the algorithm. We

collected weights for our labeling functions from two

clinicians. The weights ranged from one to five, where

five is the most predictive of re-tear, and one is the

least. Overall, the clinicians exactly agreed on 27% of

the weights with an average difference of 1.2 per risk

factor. This shows that even though there wasn’t an exact

agreement on a high number of risk factors, clinician
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TABLE III: Weighting Methods and Hyperparameter Tuning Results

Weighting Hyperparameter High Risk # High Risk % Mid Risk # Mid Risk % Low Risk # Low Risk %

Equal ch = 1, cl = −1 26 11.54 102 32.30 101 37.62
Equal ch = cl = 1 103 50.49 230 25.33 21 14.28
Risk Factor ch = 1, cl = −1 37 13.89 233 31.76 84 41.67
Risk Factor ch = cl = 1 85 56.47 195 28.35 74 12.51
Labeling Function ch = 1, cl = −1 17.50 31.22 237 31.22 76 43.42
Labeling Function ch = cl = 1 83 59.04 184 29.51 87 11.49
Clinician 1 ch = 1, cl = −1 52 30.77 252 31.35 49 38.78
Clinician 1 ch = cl = 1 89 49.44 214 28.50 50 16.00
Clinician 2 ch = 1, cl = −1 27 25.93 242 31.41 84 36.91
Clinician 2 ch = cl = 1 115 48.96 219 25.57 19 5.25
Clinician Average ch = 1, cl = −1 30 20.00 243 31.82 81 38.27
Clinician Average ch = cl = 1 99 50.50 222 27.03 33 12.12
Goal >64 ≈32 <16

weighting was similar. We evaluated each clinician’s

weights individually as well as averaged.

C. Hyperparameter Tuning

Hyperparameters allow for exploration of the impact of

high vs. low-risk factors. Intuitively, high-risk factors should

add to the overall vote while low-risk factors should subtract.

However, in practice, this is not always the case. As discussed

above, we showed that many of our labeling functions have

a reversed predictive capability. To determine how this affects

our system, we evaluate an additional hyperparameter scheme.

Our RT-ACL algorithm has two hyperparameters, ch and cl, as

discussed in Section IV. The most intuitive setting for these

hyperparameters is ch = 1 and cl = −1, where the high-

risk labeling function adds to the total vote, and low-risk

labels subtract from the total vote. An additional setting is

ch = cl = 1, where all labels add to the vote, and the amount

is solely determined by the weight.

TABLE IV: Demographics of Evaluation Sets

Evaluation Dataset % Re-tear Age Range Gender(M/F)

CV1 Train 32 8.3-20.7 145/137
CV1 Test 34 8.5-21.0 32/39
CV2 Train 32 8.3-21.0 139/143
CV2 Test 32 9.8-19.7 38/33
CV3 Train 31 8.3-21.0 143/139
CV3 Test 37 8.7-20.7 34/37
CV4 Train 35 8.5-21.0 139/144
CV4 Test 21 8.3-19.8 38/32
CV5 Train 31 8.3-21.0 143/141
CV5 Test 31 10.6-18.5 35/35
Hold Out Validation 6 9.8-21.5 46/42

D. Performance Analysis

The results from our four weighting methods combined with

our two hyperparameters are shown in Table III. Additionally,

we show the goal for the different risk level classifications as

defined in the Problem Formulation. Overall, the ch = cl = 1

hyperparameter outperformed the ch = 1, cl = −1 hyper-

parameter, further exemplifying the high number of reversed

labeling functions. The best overall performance came from

the labeling function weighting with ch = cl = 1 for

hyperparameters. It has the highest risk prediction of all of

the high-risk categorizations at 59.04%. While this does not

achieve the goal of twice the dataset re-tear rate of 64%, it

comes the closest of all the high-risk categories. Its medium

risk and low-risk categorizations meet the goals stated in the

problem formulation.

E. Cross Validation

We perform further evaluation on the RT-ACL model that

leverages labeling function weighting and ch = cl = 1 for

hyperparameters. In order to evaluate the performance of our

weighted RT-ACL model, we perform a 5-fold patient cross-

validation on the dataset obtained from the Children’s Hospital

of Philadelphia. We use datasets Z1 and Z2 in our cross

validation. We combine the datasets and randomly partitioned

into five equal-sized partitions of patients. In each fold; four

partitions are used for training and one for testing. The process

is repeated five times such that each subgroup is used for

validation exactly once.

TABLE V: Cross Validation Results

Fold HR # HR % MR # MR % LR # LR %

1 20 55.00 28 18.18 22 18.18
2 22 54.55 31 45.16 18 5.56
3 27 48.14 30 10.00 13 7.69
4 10 80.0 30 33.33 30 10.00
5 15 46.67 26 44.00 29 20.68

The results of the cross validation are shown in Table V. In

each fold, we see that the high-risk category has the highest

percentage of re-tears, followed by mid-risk and low risk.

On average, the high-risk category has a 53% chance of

re-tear, the medium risk category has a 30% chance of re-

tear, and the low-risk category has a 16% chance of re-tear.
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Additionally, we present the demographics for each of our

training and test sets for the cross validation in Table IV.

From this we see that the fourth partition’s test set has a

much lower re-tear percentage, 21% compare to an average

of 31.6%. When we look to our results in Table V, we see

that our RT-ACLmodel still performs as expected. Fold two

and five had a high percentage of re-tears in their medium

risk bins. Optimally, we expect to be closer to 32%. When

looking into the demographics, these folds had a smaller age

range within the test set. This should be explored in future

work to determine if age should play a greater factor in our

RT-ACLmodel.

F. Holdout Evaluation

Additionally, we tested our model using the holdout dataset,

Z3. This dataset was not used in any of the previously

described analysis or model development. Overall, our holdout

dataset contained 88 patients of which only five went on

to re-tear. Of these five patients two were high risk, two

were medium risk, and one was low risk. This is a very low

number of re-tears but the re-tear percentages for each of these

categories were 8.0%, 5.4%, and 4% respectively. The results

are promising as consistent with our goals for the system we

seek to accomplish twice the re-tear rate(12%) of the entire

dataset in the high risk category, a similar re-tear rate(6%)

in the medium risk category, and half the re-tear rate(3%)

in the low risk category. While our system did not perfectly

meet these goals, it does show the stratification between the

categories and with more data, can be evaluated further in the

future.

VI. DISCUSSION AND FUTURE WORK

Future work in this research area should encompass the

following: First, additional risk factors can be identified with

targeted studies and literature reviews. Second, new algorithms

and updates to the existing algorithms can be examined to

increase the performance of the model. Finally, confidence

metrics can be added to our risk prediction to make our

predictions more robust.

A. Risk Factors

In this work, we focused on risk factors provided by our

clinicians. Since our clinicians collected our dataset and devel-

oped our labeling functions, it creates a preference for our RT-

ACL model towards our data. While this is expected, to extend

the model to handle other datasets, we can add additional risk

factors and re-weight our algorithm. Additionally, a literature

review can be done to collect already known risk factors that

have been evaluated by others. If these risk factors are included

in our dataset, we can evaluate the new risk factors on our

dataset to set the weights for our RT-ACL model.

As features are added, it is possible that correlations may

develop. While we do not seek to overweight the importance of

correlated features, we can use them interchangeably, allowing

for a more robust model. This would allow our model to be

used more effectively on new datasets with a different feature

space. For example, age and sex could be exchanged for age
and/or sex. Further, this would allow our model to be tailored

to specific surgeons, clinics, and rehab facilities.

B. Model Updates
In this work, we saw that many labeling functions did not

perform as expected on our dataset, i.e., the low-risk category

had a higher re-tear rate than the high-risk category. Regardless

of this, we were able to create an accurate model that could

predict a patient’s risk of re-tear. To further improve our

model, an investigation into these labeling functions should be

done including a literature and dataset review. In future work,

more intelligent labeling functions can be designed to promote

the use of new models and hyperparameters. Further, more

sophisticated machine learning models can be investigated to

potentially increase the performance of RT-ACL.

C. Confidence
Currently, our majority vote model handles missing data

by considering the risk as unlabeled; thus, a high or low-

risk category is not assigned. To take the missing data into

consideration, a confidence score could be developed. In its

simplest form, it could be based on the number of risk factors

for which a patient has data recorded. For example, if a patient

has 80% of the risk factors, we could give a confidence score

of 80% for their risk level. Since 20% of the data was missing,

we cannot evaluate their risk for these risk factors. This could

also be adapted to express the percentage of the total weight

of the risk factors that could be evaluated.
If a patient is missing information, the system could recom-

mend that this information be gathered. As discussed above,

similar risk factors that are highly correlated could be identi-

fied as replacements for those targeted in our system. With this

in mind, the confidence score can be updated based on how

similar these metrics are. Additionally, a threshold should be

established for the minimum number of risk factors that can

lead to an accurate risk level prediction. If a patient does not

reach that threshold, then no risk level prediction should be

given, just the risk factor data that should be collected.

VII. CONCLUSION

In this paper, we presented RT-ACL, a system that identifies

high-risk patients and determines their most significant risk

factors to reduce ACL reinjury risk. RT-ACLuses a RT-ACL

model that leverages labeling functions designed by clinicians

to classify the risk level of an ACL re-tear. Once a risk

level has been determined, it identifies modifiable risk factors,

and suggests the most significant risk factors to clinicians

to develop intervention methods from to minimize adverse

outcomes and complications. We evaluated our system on

a dataset of 441 youth patients, 8-21 years of age that

underwent an ACL reconstruction at the Children’s Hospital

of Philadelphia. The results indicate patients classified as high

risk re-tear at a rate of 59%, medium risk at a rate of 30%,

and low risk at a rate of 12%. This demonstrates that those

classified by our system as high risk are 4.6 times as likely to

re-tear their ACL than those classified as low risk.
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APPENDIX A

EXTENDED LABELING FUNCTIONS

In the following table we present the high and low risk labeling functions as provided by the clinicians. If the high and low

risk categories did not encompass all the patients, they were put in the Unknown category. This includes null values.

TABLE VI: **normalized to height, * normalized to weight, std: standard deviation

Feature High Risk Low Risk Unknown

Age at Surgery 12 ≤ x < 17 (x < 12)|(x ≥ 17)
Age at Return to Sport 13 ≤ x < 17 x ≥ 18 (17 ≥ x > 18)|(x < 13)
Delay to Surgery x ≤ 21 x > 21
Time to Release for Activity x ≤ 10.5 x > 10.5
Time to repeat ACL tear 1 ≤ x ≤ 3 x > 3 x < 365
Sex x == F x == M

Age(a) & Sex(s)
(a ≥ 12)&(s == F )
(a < 12)&(s == M)

(a < 12)&(s == F )
(a ≥ 12)&(s == M)

BMI x < 25 x ≥ 35 (x ≥ 25) & (x < 35)
1st degree relative with ACL tear x == Y es x == No
Any relative with ACL tear x == Y es x == No
Meniscus tear x == Y es x == No
Meniscus resection x == Y es x == No
Graft Size x ≤ 7.5 x ≥ 8 (x > 7.5)&(x < 8)
180 deg/s LSI QUADS x ≤ 90 x > 90
Involvled Limb Hams/Quad ratio (x < 60)|(x > 65 (x >= 60)&(x <= 65)
Uninvolvled Limb Hams/Quads Ratio (x < 60)|(x > 65) (x >= 60)&(x <= 65)
180 deg/s involved limb peak torque quads* (x > std)|(x < std) (x <= SH)&(x >= SL)
180 deg/s involved limb peak torque hams* (x > std)|(x < std) (x <= SH)&(x >= SL)
180 deg/s Total Work LSI Quads (x < 90) (x >= 90)&(x <= 100) x > 100
180 deg/s Total Work LSI Hams (x < 90) (x >= 90)&(x <= 100) x > 100
180 deg/s Involved limb total work Quads (x > std)|(x < std) (x <= SH)&(x >= SL)
180 deg/s Involved limb total work Hams (x > std)|(x < std) (x <= SH)&(x >= SL)
Single Leg Hop LSI x < 90 x ≥ 90 & x ≤ 100 x > 100
Triple Hop LSI x < 90 (x >= 90)&(x <= 100) x > 100
Crossover Hop LSI x < 90 (x >= 90)&(x <= 100) x > 100
Timed Hop LSI x < 90 (x >= 90)&(x <= 100) x > 100
Vertical Hop LSI x < 90 (x >= 90)&(x <= 100) x > 100
Involved Limb Triple Hop Distance(cm)** ((2.5 < x ≤ 3)|(x < 1.9) (x ≥ 1.9)&(x ≤ 2.5) x > 3
Involved Limb Vertical Jump* x < .1 x > .15
Triple and Crossover Hop Involved Difference (x < 0)|(x > 24) x ≥ 0 0 < x ≤ 24
Triple and Crossover Hop Uninvolved Difference (x < 0)|(x > 24) x ≥ 0 x ≤ 24
Involved Limb Timed Hop x ≥ 2 x < 2

Sport Played at Injury

Basketball
Field Hockey

Football
Lacrosse
Rugby
Skiing
Soccer

Volleyball

Baseball
Softball
Running

Swimming
Non-Sport Injuries

Cheerleading
Gymnastics
Ice Hockey

Tennis
Squash

Snowboarding
Wrestling
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