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Verifying the Safety of Autonomous Systems with Neural

Network Controllers
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GEORGE J. PAPPAS, and INSUP LEE, University of Pennsylvania

This article addresses the problem of verifying the safety of autonomous systems with neural network (NN)
controllers. We focus on NNs with sigmoid/tanh activations and use the fact that the sigmoid/tanh is the
solution to a quadratic differential equation. This allows us to convert the NN into an equivalent hybrid
system and cast the problem as a hybrid system verification problem, which can be solved by existing
tools. Furthermore, we improve the scalability of the proposed method by approximating the sigmoid with a
Taylor series with worst-case error bounds. Finally, we provide an evaluation over four benchmarks, includ-
ing comparisons with alternative approaches based on mixed integer linear programming as well as on star
sets.
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1 INTRODUCTION

Following the success of neural networks (NNs) in traditional learning tasks such as image
classification [44] and natural language processing [8], learning-enabled components have been
introduced to a variety of new domains, including safety-critical systems such as autonomous
vehicles [4] and air traffic collision avoidance systems [23]. Assuring the safety of such systems,
however, has proven challenging due to the brittle nature of modern NNs. For example, slight
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input perturbations can cause the NN to switch its output to an arbitrary new class, as is the
case with adversarial examples [43]. Such issues have highlighted the need to formally verify the
safety of NN-based systems for different scenarios and for a range of possible inputs to the NN.

One approach to ensuring the safety of these systems is to analyze the NN in isolation and verify
safety properties of the NN’s output for given sensitive inputs [12, 13, 15, 18, 24, 49, 50]. Most of
these methods work by exploiting the NN structure, e.g., the piecewise linearity of the rectified
linear unit (ReLU), and by transforming the verification problem into an optimization problem such
as a satisfiability modulo theory (SMT) program [13, 24], mixed integer linear program (MILP) [12],
semi-definite program (SDP) [15], or a relaxed linear program [50]. There also exist techniques that
approach the problem from a reachability point of view and approximate the reachable NN output
sets using interval analysis [49] or zonotopes [18].

Analyzing the NN in isolation does not immediately imply the safety of the entire autonomous
system, however. To analyze the whole system, one would need to reason about the interaction
between the NN and the physical plant (e.g., a car) and verify that all reachable plant states are
safe. Several works have been developed to verify the safety of autonomous systems with NN
controllers [11, 20, 22, 42, 47]. These approaches combine ideas from NN verification, e.g., trans-
forming the NN into an MILP or an SMT program [11, 42], with ideas from classical dynamical
system reachability [6, 25], e.g., compute reachable sets for the NN output [22, 47].

In our preliminary work, we developed one of the approaches mentioned in the previous para-
graph, namely Verisig [22]. Verisig focuses on NNs with smooth activations, e.g., sigmoid or hy-
perbolic tangent (tanh), and works by transforming the NN into an equivalent hybrid system.
Specifically, since the sigmoid/tanh is the solution to a quadratic differential equation, each neu-
ron could be viewed as a state in a dynamical system, whereas each layer could be mapped to a
discrete mode. The NN’s hybrid system is then composed with the plant’s hybrid system, thereby
casting the problem as a hybrid system verification problem that can be solved by an optimized
tool such as Flow* [6]. Verisig was originally evaluated on Mountain Car [34] (i.e., a reinforcement
learning benchmark) as well as on a quadrotor case study in which the NN is used to approxi-
mate a model predictive controller [41] that cannot be executed online. Although Verisig showed
promising performance in these case studies, its scalability is limited by the fact that it integrates
the sigmoid “dynamics” to obtain the reachable set for each neuron.

In this article, we develop a more scalable verification approach. In particular, we build on the
technique used in Verisig but instead of integrating the sigmoid “dynamics,” we adopt the Taylor
Model (TM) framework used in hybrid system reachability [6]. A TM of a function is a polynomial
approximation, together with worst-case error bounds. TMs can effectively approximate the flow
of various non-linear hybrid systems and scale well when used with interval analysis. To make use
of TMs in NNs, we approximate the NN’s activations with a Taylor series and obtain error bounds
(using Taylor’s Theorem) based on bounds on the inputs to each neuron. In this setting, the NN
can be viewed as a simple hybrid system with TM resets and no continuous dynamics.

We compare the TM approach with Verisig both on the original case studies as well as on two
additional benchmarks, an automatic cruise control (ACC) system [29] and a more challenging
autonomous racing verification case study presented in our second preliminary work [21]. In all
cases, the TM approach results in an order of magnitude improvement in scalability at no cost in
precision (sometimes with much greater precision).

For further evaluation, we also implemented an alternative verification approach based on an
MILP approximation of the sigmoid/tanh, as proposed by Dutta et al. [12]. Specifically, the sigmoid
is upper and lower bounded by piecewise linear functions, which allows us to transform the entire
NN into an MILP that can be solved by efficient tools such as Gurobi [36]. We observe that for small
NNs with few inputs, the MILP formulation is comparable with TM Verisig in terms of speed and
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Fig. 1. Overview of the problem considered in this article.

precision. However, as we increase (1) the NN size, (2) the input uncertainty, or (3) the number
of inputs, the MILP approach is significantly slower and results in larger error due to the sigmoid
approximation. These results highlight the benefit of the TM approach, both in terms of scalability
and of approximation of reachable sets.

Finally, we provide a comparison between the TM approach and an alternative closed-loop ver-
ification tool, namely NNV [47]. NNV works by approximating the NN’s reachable set using star
sets, which provide tight approximations while also allowing for efficient computation. For fair
comparison, we tune both tools’ parameters so as to achieve roughly the same runtimes on the
ACC benchmark. For this setup, the TM method results in significantly smaller reachable sets,
likely due to the fact that Verisig addresses the problem as a single hybrid system verification
instance, whereas NNV performs the plant and NN verification sequentially, thereby potentially
introducing additional error due to the composition.

In summary, the contributions of our preliminary work are (1) a verification approach for closed-
loop systems with NN controllers using a hybrid system formulation, (2) a theoretical analysis of
the decidability of sigmoid-based NN reachability, and (3) evaluation of Verisig on three bench-
marks, including a challenging autonomous racing case study. The additional contributions of
this article are (1) a TM-based verification approach that builds on the original hybrid system
technique; (2) a comparison with the original approach on the first three benchmarks, as well as
on the ACC benchmark; and (3) an exhaustive comparison between Verisig and two alternative
methods.

This article is organized as follows. Section 2 formulates the verification problems considered in
this work. In Section 3, we analyze the decidability of the considered problem, whereas Sections 4
and 5 present the original and improved versions of Verisig, respectively. All verification bench-
marks are described in Section 6, and the evaluation is shown in Section 7. A further comparison
between the Verisig approaches and an MILP-based approach is given in Section 8, whereas the
comparison with NNV is provided in Section 9. Finally, Sections 10 and 11 discuss related work
and provide concluding remarks, respectively.

2 PROBLEM FORMULATION

This section presents the verification problem addressed in this article. A high-level overview is
shown in Figure 1. We consider a closed-loop system that consists of (1) a physical plant with
states x , (2) an environment where the plant operates, (3) measurements y produced as a function
of the plant states within the environment, and (4) a NN controller h that maps the measurements
to control inputs u. The rest of this section describes each of these components in more detail.
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2.1 Plant Model

We assume that the plant dynamics and measurements are described by a hybrid system. A hybrid
system consists of a set of discrete modes and a finite number of continuous variables [27]. Within
each mode, the continuous states evolve according to differential equations with respect to time.
Each mode may have a number of invariants that must hold true while the system is in that mode.
Finally, transitions between modes may reset the continuous states and are controlled by guards,
which are Boolean expressions of the continuous states. The formal definition is shown next.

Definition 1 (Hybrid System). A hybrid system with inputs u and outputs y is a tuple
H = (X ,X0, F ,E, I ,G,R,д), where

• X = XD × XC is the state space with XC a manifold and XD = {q1, . . . ,qm };
• X0 ⊆ X is the set of initial states;
• F : X → TXC assigns to each discrete mode q ∈ XD a set of differential equations fq , i.e.,

ẋ = fq (x ,u), where x ∈ XC ;
• E ⊆ XD × XD is the set of mode transitions;
• I : XD → 2XC assigns to q ∈ XD an invariant of the form I (q) ⊆ XC ;
• G : E → 2XC assigns to each edge e = (q1,q2) a guard U ⊆ I (q1);
• R : E → (2XC → 2XC ) assigns to each edge e = (q1,q2) a reset V ⊆ I (q2);
• д : X → Rp is the observation model, i.e., y = д(x ).

Note that the relationship between the measurements y and the environment is implicitly cap-
tured in the observation model д. Without loss of generality, this definition assumes that the en-
vironment has no state; if this assumption is wrong, then the environment and plant states can be
stacked together in a new combined state. Finally, note that, for a given initial setX0, the reachable
set for a continuous state x at time t is set of all values that x (t ) can take when started from X0.

2.2 NN Controller

As mentioned above, the NN controller h takes measurements y as input and outputs control
actions u. For ease of presentation, we assume h is a fully connected NN, although other common
NN classes, such as convolutional, residual and recurrent NNs, could also be accommodated by
the presented framework. Thus, the controller h could be represented as the composition of its L
layers:

h(y) = hL ◦ hL−1 ◦ · · · ◦ h1 (y), (1)

where each layer hi consists of a linear map Wi followed by a non-linear activation function a :
R→ R (the last layer hL is typically linear but could have an activation as well)1:

hi (y) = a(Wiy + bi ). (2)

As mentioned in the Introduction, we consider smooth activations, e.g., the sigmoid,
σ (x ) = 1/(1 + e−x ), and tanh, tanh(x ) = (ex − e−x )/(ex + e−x ). Furthermore, we assume that the
controller is already trained and all parameters (W1,b1, . . . ,WL,bL ) are known and fixed.

2.3 Composed System

We assume that the NN controller is executed in a time-triggered fashion.2

1We abuse notation by allowing a to also take a vector of inputs. In this case, the output of a is a vector in which a is
applied separately to each element.
2Although an event-triggered formulation could be used as well, we only present the time-triggered version in the interest
of clarity.
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Definition 2 (Time-triggered Hybrid System). Consider a hybrid system with inputsu and outputs
y as in Definition 1. The NN controller h is said to be time-triggered, with periodT , if the inputs u
are changed every T seconds, i.e.,

u (t ) = h(y (tk )), for t ∈ [tk , tk +T ),

where tk = kT and k = 0, 1, 2, . . .

2.4 Problem Statement

Since verifying safety properties of the closed-loop system presented in this section requires a
special approach for the NN, we first investigate the problem of verifying input-output properties
of the NN in isolation.

Problem 1. Let h be a NN as described in Section 2.2. The NN verification problem, expressed as

property ϕ, is to verify a propertyψ on the NN’s outputs u given constraints ξ on the inputs y:

ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u). (3)

Once Problem 1 has been addressed, we can also state the closed-loop reachability problem.

Problem 2. Let S = h | | HP be the composition of a NN controller h (Section 2.2) and a plant P ,

modeled with a hybrid system HP (Section 2.1). Given a set of initial states X0 of P , the problem,

expressed as property ϕS , is to verify a propertyψS of the reachable states of P :

ϕS (X0) ≡ (x (0) ∈ X0) ⇒ ψS (x (t )), ∀t ≥ 0. (4)

3 DECIDABILITY OF SIGMOID-BASED NN VERIFICATION

Before presenting our verification approach, we first investigate the decidability of the NN verifi-
cation problem. Note that the verification of ReLU-based NNs is readily shown to be decidable (for
linear constraints on the inputs and outputs), as the problem can be transformed into an MILP.
However, sigmoid-based NNs are harder to reason about due to the non-linear and smooth nature
of the sigmoid/tanh. In this section, we show that verification is decidable for NNs with one hidden
layer, under mild assumptions on the parameters. In the general case, we show that if the inputs
and outputs are constrained by a real arithmetic property (defined below), then the NN verifica-
tion problem can be stated as a real arithmetic property with transcendental functions, which is
decidable if Schanuel’s conjecture is true [51].3

3.1 NNs with Multiple Hidden Layers

We begin our discussion with the general case of NNs with multiple hidden layers. As stated in
Section 2, the NN verification problem has the following form:

ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u), (5)

where ξ andψ are properties on the real numbers. Since verifying general properties of the reals is
undecidable, we focus on a special class of properties, called real arithmetic properties. These are
first-order logic formulas over (R, <,+,−, ·, 0, 1), i.e., the language where < is the relation, +, −,
and · are functions, and 0 and 1 are the constants [45]; we denote such formulas byR-formulas. Ex-
ample R-formulas are ∀x ∀y : xy > 0, ∃x : x2 − 2 = 0, and ∃w : xw2 + yw + z = 0. Intuitively,
R-formulas are first-order logic statements over polynomial constraints with integer coefficients.
Tarski was the first to provide a decision procedure for verifying real arithmetic properties [45].

3Note that all results presented in this section hold for NN sigmoid activations, but similar results can be derived for tanh.
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A related class of properties contains real arithmetic properties with transcendental functions,
denoted by Rexp-formulas. This is the language (R, <,+,−, ·, exp, 0, 1), which also includes ex-
ponentiation. Although it is open whether verifying Rexp-formulas is decidable, it is known that
decidability is connected to Schanuel’s conjecture [51]. Schanuel’s conjecture concerns the tran-
scendence degree of certain field extensions of the rational numbers and, if true, would imply that
verifying Rexp-formulas is decidable [51].

We investigate the case where ξ and ψ are R-formulas. However, the exponentiation in the
sigmoid means thatϕ is not a R-formula. The next proposition shows thatϕ can in fact be stated as
aRexp-formula, which implies that NN verification is decidable if Schanuel’s conjecture is true [51].

Proposition 1. Leth : Rp → Rq be a sigmoid-based NN with L − 1 hidden layers (withN neurons

each), a linear last layer and rational parameters. The property ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u),
where ξ andψ are R-formulas, is an Rexp-formula.

Proof. Since ψ is an R-formula, it suffices to show that ϕ0 (y,u) ≡ ξ (y) ∧ h(y) = u can be ex-
pressed as an Rexp-formula. Note that

ϕ0 (y,u) ≡ ξ (y) ∧ h1
1 =

1

1 + exp
{
−

(
w1

1

)�
y − b1

1

} ∧ · · · ∧ hN
1 =

1

1 + exp
{
−

(
wN

1

)�
y − bN

1

} ∧ . . .

∧ h1
L−1 =

1

1 + exp
{
−

(
w1

L−1

)�
hL−2 − b1

L−1

} ∧ · · · ∧ hN
L−1 =

1

1 + exp
{
−

(
wN

L−1

)�
hL−2 − bN

L−1

}
∧ u =WL[h1

L−1, . . . ,h
N
L−1]� + bL ,

where (w j
i )� is row j of Wi and hl = [h1

l
, . . . ,hN

l
]�, l ∈ {1, . . . ,L − 1}. The last constraint, call it

p (u), is already an R-formula. Let [Wi ]jk = p
i
jk
/qi

jk
, with pi

jk
and qi

jk
> 0 integers, and let d0 =

q1
11q

1
12 · · ·qL−1

N p . To remove fractions from the exponents, we add extra variables zi andv j
i and arrive

at an equivalent property ϕZ, which is an Rexp-formula, since all denominators are Rexp-formulas:

ϕZ (y,u) ≡ ξ (y) ∧ z0d0 = y ∧ h1
1 =

1

1 + exp
{
−

(
r1
1

)�
z0 −v1

1

} ∧ · · · ∧ hN
1 =

1

1 + exp
{
−

(
rN
1

)�
z0 −vN

1

}
∧v1

1 = b
1
1 ∧ · · · ∧v

N
1 = b

N
1 ∧ · · · ∧ zL−2d0 = hL−2

∧ h1
L−1 =

1

1 + exp
{
−

(
r1

L−1

)�
zL−2 −v1

L−1

} ∧ · · · ∧ hN
L−1 =

1

1 + exp
{
−

(
rN

L−1

)�
zL−2 −vN

L−1

}
∧v1

L−1 = b
1
L−1 ∧ · · · ∧v

N
L−1 = b

N
L−1 ∧ p (u),

where r j
i = w

j
id0 are vectors of integers; v j

i = b
j
i are R-formulas, since b j

i are rational. �

Corollary 1 ([51]). If Schanuel’s conjecture holds, then verifying the property ϕ (y,u) ≡ (ξ (y) ∧
h(y) = u) ⇒ ψ (u) is decidable under the conditions stated in Proposition 1.

3.2 NNs with a Single Hidden Layer

In the case of NNs with one hidden layer, one could show that verification is in fact decidable,
assuming interval constraints on the inputs. In particular, the following theorem shows that the
NN verification problem can be stated as an R-formula, thereby implying decidability.

Theorem 1. Let h : Rp → Rq be a sigmoid-based NN with rational parameters and with one

hidden layer (with N neurons), i.e., h(x ) =W2 (σ (W1x + b1)) + b2. Let [W1]i j = pi j/qi j and let d0 =

q11q12 · · ·qN p . Consider the property

ϕ (y,u) ≡ ∃y (y ∈ Iy ∧ u = h(y)) ⇒ ψ (u),
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where y = [y1, . . . ,yp]� ∈ Rp , u = [u1, . . . ,uq]� ∈ Rq ,ψ is an R-formula, and Iy = [α1, β1] × · · · ×
[αp , βq] ⊆ Rp , i.e., the Cartesian product of p one-dimensional intervals. Then verifying ϕ (y,u) is

decidable if, for all i ∈ {1, . . . ,N } and j ∈ {1, . . . ,p}, ebi
1 , eα j /d0 , and eβj /d0 are rational, i.e., bi

1 =

ln(bi
r ), α j = d0 ln(α j

r ) and βj = d0 ln(β j
r ) for some rational numbers bi

r , α j
r , and β j

r .

Proof. The proof technique borrows ideas from Reference [27]. It suffices to show that ϕ (y,u)
is an R-formula. Sinceψ (u) is an R-formula, we focus on the left-hand side of the implication, call
it ϕ0 (y,u):

ϕ0 (y,u) ≡ y ∈ Iy ∧ h1
1 =

1

1 + exp
{
−

(
w1

1

)�
y − b1

1

} ∧ · · · ∧ hN
1 =

1

1 + exp
{
−

(
wN

1

)�
y − bN

1

}∧

∧ u =W2

[
h1

1, . . . ,h
N
1

]�
+ b2,

where (w i
1)� is row i ofW1. The last constraint in ϕ0 (y,u), call it p (u), is an R-formula. To remove

fractions from the exponentials, we change the limits of y. Consider the property

ϕZ (y,u) ≡ y ∈ IZy ∧ h1
1 =

1

1 + exp
{
−

(
r 1

1

)�
y − b1

1

} ∧ · · · ∧ hN
1 =

1

1 + exp
{
−

(
rN

1

)�
y − bN

1

} ∧ p (u),

where IZy = [α1/d0, β1/d0] × · · · × [αp/d0, βp/d0] and each r i
1 = d0w

i
1 is a vector of integers. Note

that ϕ0 (y,u) ≡ ϕZ (y,u), since a change of variables z = y/d0 implies that z ∈ IZy iff y ∈ Iy . To
remove exponentials from the constraints, we use their monotonicity property and transform
ϕZ (x ,y) into an equivalent property ϕe (x ,y):

ϕe (y,u) ≡ y ∈ I e
y ∧ h1

1 =
1

1 + y
r 1

11
1 · · ·y

r 1
1p

p exp
{
−b1

1

} ∧ · · · ∧ hN
1 =

1

1 + y
r N

11
1 · · ·y

r N
1p

p exp
{
−bN

1

} ∧ p (u),

where I e
y = [e−β1/d0 , e−α1/d0 ] × · · · × [e−βp /d0 , e−αp /d0 ], and r i

1j is element j of r i
1. To see that

ϕe (y,u) ≡ ϕZ (y,u), take any y ∈ IZy and note that exp{−r i
1jyj } = z

r i
1j

j , with zj = e−yj ; thus, z ∈ I e
x .

The final step transforms the property ϕe (y,u) into an equivalent property ν (y,u) to eliminate
negative integers r i

1j in the exponents:

ν (y,u) ≡ y ∈ I e
y ∃z ∈ I e−

y y1z1 = 1 ∧ · · · ∧ ypzp = 1 ∧ h1
1 =

1

1 +
∏
j ∈I+1

y
r 1

1j

j

∏
j ∈I−1

z
−r 1

1j

j exp
{
− b1

1

} ∧ . . .

∧ hN
1 =

1

1 +
∏
j ∈I+

N

y
r N

1j

j

∏
j ∈I−

N

z
−r N

1j

j exp
{
− bN

1

} ∧ p (u),

where I e−
y = [eα1/d0 , eβ1/d0 ] × · · · × [eαp /d0 , eβp /d0 ], I+i = {k | r i

1k
≥ 0}, and I−i = {k | r i

1k
< 0}.

Note that ϕe (y,u) ≡ ν (y,u), since for r i
1j < 0 the constraint zjyj = 1 implies y

r i
1j

j = z
−r i

1j

j .

Thus, if eb
j
1 , eαi /d0 , and eβi /d0 are rational for all i ∈ {1, . . . ,p}, j ∈ {1, . . . ,N }, then one can show

that ν (y,u) is an R-formula by multiplying all hi
1 constraints by their denominators. All denomi-

nators are positive, since yi and zi are constrained to be positive. �

Note that the technique used to prove Theorem 1 cannot be applied to multiple hidden layers,
since the NN becomes an Rexp-formula in that case. Also, although the assumption on the NN’s
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weights may appear contrived, it can be easily satisfied by conservatively increasing the interval
constraints on the inputs by a small number.

4 NN VERIFICATION USING HYBRID SYSTEM REACHABILITY

Section 3 analyzed the decidability of NN verification to provide intuition on the problem’s dif-
ficulty. In this section, we present the verification approach used in Verisig, namely converting
the NN into an equivalent hybrid system. Given this hybrid system, one can use existing hybrid
system verification tools to verify the desired property by computing the hybrid system’s reach-
able sets. The rest of this section presents the verification approach in detail, beginning with the
dynamical-system interpretation of the sigmoid.4

4.1 Sigmoids as Solutions to Differential Equations

The key idea that enables the transformation of a NN into a hybrid system is the fact that the
sigmoid derivative can be expressed in terms of the sigmoid itself:5

dσ

dx
(x ) = σ (x ) (1 − σ (x )). (6)

Equation (6) has the flavor of a dynamical system, the main difference being that the partial deriv-
ative is not taken with respect to time. We could obtain a true dynamical system by introducing a
proxy “time” variable as follows:

д(t ,x ) = σ (tx ) =
1

1 + e−xt
, (7)

such that д(1,x ) = σ (x ) and, by the chain rule,

∂д

∂t
(t ,x ) = д̇(t ,x ) = xд(t ,x ) (1 − д(t ,x )). (8)

Thus, if x lies in a set X , then the image σ (X ) could be obtained by computing the reachable set
of д at time t = 1, starting from an initial condition д(0,x ) = 0.5 (as can be verified from Equa-
tion (7)) and following the dynamics in Equation (8). While the intermediate values of д are not
important, continuously tracing the sigmoid “dynamics” allows us to iteratively construct the sig-
moid’s reachable set, i.e., the image д(1,X ). Section 5 presents a more direct method to obtain this
reachable set.

4.2 NNs as Hybrid Systems

Given the dynamical-system interpretation of the sigmoid presented in the previous subsection,
we now show how to transform the entire NN into a hybrid system. For ease of presentation, we
assume that all hidden layers have the same number of neurons, N , although the formulation can
be easily adapted to the more general case.

First note that each neuron hi j in hidden layer hi can be written as:

hi j (x ) = σ
((
w j

i

)�
x + b j

i

)
, (9)

4Note that this section focuses on the case of sigmoid activations; the treatment of tanh activations is almost identical—the
differences are noted in the relevant places in the section.
5The corresponding differential equation for tanh is (d tanh/dx ) (x ) = 1 − tanh2 (x ).
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where (w j
i )� is row j ofWi and b j

i is element j of bi . Given hi j , the corresponding proxy function
дi j is defined as follows:

дi j (t ,x ) =
1

1 + exp
{
− t ·

((
w j

i

)�
x + b j

i

)} ,

where, once again, дi j (1,x ) = hi j (x ). Also, by the chain rule,

д̇i j (t ,x ) =
((
w j

i

)�
x + b j

i

)
дi j (t ,x ) (1 − дi j (t ,x )). (10)

Thus, each neuron hi j can be captured by a corresponding дi j with initial condition дi j (0,x ) = 0.5
and dynamics as shown in Equation (10).

To transform the entire NN, note that the linear mappings between layers in the NN can be
thought of as discrete resets in a hybrid system. Thus, each NN layer corresponds to a mode in the
hybrid system that computes the sigmoid dynamics in Equation (10) until t = 1. At time t = 1, a
reset occurs that resets all states according to the linear map, after which we continue processing
the following layer/mode. Formally, we useN continuous states, xP

1 , . . . ,x
P
N , to represent the proxy

variables for each layer; when in mode i , each xP
j , j ∈ {1, . . . ,N }, represents neuronhi j in the DNN.

The linear resets are stored in states x J
1 , . . . ,x

J
N

. The x J
i states are necessary, because the inputs to

each neuron are functions of the xP
i states reached in the previous mode.

The full transformation is described in Proposition 2 below. Note that there is an additional
mode q0, which is used to reset the xP

i states to 0.5 and the x J
i states to their corresponding values

in q1. For simplicity, Proposition 2 focuses on the case of one NN output, stored in state u—the
case of additional outputs can be handled by adding more u states. Note that 
 denotes Hadamard
(element-wise) product.

Proposition 2. Leth : Rp → R1 be a sigmoid-based NN with L − 1 hidden layers (withN neurons

each) and a linear last layer with one output. The image under h of a given set Iy is exactly the

reachable set for u in mode qL of the following hybrid system:

• Continuous states: xP = [xP
1 , . . . ,x

P
N ]�,x J = [x J

1 , . . . ,x
J
N

]�, u, t ;
• Discrete states (modes): q0,q1, . . . ,qL ;

• Initial states: xP ∈ Iy , x J = 0,u = 0, t = 0;

• Flow:

—F (q0) = [ẋP = 0, ẋ J = 0, u̇ = 0, ṫ = 1];
—F (qi ) = [ẋP = x J 
 xP 
 (1 − xP ), ẋ J = 0, u̇ = 0, ṫ = 1] for i ∈ {1, . . . ,L − 1};
—F (qL ) = [ẋP = 0, ẋ J = 0, u̇ = 0, ṫ = 0];

• Transitions: E = {(q0,q1), . . . , (qL−1,qL )};
• Invariants:

— I (q0) = {t ≤ 0};
— I (qi ) = {t ≤ 1} for i ∈ {1, . . . ,L − 1};
— I (qL ) = {t ≤ 0};

• Guards:

—G (q0,q1) = {t = 0};
—G (qi ,qi+1) = {t = 1} for i ∈ {1, . . . ,L − 1};

• Resets:

—R (qi ,qi+1) = {xP = 0.5,x J =Wix
P + bi , t = 0} for i ∈ {0, . . . ,L − 2};

—R (qL−1,qL ) = {u =WLx
P + bL }.
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Fig. 2. Small example illustrating the transformation from a NN to a hybrid system.

Fig. 3. Composition of the NN in Figure 2 with a toy plant hybrid system.

Proof. First, note that the reachable set of xP in mode q1 at time t = 1 is exactly the image of
Iy under h1, the first hidden layer. This is true, because at t = 1, xP takes the value of the sigmoid
function. Applying this argument inductively, the reachable set of xP in mode qL−1 at time t = 1
is exactly the image of Iy under hL−1 ◦ · · · ◦ h1. Finally, u is a linear function of xP with the same
parameters as the last linear layer of h. Thus, the reachable set for u in mode qL is the image of Iy
under hL ◦ · · · ◦ h1 = h. �

4.3 Illustrative Example

To illustrate the transformation described in the previous subsection, we present an example in
Figure 2. In this example, a two-layer NN is transformed into a three-mode hybrid system. Ac-
cording to Proposition 2, the NN and the corresponding hybrid system are equivalent in the sense
that the image of the set y1 ∈ [2, 3],y2 ∈ [1, 2] under the NN is the same as the reachable set for u
in mode q2 of the hybrid system. In particular, since all weights are positive, the output u is in the
range [h(2, 1),h(3, 2)]—the same conclusion can be reached about the stateu in the hybrid system.

4.4 Composing the NN and the Plant

Once the NN is converted into a hybrid system, we can compose the NN’s hybrid system with the
plant’s hybrid system. The composed hybrid system thus describes the entire closed-loop system.
An example is shown in Figure 3, where the NN from Figure 2 is composed with a toy plant hybrid
system. We emphasize that the “time” in the sigmoid dynamics, tN N , is local to the NN, whereas
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tPlant captures the global physical time (note that tPlant does not progress inside the NN modes).6

Note that the controller in the example in Figure 3 is time triggered but that guard can be changed
depending on the condition for triggering the control in a given system.

4.5 Hybrid System Verification Tools

Given the composed hybrid system, we can now use existing tools to address the hybrid system
verification problem. Multiple tools have been developed in the literature, depending on the sys-
tem class. SpaceEx [16] was designed for linear hybrid systems and can scale up to a few thousand
states. Although verification is undecidable for general non-linear hybrid systems [3, 27], several
approaches have been proposed that scale well in different scenarios. Flow* works by construct-
ing flowpipe approximations using Taylor Models. Alternatively, dReach [25] casts the verification
problem as an SMT formula and provides δ -decidability guarantees. Several other approaches have
been proposed as well, e.g., CORA [2] and C2E2 [10], that rely on different computationally conve-
nient approximations of the reachable sets such as zonotopes or simulation-based approximations.

In this article, we use Flow* due to its scalability on the considered case studies. Furthermore,
the TM framework used in Flow* also suggests a natural way to extend the approach presented
in this section. In particular, the next section describes a modified method that avoids the sigmoid
integration and provides an order of magnitude improvement in scalability at no cost in precision.

5 TAYLOR MODEL APPROXIMATION OF THE SIGMOID

The previous section presented the hybrid-system-based approach used in Verisig. In this section,
we build on these ideas and develop a more scalable technique that provides an order of magnitude
improvement in scalability. We begin with a brief explanation of the TM framework adopted in
Flow*, which serves us a starting point for our improved NN verification approach.

5.1 Hybrid System Reachability Using TMs

Intuitively, a TM of a given function f is a polynomial approximation p of f together with worst-
case error bounds. In what follows, we use I to denote the set of all intervals I = [l ,b], and for any
S = I1 × · · · × In , the center of S is a vector c = [c1, . . . , cn] such that each ci is the midpoint of Ii .

To define a TM, we first introduce the concept of polynomial approximation. Let f : D → R
be a function over n variables, with D ∈ In , and suppose f is j times continuously differentiable.
A polynomial p of degree j is said to approximate f at a point x ∈ D, written f (x ) ≡j p (x ), if all
0 < m ≤ j partial derivatives of f and p coincide at x .

The TM of a function f is defined as follows. Let f : D → R be a function overn variables, where
D ∈ In . A Taylor Model of order j > 0 for f over D is a pair (p, I ) of a polynomial p of degree at
most j and a remainder interval I such that:

1) f (c ) ≡j p (c ),where c is the center of D,

2)∀x ∈ D, f (x ) ∈ {p (x ) + e | e ∈ I }.
TMs have shown great promise in hybrid system reachability due to the fact that they can ap-
proximate the reachable sets of various non-linear systems and scale well when used with interval
analysis [5]. Specifically, given a set of differential equations and corresponding initial conditions,
one can use Picard iteration to obtain a polynomial approximation with error bounds, i.e., a TM
approximation, of the reachable set. Once a TM is available, one can use domain contraction [5]
to check whether the reachable set intersects a given unsafe set, i.e., whether the safety property

6The example in Figure 3 assumes that the NN computation occurs instantaneously. If one would like to also model the
time it takes to execute the NN, then the composition would need to also include a zero-order hold for the NN output.
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ALGORITHM 1: NN Verification Using Taylor Models

Input: Measurement Taylor ModelTMy , NN controller h with L layers, and sigmoid/tanh activa-
tions.

1: TM0 ← TMy

2: for each i in {1, . . . ,L} do

3: TML
i ←Wi ∗TMi−1 + bi

4: IT M
i ← intervalApproximation(TML

i )

5: TMσ
i ← TaylorsTheoremForSiдmoid (IT M

i )

6: TMi ← TMσ
i ◦TML

i

7: end for

8: return TML

to be verified is true or false. Finally, multiple techniques have also been proposed to keep the TM
remainder small, such as preconditioning and suppression of the wrapping effect [31].

5.2 Neural Networks as Taylor Models

We begin with a general outline of the proposed TM-based approach for NN reachability, followed
by the specific treatment of the sigmoid and tanh activations. The main idea of the new approach
is to approximate every neuron with a TM, thereby avoiding the sigmoid integration used in the
original method. This way, we not only drastically reduce the computation, but we also obtain
better approximations, since we can analytically derive tight remainder bounds.

To get a TM approximation of each neuron, we use Taylor’s Theorem, which allows us to con-
struct a polynomial approximation with bounded error over a given interval. For completeness,
we first state Taylor’s Theorem (with the Lagrange form of the remainder) to show how it can be
used to derive a TM for a given function.

Theorem 2 (Taylor’s Theorem.). Let k ≥ 1 be an integer, let I ∈ I and let f : R→ R be k + 1
times differentiable at the point a ∈ I . Then for any x ∈ I

f (x ) = f (a) + f ′(a) (x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (k ) (a)

k!
(x − a)k + Rk (x ),

where (for x ≥ a)

q
(x − a)k+1

(k + 1)!
≤ Rk (x ) ≤ Q

(x − a)k+1

(k + 1)!
,

where q and Q satisfy q ≤ f (k+1) (x ) ≤ Q for all x ≥ a. Similar bounds can be derived for the case

when x < a.

Taylor’s Theorem can be used to derive a TM (with the bounds on Rk as the error bounds) for
any function with bounded inputs and derivatives. Thus, to obtain a TM for each neuron n of the
NN, one needs to find interval bounds I on the inputs to n, compute a Taylor series approximation
of the sigmoid around the center of I , and bound the sigmoid derivative on I .

Using this intuition, Algorithm 1 illustrates how to transform the entire NN into a composition
of TMs. The input to the algorithm is a TM for the measurements, call itTMy . To obtainTMy , we
use the fact that the plant itself is part of the reachability problem, i.e., TMs are available for the
reachable set of the measurements y. From TMy and the initial condition, one first performs the
linear part of each layer (Line 3). Given the resulting TM, can then obtain interval bounds using
interval analysis (Line 4), thereby obtaining interval bounds on the inputs to the sigmoid that are
used in Taylor’s Theorem (Line 5). Taylor’s Theorem provides a TM for each neuron’s activation,
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which is composed with the linear TM to produce the final TM for that layer (Line 6). This process
repeats as TMs are propagated through the NN layers. Note that the interval analysis in Line 4 is
only used to obtain bounds on the TM input range so that we can bound the sigmoid Taylor series
approximation error; however, each layer is still represented by a TM that is propagated using
standard TM reachability techniques [5].

It is important to emphasize that Algorithm 1 not only allows us to avoid the sigmoid integra-
tion involved in the original version of Verisig, but it also enables us to analytically control the
approximation error by choosing a sufficiently high TM order that achieves the desired error. The
NN can now be seen as a simple hybrid system, with no dynamics and with TM resets between
modes. The composition with the plant is performed in the same manner as before, as illustrated
in Figure 3.

5.3 TMs for Sigmoid and Tanh

Since sigmoid and tanh are infinitely differentiable, Taylor series are easily derived for these func-
tions. Furthermore, as shown in prior work [32], the sigmoid (and tanh) derivative coefficients can
be mapped to Eulerian numbers, which can be precomputed offline; thus, high derivatives can be
computed quickly using table look-ups. Derivative bounds over a given interval I can be obtained
by finding all local optima7 and checking where the endpoints of I lie. Two illustrative examples
are shown next.

5.4 TM Examples

This subsection provides two examples to illustrate the technical aspects of Algorithm 1.

Example 1 (Obtaining Interval Bounds for a Given TM). This example illustrates how one could
use interval analysis to obtain interval bounds for the inputs to the NN. Consider a system with
two continuous states, x1 and x2, and initial condition x1 ∈ [0, 0.1],x2 ∈ [−0.1, 0.5]. Suppose the
system has access to one measurement y, and suppose a second-order TM for y is available:

TMy (x1,x2) = 2x2
1 + 3x2

2 − 0.4x1x2 + x1 + [−0.01, 0.01].

Using interval analysis, one obtains the following interval bounds for y:

Iy = [0, 0.02] + [0, 0.75] − [−0.004, 0.02] + [0, 0.1] + [−0.01, 0.01] = [−0.03, 0.884].

Example 2 (Using Taylor’s Theorem to Obtain a TM for Each Neuron). Consider the above example
again, and suppose that the measurement y is sent as input to a single-neuron sigmoid layer:
h1 (y) = σ (0.2y + 0.1). To compute a TM for h1, we use interval analysis in a similar way and
obtain IT M

1 = [0.094, 0.2768]. Given IT M
1 , we obtain a second-order Taylor series approximation of

the sigmoid around the center of IT M
1 , c = 0.1854:

TMσ
1 (y) = σ (c ) + σ ′(c ) (y − c ) + σ ′′(c )

(y − c )2

2
+ R2 (y),

where σ ′(c ) = 0.2479,σ ′′(c ) = −0.0229, q = −0.1208, Q = −0.1157, q(0.0914)3/(3!) ≤ R2 (y) ≤
Q (0.0914)3/(3!), and 0.0914 is the largest deviation from c to any point in IT M

1 . Thus, the final
TM for h1 is TMσ

1 (0.2TMy + 0.1).

7Local optima for sigmoid and tanh can be found analytically up to the fourth derivative. For higher derivatives, conser-
vative bounds can be obtained numerically.
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Fig. 4. Mountain Car prob-

lem [35]. The car needs to

drive up the left hill first to

gather enough momentum.

Fig. 5. Quadrotor case study, as

projected to the (px ,py )-plane.

The quadrotor follows its plan to

reach the goal without colliding

into obstacles.

Fig. 6. Autonomous racing

car navigation scenario.

There are three different

regions depending on how

many walls can be reached

using LiDAR.

5.5 Implementation

We implemented the TM approach on top of Flow*. Since Flow* provides an interface for dynamical
system reachability using TMs, it is a logical choice as a starting point for our tool. The source code
is available at github.com/verisig.

6 EVALUATION BENCHMARKS

We evaluate our approaches on four different benchmarks. These benchmarks were chosen to ex-
pose different challenges in terms of scalability and approximation. In particular, these are systems
with the following diverse properties: (1) a hybrid plant model with a continuous-valued controller,
(2) a continuous plant model with a discrete-valued controller, (3) a continuous plant model with
a continuous-valued controller, and (4) a continuous plant model with a hybrid high-dimensional
observation model and a continuous-valued end-to-end controller. These benchmarks also illus-
trate different ways in a which a NN could be trained: In benchmarks 1 and 4, the NN was trained
using reinforcement learning; in benchmark 2, the NN was trained using a safe learning algorithm
based on model predictive control; in benchmark 3, the NN was trained using supervised learning.
The remainder of this section describes each benchmark in more detail.

6.1 Mountain Car

Mountain Car (MC) is a reinforcement learning benchmark in which the task is to train a controller
to drive an underpowered car up a hill [34], as shown in Figure 4. The car does not have enough
power to accelerate up the hill, so it needs to drive up the left hill first and gather momentum. The
car has two states, position and velocity, that evolve in discrete time as follows:

pk+1 = pk +vk

vk+1 = vk + 0.0015uk − 0.0025 ∗ cos (3pk ),

where uk is the control and pk and vk are the car’s position and velocity, respectively, with p0

chosen uniformly at random from [−0.6,−0.4] andv0 = 0. The car states are constrained as follows:
vk ∈ [−0.07, 0.07],pk ∈ [−1.2, 0.6], which introduces a hybrid mode switch if these constraints are
violated. The control uk takes a continuous value in the range [−1, 1].

During training, a reward of −0.1u2
k

is received after each step, which forces a control policy
that applies as little thrust as possible. A reward of 100 is received upon reaching the goal. In our
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preliminary work [22], we used deep deterministic policy gradient (DDPG) reinforcement learn-
ing [28] to train a NN controller. The controller has two hidden layers with sigmoid activations
with 16 neurons per layer and a tanh output layer with one neuron. The controller takes pk and
vk as input and produces uk . The machine learning task is considered solved if an average reward
above 90 is obtained over 100 random runs. We can now strengthen the definition of a “solved”
task and verify that the reward is above 90 for any initial condition, i.e., p0 ∈ [−0.6,−0.4].

6.2 Quadrotor with a NN Controller

In the second benchmark a NN is trained to approximate a model predictive controller (MPC)
with safety guarantees [41]. In particular, one can train the NN to follow a piecewise-linear plan
and bound the deviation from the plan by simulating against a worst-case planner from a given
point [41]. To guarantee a bounded deviation over sets of initial conditions, however, one would
need to formally verify such a bound, which is the problem considered in this benchmark.

We consider an unmanned quadrotor with a NN controller that is following a piecewise-linear
plan avoiding obstacles, as illustrated in Figure 5. The quadrotor dynamics are modeled as a six-
dimensional control-affine system, whereas the planner dynamics are piecewise linear, as follows:

q̇ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗ
q
x

ṗ
q
y

ṗ
q
z

v̇
q
x

v̇
q
y

v̇
q
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
q
x

v
q
y

v
q
z

д tanθ

−д tanϕ

τ − д

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ṗ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗ
p
x

ṗ
p
y

ṗ
p
z

v̇
p
x

v̇
p
y

v̇
p
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx

by

bz

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where p
q
x ,p

q
y ,p

q
z and p

p
x ,p

p
y ,p

p
z are the quadrotor and planner’s positions, respectively; vq

x ,v
q
y ,v

q
z

andvp
x ,v

p
y ,v

p
z are the quadrotor and planner’s velocities, respectively; θ , ϕ and τ are control inputs

(for pitch, roll and thrust); д = 9.81 m/s2 is gravity; bx ,by ,bz are piecewise constant functions
of time. The control inputs have constraints ϕ,θ ∈ [−0.1, 0.1] and τ ∈ [7.81, 11.81]; the planner
velocities have constraints bx ,by ,bz ∈ [−0.25, 0.25]. The control task is to ensure the quadrotor
follows the planner as closely as possible.

As described in prior work [41], the optimal controller for the model in Equation (11) is a “bang-
bang” controller, i.e., it is effectively a classifier mapping plant states to a finite set of control
actions. To train the NN controller, we follow the approach described in prior work, i.e., we sample
multiple points from the state space over a bounded horizon and train a sequence of controllers,
one for each control sampling step. When two consecutive NNs have similar error, we interrupt
training and pick the last one as the final controller. We trained a NN with two hidden layers
with 20 neurons each (with tanh activations) and a linear last layer with eight neurons (i.e., the
number of possible control actions). The property to be verified is that the quadrotor does not
deviate by more than 0.32 m from the planner, for initial conditions (pr

x (0),pr
y (0)) ∈ [−0.05, 0.05] ×

[−0.05, 0.05] (the other states are initialized at 0), where we define the vector of relative states as
r := [pr

x ,p
r
y ,p

r
z ,v

r
x ,v

r
y ,v

r
z ]� = q − p.

6.3 Adaptive Cruise Control

In the ACC benchmark [29], there are two vehicles, the ego and the lead vehicle, going in a straight
line. The control task is to make sure the ego vehicle follows the lead vehicle at a safe distance.
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The two cars’ dynamics are the same, modulo the control inputs, and are given as follows:

⎡⎢⎢⎢⎢⎢⎣
ẋc

v̇c

γ̇c

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
vc

γc

−2γc + 2ac − uv2
c

⎤⎥⎥⎥⎥⎥⎦
, (12)

where xc is position, vc is velocity, γc is acceleration, ac is the control thrust applied to the car,
u = 0.0001 is the friction control, and the subscript c ∈ {eдo, lead }. The lead car has an MPC as
described in prior work [29], with a target velocity Vset = 30 m/s. The ego vehicle has a NN
controller that takes five inputs: Vset , Tдap = 1.4s , veдo , xlead − xeдo , vlead −veдo . The NN was
trained using supervised learning [29] and has three hidden layers with 20 neurons per layer
(with tanh activations) and a linear last layer with one neuron. In the considered scenario, the
lead car applies a sudden brake (with alead = −2), and the problem is to verify that a safety dis-
tance is maintained over the next 5 s. Specifically, the safety property to be verified is xlead −
xeдo ≥ Ddef ault +Tдap ∗veдo , where Ddef ault = 10m,Tдap = 1.4s , for initial conditions xlead (0) ∈
[90, 110],vlead (0) = [32, 32.05],γlead (0) = 0,xeдo ∈ [10, 11],veдo (0) ∈ [30, 30.05],γeдo (0) = 0.

6.4 Autonomous Racing Car

The last benchmark is a more challenging case study in which an autonomous car must navigate
a structured environment using LiDAR measurements. Specifically, we consider the scenario il-
lustrated in Figure 6, in which the car starts in the middle of a hallway and must safely make a
right turn. This case study is motivated by the F1/10 autonomous racing competition [1]. A more
detailed description of this case study is provided in our preliminary work [21].

The car is modeled with a kinematic bicycle model [38, 39], which is a standard model for cars
with front steering. The car dynamics are given as follows:

ẋ = vcos (θ + β )

ẏ = vsin(θ + β )

v̇ = −cav + cacm (u − ch )

θ̇ =
Vcos (β )

lf + lr
tan(δ )

β = tan−1

(
lr tan(δ )

lf + lr

)
,

(13)

where v is the car’s linear velocity, θ is the car’s orientation, β is the car’s slip angle, and x and
y are the car’s position; u is the throttle input, and δ is the heading input; ca is an acceleration
constant, cm is a car motor constant, ch is a hysteresis constant, and lf and lr are the distances
from the car’s center of mass to the front and rear, respectively. Since tan−1 is not supported by
Flow*, we assume that β = 0; this is not a limiting assumption in the considered case study as the
slip angle is typically fairly small at low speeds. The parameter values were identified as follows:
ca = 1.633, cm = 0.2, ch = 4, lf = 0.225m, lr = 0.225m. The throttle is constant at u = 16 (resulting
in a top speed of roughly 2.4 m/s), i.e., the controller only controls heading.

The car has access to 21 laser imaging, detection and ranging (LiDAR) rays, as illustrated in
Figure 6. Each ray can be modeled as a function of the car’s position and orientation within the
hallway. As shown in the figure, there are three regions the car can be in, depending on how
many walls can be reached by LiDAR. We present the model for Region 2 only, as the other re-
gions are special cases. We consider a LiDAR scan with a 230◦ field of view and a 5-m range.
Let α1, . . . ,α21 denote the relative angles for each ray with respect to the car’s heading, i.e.,
α1 = −115,α2 = −103.5, . . . ,α21 = 115. One can determine which wall each LiDAR ray hits by
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comparing the αi for that ray with the relative angles to the two corners of that turn, θl and
θr in Figure 6. The model for each ray yi

k
, i ∈ {1, . . . , 21} is given as follows:

yi
k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dr
k
/cos (90 + θk + αi ) if θk + αi ≤ θr

db
k
/cos (180 + θk + αi ) if θr < θk + αi ≤ −90

dt
k
/cos (θk + αi ) if − 90 < θk + αi ≤ θl

dl
k
/cos (90 − θk − αi ) if θl < θk + αi ,

(14)

where k is the sampling step (the sampling rate is assumed to be 10 Hz) and dt
k
,db

k
,dl

k
,dr

k
are

distances to the four walls, as illustrated in Figure 6, and can be derived from the car’s position
(x ,y).8 Note that this observation model is quite challenging, both due to its non-linear and hybrid
nature. In particular, if the reachable set for the car’s state is large, then a given ray might reach
different walls, which would mean that different paths through the hybrid system are taken—in
this case, all paths need to be verified separately, thereby introducing a combinatorial aspect to
the verification task.

As described in our preliminary work [21], we trained multiple controllers using both DDPG
and a twin delayed deep deterministic policy gradient (TD3) algorithm [17]. For comparison, we
only use one of the controllers, namely a NN with two hidden layers (with tanh activations) with
64 neurons per layer and a single-neuron output layer with a tanh activation. The safety property
to be verified is that the car does not get within 0.3 m of either wall for 7s (which is enough to
make the right turn and get roughly to the middle of the next hallway). The initial condition is
x (0) ∈ [−0.1, 0.1], i.e., a 0.2-m interval in the middle of the first hallway.

7 VERIFICATION RESULTS

This section presents the comparison between the hybrid-system based version of Verisig and
the improved, TM-based, version. The next section provides a separate comparison between both
versions of Verisig and an MILP approach to verification.

The comparison in this section is purely based on the time it takes to verify the safety properties
in the different benchmarks. The next section will also explore the quality of approximation of
reachable sets obtained using the different algorithms. A common theme across all benchmarks is
that the initial conditions need to be subdivided into smaller sets to maintain a small approximation
error. If the initial condition is too large, then the uncertainty can magnify over time, thus making it
impossible to verify the safety property (even if it is true). Thus, for each benchmark, we (manually)
partition the initial set and present the verification times for each instance. Exploring an automated
refinement procedure of the initial set is left for future work.

7.1 Mountain Car

As noted in Section 6, the initial condition for MC is p0 ∈ [−0.6,−0.4]. During the verification, we
found a counter-example at p0 = −0.6, i.e., the car goes up the hill with a reward of less than 90.
That is why, we only verify the property over the initial set p0 ∈ [−0.59,−0.4], which is partitioned
as follows: [−0.59, −0.58], [−0.58, −0.57], [−0.57, −0.55], [-0.55, -0.53], [−0.53,−0.5], [−0.5, −0.48],
[−0.48, −0.45], [−0.45, −0.43], [−0.43, −0.42], [−0.42, −0.415], [−0.41, −0.4]. The uneven partition-
ing is caused by the fact that the NN takes quite different actions from different initial conditions.
Notably, when started from the right end of the initial set, the car hits the left boundary of the
environment, thereby causing a branch in the hybrid model such that each branch needs to be
verified separately.

8If θk + αi � [−180, 180], then θk + αi needs to be normalized by adding/subtracting 360.
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Fig. 7. Comparison in terms of verification times between the two versions of Verisig, the hybrid-system

based one (HS Verisig), and the TM-based one (TM Verisig).

The verification times for all the instances are presented in Figure 7(a). The TM version of Verisig
is roughly an order of magnitude faster for all instances—most instances take about half a minute
to verify with the TM approach and more than 10 minutes with the original approach. The last
two instances took considerably longer to verify due to the branch in the hybrid system.

7.2 Quadrotor

The initial condition for this benchmark, (pr
x (0),pr

y (0)) ∈ [−0.05, 0.05] × [−0.05, 0.05], was subdi-
vided into 16 equal-size subintervals, by offsets of 0.025 along each axis. Note that the “bang-bang”
nature of the controller means that there is an exponentially increasing number of paths (in the
number of control sampling steps) that need to be verified. This is true, because, depending on the
uncertainty, at each step the controller might take a different discrete action. Thus, this benchmark
is challenging not only due to the presence of the NN, but also due to the hybrid plant model.

The verification times are presented in Figure 7(b). Once again, the TM approach is significantly
faster for all instances. The differences are less pronounced in this case, since verifying the plant
dynamics, which is the same for both approaches, takes a bigger fraction of the entire computation.

7.3 Adaptive Cruise Control

The initial set for ACC is subdivided into 20 instances, by offsets of 1 along the xlead axis. The
verification times are shown in Figure 7(c). Similarly to the MC case study, the TM approach is
an order of magnitude faster, with verification times of roughly 25 minutes, as opposed to over
9 hours for the original approach. Note that this model is not hybrid, so the verification times do
not vary greatly across instances for each method.

The higher dimensionality of the ACC benchmark’s initial set also allows us to explore another
issue related to scalability, namely how much uncertainty can be tolerated along different dimen-
sions of the state-space. Answering this question is important, as it would suggest better ways
to partition the initial set than the uniform partitioning used in this work. In particular, we com-
pare how much initial uncertainty can be tolerated along the lead car position, plead , dimension
vs. the ego car velocity, veдo , dimension. Figure 8 provides the reachable sets, as projected to the
vlead −veдo plain, computed by TM Verisig for different combinations of initial conditions for
these two variables (all other states have the same initial conditions as before). As can be seen
in the figure, while the true reachable sets do not vary greatly across setups, the reachable sets
computed by Verisig are much more affected by velocity uncertainty, with Figure 8(d) having the
largest degree of overapproximation error. This suggests that higher-order terms (e.g., velocity)
have a much bigger effect on the accuracy of reachable sets than lower-order terms (e.g., position).
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Fig. 8. Reachable sets produced by TM Verisig for various initial conditions for the ACC benchmark chosen

to illustrate the relative importance of velocity uncertainty over position uncertainty. Note that the reachable

sets progress from right to left, i.e., vlead decreases with time.

7.4 Autonomous Racing Car

The initial condition for the car, x (0) ∈ [−0.1, 0.1], is subdivided into 40 regions, by offsets of 0.005.
We emphasize again that this case study is not only challenging due to the larger NNs but also due
to the hybrid LiDAR model. Please consult our preliminary work [21] for an exhaustive discussion
of the various challenges presented by this case study.

The comparison is presented in Figure 7(d). We observe the same trend of the TM approach being
significantly faster, with verification times of less than an hour, as compared with some instances
taking more than a day with the original approach. It is also worth noting that different instances
can take drastically different times to verify, which is due to the LiDAR model challenges.

In summary, the TM version of Verisig is able to verify the same properties as the original
version, but with an order of magnitude improvement in scalability. We observe similar trends
across different plant models and NN architectures. The next section demonstrates that TM Verisig
also results in better approximations than the original version, in addition to being faster.

8 COMPARISON WITH AN MILP APPROACH

For better evaluation, this section provides a comparison with an alternative verification approach
for sigmoid/tanh NNs, namely an MILP-based approach. The MILP approach was suggested in
prior work [12] as a possible way to verify sigmoid/tanh NNs, similar to Sherlock, i.e., the MILP
approach used for ReLUs [12]. A comparison with another recently released tool for closed-loop
verification, NNV [47], is provided in Section 9.

The main idea of the approach is to transform the NN into an MILP. Since sigmoids are not linear,
they could be bounded from above and below by piece-wise linear functions. Once such functions
are obtained, one could formulate the MILP by adding a binary variable for each linear piece of
each piece-wise linear function and use the big M method, as described in prior work [12]. Finally,
one could use an optimized solver such as Gurobi [36] to verify safety about the NN’s outputs given
(linear) bounds on the inputs. Note that this approach can only be used on the NN in isolation,
so we only provide a comparison in terms of NNs, ignoring the plant. To verify the closed-loop
system, one could combine the output of Gurobi with polynomial regression to obtain a TM for
the NN, similar to the way Sherlock was extended to closed-loop systems [11].

The main consideration when implementing the MILP approach is how many linear pieces to
use to approximate the sigmoid. Adding more pieces reduces the approximation error but it signif-
icantly complicates the MILP (since the solver may need to search over all combinations of binary
variables). In this comparison, we use roughly 100 pieces, which results in an approximation error
of around 10−4 per sigmoid. As the rest of this section indicates, however, while this approximation
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Fig. 9. Comparison in terms of verification times between the two versions of Verisig and the MILP-based

approach. In 9(a)–(d), the number of neurons is fixed and number of layers varies from two to 10. In (e), the

number of layers is fixed to two, and the number of neurons varies from 100 to 1,000.

is good enough for small uncertainties and small NNs, it becomes insufficient for larger NNs and
larger initial conditions, as compared with Verisig.

For fair comparison, we compare the different approaches in terms of both verification time and
approximation error. We also compare them on two different benchmarks, MC and ACC. As dis-
cussed at the end of the section, the MILP approach cannot be directly applied to the autonomous
racing car, which is another limitation of approaches of this type.

8.1 Comparison on MC

In the first comparison, we train NNs of increasing size on the MC benchmark and compare the
verification times of the different approaches for a fixed initial set, namely p0 ∈ [−0.5,−0.48]. In
particular, we train NNs with 16, 32, 64, and 128 neurons per layer, respectively, and vary the
number of layers from 2 to 10. Furthermore, we train networks of increasing width, where we fix
the number of layers to two but vary the number of neurons per layer from 100 to 1,000.

The comparison is shown in Figure 9. As can be seen in the figure, the MILP approach achieves
comparable times with TM Verisig for small NNs. However, as the NN size increases, both in terms
of number of neurons and depth, the MILP approach suffers from the exponential complexity
of the problem and is eventually even slower than the original version of Verisig. In contrast,
both versions of Verisig scale linearly with the number of layers, since the same computation is
performed for each layer/mode. Finally, the runtimes for all approaches increase super-linearly
as the NN width is increased, as shown in Figure 9(e). While, the MILP approach can sometimes
handle even the biggest NNs that were tested, TM Verisig is in general faster and more predictable.
It is worth noting that, although not shown in the graphs, the memory requirements increase
substantially as well, as NNs with 1,000 neurons per layer have more than one million parameters
that need to be encoded.
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Fig. 10. Comparison in terms of verification times (Figure 10(a) and (b)) and approximation error (Figure 10(c)

and (d)) between the two versions of Verisig and the MILP-based approach. In each figure, the initial set

uncertainty is gradually increased with the instance index.

We also compare verification times as the initial uncertainty is increased. Specifically, we vary
the initial uncertainty as follows: p0 ∈ [−0.5 ± i ∗ 0.005],v0 ∈ [±i ∗ 0.001] for i ∈ {1, . . . , 9}, where
the notation [a ± b] is shorthand for [a − b,a + b]. Figure 10(a) and (b) shows the verification times
of the three approaches for two of the NNs with two layers from Figure 9, one with 16 neurons
per layer and one with 128 neurons per layer. Similarly to the first comparison, the MILP approach
is comparable with TM Verisig on the small NN but is greatly affected by the uncertainty on the
big one and is eventually slower than the original version of Verisig as well. As before, the Verisig
approaches are not greatly affected by the initial uncertainty.

Finally, we also consider the approximation error incurred by the different methods. Performing
a fair comparison is not easy, since the MILP approach only outputs bounds for the NN outputs,
whereas the Verisig approaches output TMs. The metrics we use are as follows: (1) for the Verisig
approaches we use the TM remainder in the NN’s output, and (2) for the MILP approach, we report
the approximation error as compared with ground truth (estimated numerically by sampling the
two-dimensional NN input space). Using these metrics, the comparison is shown in Figure 10(c)
and (d). As can be seen in these figures, the MILP error is comparable with the TM Verisig remain-
der for the small NN, but is significantly larger than either Verisig version for the larger NN. Note
also that the TM version of Verisig results in a much smaller remainder than the original version.

8.2 Comparison on ACC

For further comparison, we also consider the ACC case study, where the NN inputs are not just
states but rather functions of states. This benchmark is more challenging for the MILP approach,
since interval ranges for all inputs need to be obtained, thereby losing the connection between the
inputs (which is retained in a TM). We present the same comparison as in Figure 10, the main differ-
ence being that we use only one NN for comparison, namely the NN that was used in Section 7. We
vary the initial condition as follows: xlead (0) ∈ [90 ± i ∗ 0.2],vlead (0) = [32.05 ± i ∗ 0.01],xeдo ∈
[10.5 ± i ∗ 0.1],veдo (0) ∈ [30.05 ± i ∗ 0.01], for i ∈ {1, . . . , 9}.

The comparison is presented in Figure 11. Similarly to Figure 10, the MILP approach quickly
becomes infeasible and takes more than an hour for most instances (some were terminated after 24
hours). Furthermore, the approximation error of the MILP approach is an order of magnitude larger
than the TM approach (for the instances that finished execution). As in the other comparisons,
the Verisig runtimes are not significantly affected by the initial uncertainty. Furthermore, the TM
approach once again results in a significantly smaller remainder than the original version.

In summary, we observe similar trends in both benchmarks: The MILP approach is greatly af-
fected by the initial uncertainty, both in terms of runtime and approximation error. In contrast,
the Verisig approaches have similar runtimes regardless of the initial condition. While the Verisig
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Fig. 11. Comparison on the ACC benchmark in terms of verification times and approximation error between

the two versions of Verisig and the MILP-based approach. In each figure, the initial set uncertainty is grad-

ually increased with the instance index. The MILP instances were terminated after 24 hours.

approaches also result in higher remainders as the uncertainty increases, TM Verisig consistently
produces much lower remainders than the other techniques.

Finally, it is worth mentioning that the MILP approach cannot be directly applied to benchmarks
with observations such as the autonomous racing one. This is due to the fact that, as the number
of inputs to the NN increases, simply using interval ranges for each input (without considering
the relationship between inputs) will result in a vast overapproximation of the output set. This is
another benefit of the TM method, as it maintains these relationships at all times.

9 COMPARISON WITH NNV

For further evaluation of the TM approach, this section provides a comparison with a recently
released closed-loop verification tool, namely NNV [47]. NNV computes NN reachable sets using
a star set approach [46]. The star set allows one to compute exact reachable sets for NNs with
ReLU activations; for NNs with smooth activations, the star sets provide tighter approximations
than other convex sets such as zonotopes, as discussed in prior work [46]. Using star sets is also
appealing as they can be computed in parallel, thereby enabling a great speed-up on multi-core
machines. Finally, NNV uses CORA [2] to compute the plant reachable sets.

Since NNV only supports continuous (non-hybrid) plant models, we perform a comparison on
the ACC benchmark. Note that both tools have parameters, e.g., the flowpipe step size in Flow* and
CORA, that can be tuned to improve the approximation performance at the expense of runtime. For
fair comparison, we tune both tools to have similar runtimes and compare the resulting reachable
sets. Specifically, we use a 0.005-s step size in Flow* and a 0.001-s step size in CORA.

Recall from Section 6 that the initial set for the ACC benchmark is xlead (0) ∈ [90, 110],
vlead (0) = [32, 32.05],γlead (0) = 0,xeдo ∈ [10, 11],veдo (0) ∈ [30, 30.05],γeдo (0) = 0. As before,
we split this initial set into subsets along the xlead axis. We use the notation S[a,b] to denote the
initial subset where xlead (0) ∈ [a,b], and the other states have the same initial conditions as before.

Figure 12 illustrates the comparison between the two tools. We first compare the reachable sets
computed by the two tools for the initial set S[90,91]. Figure 12(a) provides a number of simulated
trajectories, projected to the plane of the two cars’ velocities, vlead and veдo . As can be seen, the
true reachable sets (progressing from right to left) initially contract but eventually expand again;
this behavior in general makes it difficult for reachability tools to compute tight approximations.
This is clearly shown in Figure 12(b), which shows the reachable sets computed by each tool.
Figure 12(b) shows that both tools eventually result in large overapproximation errors, due to the
complexity of the verification task. Yet, the reachable sets computed by Verisig are significantly
tighter, with the NNV reachable sets being more than three times larger at the end of the scenario
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Fig. 12. Comparison between TM Verisig and NNV in terms of reachable sets and verification times. Note

that the reachable sets progress from right to left, i.e., vlead decreases with time.

(left side of Figure 12(b)). To illustrate the effect of larger initial uncertainty, Figure 12(c) shows
reachable sets for the initial set S[90,92]. Again, Verisig produces tighter reachable sets (with NNV
reachable sets being two times larger at the end of the scenario as shown on the left side of the
figure), although both tools have an even bigger approximation error. Finally, Figure 12(d) shows
the runtimes for both tools over all initial instances used in Section 7, i.e., S[90,91], . . . , S[109,110]. The
figure shows that Verisig is between 50% and 100% slower per instance (for the tool parameters
described above). However, it is important to emphasize we were not able to obtain significantly
tighter reachable sets for NNV for any other parameter setting that we tried.

In summary, despite the challenging nature of the ACC benchmark, Verisig results in signifi-
cantly tighter reachable sets (with NNV reachable sets being two-to-three times larger at the end of
the scenario) at a small cost in verification time. The difference in approximation error is likely due
to the fact that Verisig treats the system as a single hybrid system and propagates reachable sets
in a symbolic fashion through TMs. In contrast, NNV switches between NN reachable sets, repre-
sented as star sets, and plant reachable sets, represented as polytopes in CORA, which introduces
additional error.

10 RELATED WORK

Multiple techniques have been proposed to evaluate and improve a NN’s robustness, both during
training and post training [52]. During training, researchers have developed adversarial train-
ing [30, 33] and robust training [7, 19] methods to alleviate the NN’s vulnerability to adversarial
examples. Once a NN is trained, approaches exist to test the NN’s sensitivity to input perturba-
tions [37], generate new adversarial examples [26], or perform physical attacks [14]. Finally, several
formal verification and robustness works have been recently proposed to verify safety properties
of a trained NN’s outputs given constraints on the inputs [12, 13, 15, 18, 24, 49, 50, 53]. These
techniques exploit the specific form of NNs’ activation functions, e.g., ReLUs, by adapting existing
SMT [13, 24] and MILP [12] solvers or by otherwise overapproximating the NN’s output set [18, 53].

A few techniques have also been developed to analyze properties of closed-loop systems with
NN components. Dreossi et al. [9] and Tuncali et al. [48] develop falsification approaches by adapt-
ing existing falsifiers to the case of NN components. Verisig [22] can verify safety properties of
closed-loop systems with sigmoid- and tanh-based NN controllers by transforming the NN into
an equivalent hybrid system. Sun et al. [42] propose an SMT-based approach to verify proper-
ties of linear systems with ReLU-based NN controllers. Dutta et al. [11] extend their MILP-based
tool [12] to the closed-loop case by approximating the NN using polynomial regression. Further-
more, NNV [47] computes NN reachable sets using a star set formulation that is exact for ReLU
activations and allows for parallelization. Finally, ReachNN [20] is similar to the work by Dutta
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et al. [11] as it approximates the NN locally with a polynomial; however, ReachNN uses Bernstein
polynomials, which allows it to achieve arbitrary approximation precision. Although ReachNN
is similar to Verisig, since it is based on TMs, Verisig provides an analytic approximation of the
sigmoid/tanh, whereas ReachNN (being agnostic of the specific activation function used) relies on
sampling methods that may require large amounts of sampling to achieve the desired precision.

11 CONCLUSION

This article presented Verisig, a method to verify safety properties of autonomous systems with
NN controllers. Verisig transforms the NN into an equivalent hybrid system and casts the prob-
lem as a hybrid system verification problem. We improved the approach by approximating each
neuron with a TM such that no integration of the sigmoid “dynamics” is necessary. We analyzed
the decidability of NN verification and provided conditions under which the problem is decidable.
Finally, we presented an exhaustive evaluation over four benchmarks.

The novelty of the area presents multiples avenues for future work. First, it is important to
develop verification approaches for image-based systems, as this is where NNs greatly outperform
other learning methods. Furthermore, scalability improvements are necessary, especially to handle
convolutional NNs, which are very effective for analyzing images. Finally, it would be interesting
to identify verification problems in other safety-critical domains, e.g., cyber security applications.

Finally, it would be interesting to explore hybrid-system-based techniques for verifying ReLU-
based NNs, since the ReLU is arguably the most common activation function in use today. One
approach would be to approximate the ReLU with a smooth function (e.g., the Swish function [40])
and then apply the TM method described in this article.
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