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ABSTRACT
Deep neural network (DNN) models have proven to be vulnerable

to adversarial digital and physical a�acks. In this paper, we propose

a novel a�ack- and dataset-agnostic and real-time detector for both

types of adversarial inputs to DNN-based perception systems. In

particular, the proposed detector relies on the observation that ad-

versarial images are sensitive to certain label-invariant transforma-

tions. Speci�cally, to determine if an image has been adversarially

manipulated, the proposed detector checks if the output of the target

classi�er on a given input image changes signi�cantly a�er feeding

it a transformed version of the image under investigation. More-

over, we show that the proposed detector is computationally-light

both at runtime and design-time which makes it suitable for real-

time applications that may also involve large-scale image domains.

To highlight this, we demonstrate the e�ciency of the proposed

detector on ImageNet, a task that is computationally challenging for

the majority of relevant defenses, and on physically a�acked tra�c

signs that may be encountered in real-time autonomy applications.

Finally, we propose the �rst adversarial dataset, called AdvNet that

includes both clean and physical tra�c sign images. Our extensive

comparative experiments on the MNIST, CIFAR10, ImageNet, and

AdvNet datasets show that VisionGuard outperforms existing de-

fenses in terms of scalability and detection performance. We have

also evaluated the proposed detector on �eld test data obtained on

a moving vehicle equipped with a perception-based DNN being

under a�ack.

CCS CONCEPTS
•Computer systems organization→Real-time systems; •Computing
methodologies →Computer vision;

KEYWORDS
adversarial examples, adversarial detectors, deep neural networks,

perception systems

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

Nashville ’21, Nashville, TN
© 2021 ACM. 978-1-4503-8353-0/21/05. . . $15.00

DOI: h�ps://doi.org/10.1145/3450267.3450535

ACM Reference format:
Yiannis Kantaros, Taylor Carpenter, Kaustubh Sridhar, Yahan Yang, Insup

Lee, and James Weimer. 2021. Real-Time Detectors for Digital and Physi-

cal Adversarial Inputs to Perception Systems. In Proceedings of Nashville
’21: 12th ACM/IEEE International Conference on Cyber-physical Systems,
Nashville, TN, May 18–21, 2021 (Nashville ’21), 10 pages.
DOI: h�ps://doi.org/10.1145/3450267.3450535

1 INTRODUCTION
Deep neural networks (DNNs) have been deployed in multiple

safety-critical systems, such as medical imaging, autonomous cars,

and surveillance systems. At the same time, DNNs have been

shown to be vulnerable to adversarial examples [1], i.e., inputs

which have deliberately been modi�ed to cause either misclassi�ca-

tion or desired incorrect prediction that would bene�t an a�acker.

Adversarial examples in the literature can be divided into two sub-

classes depending on how the a�ack is executed. One augments

the physical environment to induce misclassi�cation (e.g., adding

a sticker to a stop sign) [2, 3], while the other adds a small per-

turbation to the classi�er input data; see Figures 1-2. Adversarial

examples, especially in the case of image classi�cation that is also

considered in this paper, have received increased research a�ention

due to the following properties. First, the di�erence between legiti-

mate and adversarial digital inputs can be imperceptible, making

adversarial detection a very challenging task [1]. Second, the trans-

ferability of adversarial digital samples between di�erent models

allows for black-box a�acks [4, 5]. �ird, the robustness of physical

a�acks against various environmental conditions and backgrounds

[3]. Fourth, both digital and physical adversarial samples are of-

ten misclassi�ed with high con�dence, implying that DNNs fail to

discriminate between adversarial and legitimate inputs [3, 6].

To establish reliability and security of DNN-based perception

systems against adversarial input images, we propose, VisionGuard

(VG), a novel a�ack- and dataset-agnostic detection framework.

VG does not modify the speci�c classi�er and, does not rely on

building separate classi�ers. Instead, VG relies on the observation

that adversaries may be successful at fooling DNNs due to the large

feature space over which they can look for adversarial inputs. �is

is also validated in our experiments: the larger the input space (i.e.,

image dimensions), the easier to fool the target classi�er. Moti-

vated by this, the proposed defense aims to shrink the feature space

available to adversaries. In particular, to determine if an image is

adversarial, VG checks if the so�max output of the target classi�er
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Figure 1: Examples of adversarial stickers that fool the LISA-
CNN (le�) [3] and GTSRB-CNN (right) [9] so that the stop
sign is missclassi�ed as speed limit 35 sign; picture bor-
rowed from [3].

Figure 2: Examples of almost imperceptible adversarial im-
ages from ImageNet a�er CW attack.

on a given input image changes signi�cantly a�er feeding it a re-

�ned version of that image. To re�ne images, i.e., to squeeze out

possibly unnecessary features of the input image, we employ label-

invariant transformations. Speci�cally, our experiments suggest

that lossy compression (e.g., JPEG) with high compression quality

and brightness/rotation transformations can achieve high detec-

tion performance against digital and physical adversarial a�acks,

respectively; however, any other transformation can be integrated

with the proposed detector. �en, we measure the similarity of the

corresponding so�max outputs using the Kullback��Leibler (K-L)

divergence metric. If this metric is above a threshold, the image is

classi�ed as adversarial; otherwise, it is classi�ed as clean. Finally,

we would like to emphasize that in this paper we are particularly

interested in real-time applications (e.g., autonomous cars) impos-

ing runtime constraints on both the a�acker and defender that are

typically ignored in the related literature. In particular, the a�acker

has to be capable of generating adversarial noise at a rate that is

greater than the rate at which images are received and classi�ed by

the target perception system while the detector has to reason about

the trustworthiness of input images at a rate that is smaller than

the a�ack rate. As a result, we focus on a�acks that are either fast

enough to cra� at runtime (e.g., defense-oblivious digital a�acks

such as FGSM and CW [7] or physical a�acks that are generated

o�ine but they can fool perception systems at runtime [3]. Ob-

serve that this precludes white-box a�acks - that assume perfect

knowledge of both the target DNN and the defense mechanism -

due to their high computational cost. Nevertheless, such a�acks do

not concern current users, since it is almost impossible to get such

complete information [8].

1.1 Related Works
Similar defenses that rely on image transformations have also been

proposed in the image puri�cation domain to defend against digital
a�acks only. For instance, [10–13] apply compression, bit depth

reduction, crop ensemble to remove noise and possible adversarial

digital components from images. Puri�cation is applied to all im-

ages, whether they are adversarial or not, which compromises the

accuracy of the network on clean images [14, 15]. In contrast, VG

is orthogonal to these approaches as it focuses on detection, and
not puri�cation, of both digital and physical a�acks, without af-

fecting the accuracy of the target classi�er. Image transformations

have also been employed in [16] to detect adversarial inputs but

in a completely di�erent way than the proposed one. In particular,

[16] relies on building a DNN-based detector that takes as input

K × N features, where K is the number of applied transformations

(e.g., rotation and translation) and N is the number of logits/classes.

For instance, for the MNIST dataset, the authors consider K = 45

and N = 10 while for ImageNet there are N = 1000 logits. �is

large input space for the DNN detector may render its training

computationally challenging especially for large image domains; in

fact, evaluation on ImageNet is not provided in [16]. Similar to VG,

MagNet [17] checks if an input image is adversarial by applying

a single image transformation and examining the corresponding

so�max output. Speci�cally, MagNet employs auto-encoders - as

opposed to label-invariant transformations considered in this paper

- to generate new images that are reconstructed from the original

ones. Common in [16, 17] is that the proposed detectors are dataset-

speci�c, as a new autoencoder/DNN-detector needs to built for each

dataset. To the contrary, as shown by our extensive experiments

VG is dataset-agnostic; see Section 1.2 and 4.

Adversarial detectors that do not rely on image transformations

have also been proposed in [18–20]. Particularly, in [18, 19] the

kernel density estimation (KDE) detector is proposed that selects

thresholds on the likelihood of an image. �is likelihood is com-

puted using the outputs of the last hidden layer of the classi�er

for the image under investigation and for all training images. Note

that the defense proposed in [18, 19] has also been employed in

[21] which, however, requires training of the target classi�er us-

ing a reverse-cross entropy objective function. [20] proposes a

DNN detector trained using the internal layers of the target DNN

classi�er to discriminate between normal and adversarial inputs.

A conceptually similar defense is proposed in [22] that relies on

training a detector using information provided by the DNN acti-

vation layers. Recently, detectors that operate directly on images,

independent from the targeted classi�er, have been proposed that

rely on steganalysis methods [23]. However, the defense in [23] is

a�ack-speci�c, since separate detectors must be designed for each

type of a�ack. To the contrary VG is an a�ack-agnostic detector;

see Section 1.2 and 4.

We would like to highlight that the majority of all defenses dis-

cussed above have only been evaluated on digital a�acks and on

smaller datasets such as MNIST and CIFAR10. �erefore, their

applicability on more realistic physical a�acks and on large-scale

image domains is questionable as also discussed in [24] and shown

in our comparative experiments; see Section 4. Finally, we would

like to emphasize that existing detectors - see e.g., [16–19, 21, 25]
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- are dataset-speci�c as they heavily rely on training sets directly

and/or building separate DNN models based on these training sets.

Particularly, in these works, a new auto-encoder, a new DNN-based

detector need to be built, or new embeddings need to be extracted

and stored for each dataset. �erefore, it is unclear how these

methods perform when they are deployed in real-world environ-

ments for which datasets do not exist. To the contrary, VG does not

rely on training sets, or on the training process of the target DNN,

or on building separate DNN classi�ers. For instance, we show

through extensive experiments that VG is dataset-agnostic in the

sense that the same transformation (JPEG with compression quality

92%) yields high detection performance across digitally a�acked

datasets that di�er both in content and in image dimensions.

An alternative research direction to design defense mechanisms

- that do not rely on image transformations - focuses on improv-

ing robustness of the target DNN via adversarial/robust training

approaches. Speci�cally, adversarial training methods rely on aug-

menting the training set with adversarial examples and incorporat-

ing an adversarial component as a regularizer in the classi�cation

objective; see e.g., [26, 27] and the references therein. Additionally,

distillation, initially proposed to reduce the size of deep neural

networks [28], can be used as a mechanism to train roust DNNs

[29]. Similar, but more computationally e�cient training meth-

ods, called label smoothing, have also been proposed in [30]. A

computationally-e�cient robust training method is also proposed

in [5] that relies on Gaussian data augmentation during training

and requires the BReLU activation function. Note that adversar-

ial/robust training methods complement adversarial detectors such
as VG. A recent summary of existing defenses can also be found in

[31].

1.2 Evaluation: Scalability & Detection
Performance

We evaluate VG against digital a�acks on the MNIST, CIFAR10,

and ImageNet datasets and we show that, unlike relevant works,

it is very computationally light in terms of runtime and memory

requirements, even when it is applied to large-scale datasets, such

as ImageNet; therefore, it can be employed in real-time applications

that may also involve large-scale image spaces. �e la�er is also

demonstrated in a drive-by experiment with clean and physically

a�acked tra�c signs. Moreover, to evaluate the detection perfor-

mance of VG against physical a�acks, we propose the �rst dataset,

called AdvNet, with clean and physically a�acked tra�c sign im-

ages using the RP2 a�ack [3]. We provide extensive comparisons

that show that VG outperforms similar detectors [17–19] both in

terms of scalability and detection performance.

Finally, we would like to highlight that several white-box a�acks

have been proposed to bypass existing defenses that assume that the

structure of the defense mechanism is fully known to the a�acker

[24, 32–34]. Designing defenses against white-box a�acks, although

an important problem in this �eld, is out of the scope of this paper

as their high computational complexity prohibits them from being

applied to real-time scenarios that are of particular interest in this

work. We would like to highlight again that our goal is to address

an equally important issue which is to develop a computationally

light defense mechanism that scales to large image domains, for

real-time applications, a task that is particularly challenging for

existing defenses both at design- and run-time as shown in our

experiments.

1.3 Contribution
�e contributions of this paper can be summarized as follows. First,
we introduce VG, a new a�ack-agnostic and dataset-agnostic detec-
tion technique for defense against adversarial examples. Second, we
show that VG is more computationally e�cient, both at run-time

and design-time, than defenses that rely on training sets or building

DNN-based detectors. �is allows us to apply VG to real-time appli-

cations that may also involve large-scale image domains, illustrated

by experiments on ImageNet. �ird, we propose AdvNet, the �rst
dataset with clean and physically a�acked tra�c sign images using

the RP2 a�ack [3] and the �rst evaluation against such robust phys-

ical a�acks. Fourth, we provide extensive comparative experiments

on MNIST, CIFAR10, ImageNet, and AdvNet that show that VG

outperforms similar defenses in terms of scalability and detection

performance.

2 PROLEM STATEMENT: DETECTING
ADVERSARIAL ATTACKS

Consider a classi�er f : X → C, where X is the set of images

x ∈ Rn , where n is the number of pixels, and C is the set of labels.

Let L(x) and f (x) denote the true and the predicted label of image

x ∈ X, respectively. �en, the goal of an a�acker is to perturb an

image x ∈ X by δ so that the di�erence between the perturbed

and the original image is imperceptible and the perturbed image

x∗ = x + δ is missclassi�ed, i.e., f (x∗) , L(x). In what follows, we

provide a summary of existing digital and and physical adversarial

a�acks that can generate such perturbations δ .

2.1 Digital Attacks
Fast Gradient Sign Method (FGSM): �e Fast Gradient Sign

Method (FGSM) [4] creates adversarial examples x∗ by perturb-

ing the images x in the direction the gradient of the loss function

by magnitude ϵ , where ϵ > 0 determines the perturbation size, i.e.,

x∗ = x + ϵsign(∇x J (θ ,x ,y)), (1)

where sign(·) is the sign function and J (θ ,x ,y) is the model’s loss

function with parameters θ and labels y.
Projected Gradient Descent (PGD): �e Projected Gradient

Descent (PGD) method is a straightforward extension of FGSM.

Speci�cally, it applies adversarial noise many times iteratively, giv-

ing rise to the following recursive formula:

x∗
0
= x ,

x∗i = clipα,x [x
∗
i−1 + ϵsign(∇x J (θ , x

∗
i−1))], (2)

where x∗
0
= x and clipα,x (·) represent a clipping of the values of

a sample so that it is within the α-neighborhood of x . Compared

to FGSM, this approach allows for extra control over the a�ack.

Jacobian Saliency Map Attack (JSMA): An iterative method

for targeted misclassi�cation is proposed in [35]. Speci�cally, an

adversarial saliency map is constructed based on the forward de-

rivative, as this gives the adversary the information required to

make the neural network misclassify a given sample. For an input
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x and a neural network f , the DNN output associated with the

class j is denoted by fj (x). To achieve a target class t , ft (x) must

increase while the probabilities fj (x), where j , t must decrease,

until t = argmaxc ∈C fc (x). �e adversary can accomplish this by

increasing input features using the following saliency map S(x , t)

S(x , t)[i] =


0 if дt (x) < 0

0 if

∑
j,t дj (x) > 0

дt (x)|
∑
j,t дj (x)| otherwise,

where дj (x) = ∂ fj (x)/∂xi and i is an input feature. High values

of S(x , t)[i] correspond to input features that will either increase

the target class, or decrease other classes signi�cantly, or both.

�us, the goal is to �nd input features i, j that maximize S(x , t)[i]+
S(x , t)[j] and perturb these features by ϵ . �is process is repeated

iteratively until the target misclassi�cation is achieved.

Carlini-Wagner (CW): An iterative (targeted or untargeted)

a�ack to generate adversarial examples with small perturbations

is proposed in [7]. �e perturbation δ is selected by solving the

following optimization problem:

minimize

δ
| |δ | |p + ϵд(x + δ ) (3)

subject to x + δ ∈ [0, 1]n ,

where ϵ ≥ 0 is a suitably chosen constant and д(x + δ ) depends on
the so�max output of the neural network and is selected so that

д(x +δ ) ≤ 0 if the perturbed image is misclassi�ed or gets a desired

label, and д(x + δ ) > 0 otherwise.

2.2 Robust Physical Perturbations (RP2)
A targeted robust physical a�ack is presented in [3] to generate

robust visual adversarial perturbations under di�erent physical con-

ditions. �e �rst step requires to solve the following optimization

problem that generates adversarial (digital) noise δ :

minimize

δ
λ | |Mxδ | |p + NPS+ (4)

Exi∼XV J (f (xi +Ti (Mxδ )),y
∗),

where (i) Mx is a mask applied to image x to ensure that the per-

turbation is applied only to the surface of the object of interest

(e.g., on a tra�c sign and not in the background); (ii) NPS is a non-

printability score to account for fabrication error; (iii) XV
refers

to a distribution of images containing an object of interest (e.g.,

a stop sign) under various environmental conditions captured by

digital and physical transformations (resulting in a�acks being ro-

bust to various environmental conditions) ; (iv) Ti (·) denotes the
alignment function that maps transformations on the object to

transformations on the perturbation (e.g. if the object is rotated,

the perturbation is rotated as well); and (v) y∗ is the target label.
Finally, an a�acker will print out the optimization result on paper,

cut out the perturbation Mx , and put it onto the target object. �e

perturbation generated using the L1 norm along with its physical

application is shown in Figure 3. Observe in this �gure, that the

L1 norm generates a sparse a�ack vector allowing the a�acker to

physically implement the a�ack with black and white stickers. For

instance, application of the perturbation for the stop sign in the

form of black and white stickers was shown in Figure 1. Generation

of physical stickers for the yield and speed limit sign is shown in

Section 4 (see Figure 6).

Figure 3: Perturbation generated by the RP2 attack using
the authors-provided code under the `1 norm so that a stop,
yield, and speed limit 35 sign are misclassi�ed by the LISA
CNN [3] as speed limit 35, speed limit 35, and turn right sign,
respectively.

Figure 4: Graphical illustration of VisionGuard (gray box).
VisionGuard classi�es an input image under investigation
as clean or adversarial using label-invariant transforma-
tions and the structure of the DNN under attack.

�e goal in this paper can be summarized as follows:

Problem 1. Given a DNN f : X → C that is subject to the digital
and physical a�acks discussed in Sections 2.1-2.2, design a detector
fd : X → {adversarial, clean} that classi�es input images to f as
adversarial or clean.

�emain assumption that we make throughout this paper is that

both the the a�acker and the defender have full knowledge of the

DNN f . However, the a�acker is oblivious to the detector/defense

mechanism and the defender is not aware of which speci�c a�ack

(e.g., CW or FGSM) the DNN is subject to.

3 VISIONGUARD: A NEW IMAGE DEFENSE
FRAMEWORK

Our goal is to build a detector fd : X → {0, 1}, such that (i) fd (x) =
0 if the image x is a legitimate image and (ii) fd (x) = 1 if x ∈ X
is an adversarial input, i.e., if it has been manipulated/perturbed.

In what follows, we propose VisionGuard (VG), an a�ack-agnostic

transformation-based detector; see also Algorithm 1 and Figure 4.

�e proposed detector relies on the observation that adversar-

ial inputs are not robust to certain transformations in the sense

that they change the output of the DNN signi�cantly. Typically,

such transformations are (i) label-invariant, i.e., the true class of

the object of interest should not change under this transforma-

tion, and (ii) squeeze out features that may be unnecessary for

correct classi�cation such as adversarial components. Examples of

such transformations are lossy-compression, zoom-in, zoom-out,

brightness, and cropping; similar transformations have been used

in image puri�cation domain to ‘remove’ digital adversarial noise

from images but in a completely di�erent way. For instance, lossy
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Algorithm 1 VisionGuard

Input: {Input image x , DNN f : Rn → C, transformation t}
Output: {fd (x) = 1 if x is an adversarial input, and fd (x) = 0

otherwise}
Feed x to the DNN model and get so�max output g(x)
Apply transformation t to x and get image x ′ = t(x).
Feed x ′ to the DNN model and get so�max output g(x′)
Compute J (x ,x ′) = min(DKL(g(x), g(x ′)),DKL(g(x ′), g(x)))
Initialize fd (x) = 0

if J (x ,x ′) ≥ τ then
fd (x) = 1

end if

compression (e.g., JPEG compression) may remove digital adversar-

ial noise while zooming out and brightness transformations may

alleviate the e�ect of physical a�acks; see Section 4.

VG comprises four steps to detect whether an input image x is

adversarial or not. First, the input image x is fed to the classi�er f
to get the so�max output denoted by g(x). Second, a user-speci�ed
transformation t : X → X is applied to x to get an image x ′ = t(x).
�ird, x ′ is fed to the classi�er to get the so�max output denoted

by g(x ′). Fourth, x is classi�ed as adversarial if the so�max outputs

g(x) and g(x ′) are signi�cantly di�erent. Formally, we measure

similarity between g(x) and g(x ′) using the K-L divergencemeasure,

denoted by DKL(g(x), g(x ′) and de�ned as follows:

DKL(g(x), g(x ′) =
∑
c ∈C

gc (x) log
gc (x)
gc (x ′)

(5)

where gc (x) denotes the c-th entry in the so�max output vector

g(x); in other words, gc (x) can be viewed as the probability that

the class of image x is c . Speci�cally, if

J (x ,x ′) = min(DKL(g(x), g(x ′)),DKL(g(x ′), g(x)))

is greater than a threshold τ , then x is considered an adversarial

input, i.e., fd (x) = 1; otherwise, x is classi�ed as a legitimate image,

i.e., fd (x) = 0.

Detection �resholds: To determine the detection threshold

τ we use Receiver Operating Characteristics (ROC) graphs that

are constructed as follows. First, given a set X of clean images

we construct the corresponding set of adversarial images, denoted

by Xa , using any a�ack or possibly a mixture of a�acks. Next,

recall that our detection mechanism fd maps each image to 0 (le-

gitimate input) or 1 (adversarial input). Herea�er, we call the class

of adversarial images as ‘positives’ and the class of clean images as

‘negatives’. �en, given a threshold τ , we estimate the true positive

rate as the number of true positives (i.e., the number of adversarial

inputs classi�ed as adversarial inputs) divided by the total number

of positives, i.e., the total number of adversarial images. Similarly,

we estimate the false positive rate as the number of false positives

(i.e., the number of legitimate inputs classi�ed as adversarial inputs)

divided by the total number of negatives, i.e., the total number of

clean images. �en, ROC graphs can be constructed by plo�ing

the TP rate on the Y axis and the FP rate on the X axis for various

thresholds τ . Given an ROC graph, we select the threshold that

returns the closest point to (0, 1), since this point corresponds to

perfect a�ack detection.
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(a) FGSM, PGD, and JSMA

-2 -1 0 1 2
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40
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(b) CW

Figure 5: Accuracy of the target DNN classi�er on test sets
of adversarial images generated by FGSM, PGD, JSMA, and
CW for various attack-speci�c parameters ϵ on the MNIST,
CIFAR-10, and ImageNet datasets.

Table 1: Runtime (secs) of Attack Algorithms per Image

MNIST CIFAR10 ImageNet

FGSM 0.00005 0.0017 0.1728

PGD 0.005 1.11 8.46

JSMA 1.75 19.67 DNF

CW 0.005 1.01 16.39

Table 2: MNIST: Comparative experiments in terms of AUC
against MagNet and KDE.

MNIST VG+JPEG92 MagNet KDE

FGSM ϵ = 0.01 61.6% 58.4% 56.2%

FGSM ϵ = 0.05 75.9% 71.8% 76.5%
FGSM ϵ = 0.1 71.3% 72.9% 84.5%
FGSM ϵ = 0.2 57.1% 51.6% 92.0%
PGD ϵ = 0.01 93.7% 87.5% 83.7%

PGD ϵ = 0.02 90.0% 85.9% 81.7%

PGD ϵ = 0.04 79.8% 76.7% 85.5%
JSMA ϵ = 0.05 71.7% 71.3% 65.7%

JSMA ϵ = 0.1 83.4% 80.2% 77.8%

JSMA ϵ = 0.2 91.7% 85.5% 85.8%

CW ϵ = −2 96.3% 95.7% 88.1%

CW ϵ = 0.01 96.1% 96.0% 89.9%

CW ϵ = 2 94.7% 96.0% 87.3%

4 EXPERIMENTS
First, in Section 4.1, we tested VG against the state-of-the-art digital

a�acks, FGSM, PGD, JSMA, and CW, on three standard machine

learning datasets: MNIST, CIFAR 10, and ImageNet. Comparisons

against the KDE [18, 19] and MagNet [17] detectors are also pre-

sented showing that VG outperforms both in terms of scalability

and detection performance. Second, in Section 4.2 we evaluated VG

against the robust physical a�ack RP2 on AdvNet, a dataset that

we constructed consisting of clean and physically a�acked tra�c

signs under various environmental conditions. Finally, to illustrate

the need for a real-time detector, we also evaluated VisionGuard
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Table 3: CIFAR10: Comparative experiments in terms of
AUC against MagNet and KDE

.

CIFAR10 VG+JPEG92 MagNet KDE

FGSM ϵ = 0.01 84.1% 84.3% 80.8%

FGSM ϵ = 0.05 82.9% 89.8% 89.2%

FGSM ϵ = 0.1 78.3% 89.7% 90.4%
FGSM ϵ = 0.2 76.9% 85.5% 89.7%
PGD ϵ = 0.01 93.7% 93.9% 96.9%
PGD ϵ = 0.02 91.1% 93.7% 96.4%
PGD ϵ = 0.04 89.2% 93.4% 95.9%
JSMA ϵ = 0.05 93.9% 93.4% 95.0%
JSMA ϵ = 0.1 94.2% 93.7% 95.5%
JSMA ϵ = 0.2 94.2% 93.7% 95.6%
CW ϵ = −2 87.2% 90.0% 89.6%

CW ϵ = 0.01 85.8% 89.5% 89.0%

CW ϵ = 2 84.8% 88.9% 87.1%

on data collected in a drive-by experiment conducted in [3]. Vi-

sionGuard achieves high detection performance on both AdvNet

and the drive-by experiment while outperforming the KDE detector.

Finally, in Section 4.3, we evaluated the real-time computational

requirements of VG, KDE, and MagNet in terms of required disk-

space and execution time. All experiments have been executed on

a computer with Intel(R) Xeon(R) Gold 6148 CPU, 2.40GHz.

4.1 Evaluation Against Digital Attacks
In this section, �rst we evaluate how e�ective digital a�acks are,

i.e., how much they can drop the accuracy of DNNs on the MNIST,

CIFAR10, and ImageNet datasets. Second, we evaluate the detection

performance of VG, KDE, and MagNet against digital a�acks. A

discussion about generalization of these detectors across datasets

is also provided.

Description of Datasets and Target DNNs: MNIST contains

70, 000 grayscale 28 × 28 images divided into 60, 000 training sam-

ples and 10, 000 test samples with 10 classes. CIFAR10 contains

60, 000 RGB 32×32 images divided into 50, 000 training samples and

10, 000 test samples with 10 classes, as well. ImageNet (ILSVRC2012)

contains 1.4 million RGB 224 × 224 images divided in 1.2 million

training images, 50, 000 validation images, 150, 000 testing images,

with 1000 classes. For the purposes of experimentation, we treat the

validation set as the training set due to the availability of labels. For

theMNIST classi�cation task, we consider a simple, fully-connected

neural network with two hidden layers and 64 neurons per layer

that achieves 97.2% accuracy on the test set. As for the CIFAR10

and ImageNet datasets, we consider convolutional neural networks

with residual blocks (ResNet-56 and ResNet-50, respectively) [36].

�e accuracy of the trained ResNet-56 and ResNet-50 is 93.7% and

73.4%, respectively.

Evaluation of Digital Attacks: We apply the FGSM, PGD,

JSMA, and CW a�acks, for various a�ack-speci�c parameters ϵ (see
Section 2.1) on the MNIST, CIFAR10, and ImageNet test sets. Note

that for the PGD a�ack, we select a = 10ϵ ; see (2). �e accuracy

of the classi�er on the resulting adversarial test sets is depicted in

Figure 5. Observe in this �gure that as the magnitude of the per-

turbation increases, the accuracy of the neural network decreases.

Moreover, observe that as the image dimensions increase, it is eas-

ier to fool the target classi�er. �e reason is that adversaries can

search for adversarial inputs over larger input feature spaces. In

Table 1, we also report the average runtime required to generate a

single adversarial image on MNIST, CIFAR10, and ImageNet using

the FGSM, PGD, JSMA, and CW a�acks and code available online

by the authors. Observe that the most computationally-light a�ack

is FGSM while the most computationally-expensive is JSMA. In

fact, JSMA failed to generate an adversarial ImageNet image due

to memory constraints within the a�ack method. Also, note that

there is a trade-o� between computational-e�ciency and e�ective-

ness of the a�ack. Speci�cally, observe in Figure 5 that e.g., on

CIFAR10, FGSM and JSMA are the most and least e�ective a�acks,

respectively.

Evaluation of VisionGuard & Comparative Experiments:
In what follows, we evaluate the e�cacy of VG using ROC graphs.

For the construction of ROC graphs, we call ‘positives’ the images (i)

that have been a�acked (even if the a�ack fails, i.e., it does not cause

misclassi�cation) and (ii) the clean images that are misclassi�ed as

they can also been seen as ‘adversarial’ inputs. All other images

(i.e., clean images that are correctly classi�ed) are called ’negatives’.

We examine the performance of VG when it is integrated with JPEG

compression with various compression qualities and with median

�lters. Note that VG along with rotation transformations, such as

the ones used in [16], or bit-depth reduction transformations, as

used in [10, 11], yield poor detection performance and, therefore,

such results are omi�ed. Finally, we provide comparisons against

MagNet [17] and the KDE detector that is originally proposed in

[18, 19]. To compare against MagNet and KDE, we leverage the

code provided by the authors.

MNIST: Table 2 presents the area under the ROC graphs (AUC)

when VG is applied using JPEG compression with 92% compression

quality. Similar performance was seen for compression qualities

75%, 92%, 98%, and median 3 × 3 �lter. �e additional results are

omi�ed due to space limitations. Observe in Table 2 that VG outper-

forms both MagNet and KDE in almost all a�acks. Also, note that

VG and MagNet fail to detect FGSM-generated adversarial inputs.

CIFAR10: �e respective AUC comparison for CIFAR10 is pre-

sented in Table 3. VG, MagNet, and KDE have comparable AUC-

based performance on adversarial images generated using the PGD,

JSMA and CW a�acks, while both KDE and MagNet outperform

VG on FGSM-based adversarial inputs, especially for large values of

the a�ack parameter ϵ . Note that [24] states that the KDE detector

gives poor performance on CIFAR10, which contradicts our results.

ImageNet: To evaluate VG on ImageNet, we have randomly sam-

pled 2, 000 images; the results are summarized in Table 4. Observe

that VG a�ains high AUC-based performance (> 90%) for almost

all a�acks and any a�ack parameters. MagNet requires a new auto-

encoder for each new dataset it is applied to. An auto-encoder for

ImageNet is not provided by the authors in [17] while training such

an auto-encoder did not �nish within two weeks; therefore, com-

parisons on ImageNet are not available. Furthermore, extracting

the embeddings for 1.2 million ImageNet images, as required in

[18, 19, 21], required 36 hours approximately. In Table 4 we report
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Table 4: ImageNet: Comparative experiments in terms of AUC against MagNet and KDE

.

ImageNet VG+JPEG75 VG+JPEG92 VG+JPEG98 VG+Median3 MagNet KDE

FGSM ϵ = 0.01 84.0% 89.7% 86.6% 85.0%

DNF

(could not train

auto-encoders)

47.1%

FGSM ϵ = 0.05 85.3% 94.7% 86.7% 88.9% 47.9%

FGSM ϵ = 0.1 88.9% 98.7% 88.8% 93.3% 46.0%

FGSM ϵ = 0.2 91.0% 99.8% 82.2% 94.0% 47.4%

PGD ϵ = 0.01 89.6% 94.5% 87.4% 86.7% 43.2%

PGD ϵ = 0.02 89.8% 98.7% 93.4% 87.8% 46.8%

PGD ϵ = 0.04 94.3% 98.4% 91.2% 80.1% 47.6%

CW ϵ = −2 93.2% 97.9% 82.6% 82.4% 54.9%

CW ϵ = 0 87.2% 91.9% 88.3% 88.6% 47.4%

CW ϵ = 2 80.9% 85.6% 85.0% 87.9% 47.2%

the performance of the KDE detector which is comparable to the

performance of a random detector.

Dataset-agnosticity: Recall that MagNet requires a new au-

toencoder for each new dataset it is applied to. Similarly, the KDE-

based detectors [18, 19, 21] rely on extracting embeddings from

training sets. As a result, it is questionable if these detectors achieve

high detection performance when they are deployed in real-world

environments for which datasets may not exist. Notice in Tables 2-4

that VisionGuard is dataset-agnostic as the same transformation,

JPEG with compression quality 92% yields high detection perfor-

mance across the MNIST, CIFAR10, and ImageNet datasets that

di�er both in content and image dimensions.

Robustness to Random Noise: As JPEG compression is sensi-

tive to noise, we also evaluated the robustness of VG on random

noise. Speci�cally, �rst we add random Gaussian noise to the origi-

nal clean images. �e accuracy of the classi�ers on the generated

noisyMNIST, CIFAR10, and ImageNet datasets dropped by 1% on av-

erage across all datasets indicating that the generated noise caused

misclassi�cations. �en, we compute the ROC curves where pos-

itives are the original clean and correctly classi�ed images and

negatives are the resulting noisy and correctly classi�ed images.

�e AUC is 53.65%, 55.35%, and 44.62% on MNIST, CIFAR10, and

ImageNet, respectively. �is shows that VG cannot distinguish

between clean and noisy images and, therefore, it will not raise

false alarms due to random noise, e.g., dust in the camera lens.

4.2 Evaluation Against Physical Attacks
In this section, �rst we describe AdvNet, our proposed dataset

consisting of clean and physically a�acked tra�c signs using the

robust physical a�ack RP2 [3]. To generate the physical stickers, we

leverage the code provided by the authors. Second, we evaluated

the proposed detector on AdvNet and on data collected in a drive-

by experiment conducted in [3] showing that VG achieves high

detection performance while outperforming the KDE detector.

AdvNet, Target DNNs, and Evaluation of RP2: To evaluate

the proposed detector against the physical a�ack RP2, we have

collected both clean and adversarial images for the following tra�c

signs: ’stop’, ’speed limit 35’, and ’yield’. All images have been taken

with a 12MP smartphone camera under various environmental

conditions (e.g., lighting, angle, distance, and background); see e.g.,

Figure 6. �e adversarial images are generated by the RP2 a�ack

using the `1 norm. Speci�cally, given an image with an object

of interest (e.g., a stop sign) and a target label (e.g., a speed limit

35 sign) we execute the RP2 a�ack to generate the corresponding

adversarial image that can fool the target neural network. �e

resulting (digital) adversarial image is used as a guide to place black

and white stickers in the physical world, on the surface of the

object of interest, to fool the target perception system. Recall that

this a�ack depends on the target neural network since e�ective

physical a�acks di�er across DNNs. Herea�er, we consider the

LISA-CNN [3] with 91% accuracy on the LISA test set and GTSRB-

CNN [9] with 95.7% accuracy on the GTSRB test set. �erefore,

we have generated adversarial images for each CNN. Speci�cally,

AdvNet contains images with clean stop signs, clean speed limit

35 signs, clean yield signs, adversarial stop signs for LISA-CNN,

adversarial stop signs for GTSRB-CNN, adversarial yield signs for

LISA-CNN, and adversarial speed limit signs for LISA-CNN. In total,

AdvNet consists of 2, 645 clean and and 4, 007 adversarial tra�c

sign images collected under various environmental conditions that

include angle, distance, background, and lightning conditions.

In particular, for the LISA CNN, the stop, yield, and speed limit

35 sign are a�acked so that they are missclassi�ed as speed limit 35,

speed limit 35, and turn right signs, respectively. �e accuracy of

the generated sticker a�ack (e.g., the percentage of adversarial stop

signs classi�ed as speed limit 35 signs) on stop, yield, and speed

limit 35 sign is 3.7%, 48.18%, 48.55%. Note that for the stop signs

we placed stickers as shown in [3]. Nevertheless, in our imple-

mentation, only 3.7% of the adversarial stop signs were classi�ed

as speed limit 35 signs while 36.76% of them were classi�ed as as

speed limit 55 signs. �is may show that the adversarial stickers

may also depend on other factors not considered in [3] such as the

background. Also, we would like to highlight that in our experi-

ments, we realized that small changes in the size and location of

the stickers also a�ect the accuracy of the a�ack which may have

contributed to the above result too.

As for the GTSRB-CNN, recall that it is trained on the German

Tra�c Sign Recognition Benchmark. Since we did not have access

to German tra�c signs for our physical experiments, GTSRB-CNN

has been evaluated only on US stop signs. �e stickers are placed

as in [3] so that the GTSRB-CNN classi�es stop signs as speed limit

35 signs. In our implementation, 0% of the collected adversarial

images is missclassi�ed as a speed limit sign; instead 44.71% of

these images are classi�ed as pedestrian crossing signs.
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(a) (b) (c)

Figure 6: Tra�c signs manipulated by adversarial stickers
generated as per the RP2 attack [3] to fool LISA-CNN. �e
stickers have been placed as per the perturbation shown in
Figure 3.

Figure 7: Examples of transformed images. �e le�most pic-
ture corresponds to the original picture while the rest are
transformed versions using B90, B110, B150, B200, R5, R15,
R20, JPEG92, Z20, and Z28 (from le� to right).

In total, the constructed dataset consists of clean stop signs, clean

yield signs, clean speed limit 35 signs, adversarial stop signs for

GTSRB-CNN, adversarial stop signs for LISA-CNN, and adversarial

yield and speed limit signs for LISA-CNN with approximately 1000

images with dimensions 32 × 32 × 3 per label for the clean and

adversarial set. �e accuracy of both CNNs on the collected clean

and adversarial images can be found in Table 5 showing that the

RP2 a�ack results in decreasing the accuracy of the CNNs by at

least 50%. Examples of the generated adversarial images are shown

in Figure 6.

Evaluation of VisionGuard & Comparative Experiments:
In what follows, we evaluate the e�cacy of VG on the RP2 a�ack

using ROC graphs. We examine the performance of VG when it is

integrated with JPEG compression with compression quality 92%,

brightness, rotation, and zoom-out transformations. �e results

are summarized for LISA-CNN and GTSRB-CNN in Tables 6-7. In

these tables, Bd and Rd refer to brightness transformation with HSV

value equal to d and d-degree rotation, respectively. �e larger the

value of d is in Bd , the brighter the image. Also, in the same table,

Zd refers to the zoom-out transformation performed as follows.

First, the image is resized so that its dimensions are d ×d ×3, where
d < 32. �e resized image is augmented with black pixels so that

a valid input to the CNNs is created with dimensions 32 × 32 × 3.

Examples of transformed images are shown in Figure 7. Observe

in this �gure that the brightness transformation removes features

introduced by the a�acker. Speci�cally, the brighter the image is,

the less visible the black stickers are.

For both CNNs, the transformation that yields the best detec-

tion performance is brightness with HSV equal to 200 yielding an

AUC equal to 89.43% outperforming the KDE detector; see Table

6. Speci�cally, the la�er achieves AUC equal to 81.56%. In this

comparison, the classi�er required in the KDE detector is trained

Figure 8: Drive-by experiment for LISA CNN conducted in
[3]. �e �rst and second row show stop signs manipulated
by the poster-printed attack (`2 loss function) and the sticker
attack (`1 loss function).

using a training that collects 80% of all images per label. �e re-

ported AUC was computed based on the remaining AdvNet images.

Observe also in Table 6 that the lossy compression transformation,

employed for the digital a�acks, results in AUC equal to 66.37%.

Similarly, observe in Table 7 that when GTSRB-CNN is under a�ack,

VG achieves the best detection performance when it operated with

brightness transformation and HSV equal to 200 yielding an AUC

equal to 97.81%.

Case Study: A Drive-by Experiment In this section, we eval-

uate VisionGuard on the data collected in drive-by experiment

conducted in [3]. Speci�cally, a smartphone camera is placed on a

car, and obtain data at realistic driving speeds. �e video is recorded

at approximately 250 � away from the sign while the driving track

was straight without curves and the car speed varied between 0

mph and 20 mph. Recording was stopped once the vehicle passed

the sign. Videos were recorded using clean and a�acked signs.

Images were extracted from the videos every 10 frames on which

classi�cation is ran; see Figure 8 borrowed from [3]. �e stop sign

is a�acked using (i) stickers - as discussed before - shown in the sec-

ond row of Figure 8 and (ii) a poster-printing a�ack generated using

the `2 loss function, shown in the �rst row of Figure 8. Note that

the poster printed a�ack has been generated as in [37]. �e major

di�erence is that in the RP2 a�ack, the perturbations are restricted

to the surface area of the sign excluding the background while be-

ing robust to large angle and distance variations. In total, 33 clean

and 42 adversarial (using both stickers and poster-printed a�acks)

images were generated. �e accuracy of LISA CNN on the collected

clean and adversarial images is 100% and 4.76%, respectively.

�e ROC curve for this small test dataset, which is not included

in AdvNet, using VisionGuard with brightness transformation and

HSV = 200 is shown in Figure 9(b); observe that AUC = 100%.

In fact, in this test dataset for a detection threshold τ = 0.43 Vi-

sionGuard yields TP and FP rate equal to 100% and 0%, respectively.

Recall that the same threshold on AdvNet yields TP and FP rate

equal to 80% and 19%, respectively.

4.3 Real-Time Computational Requirements
In this section, we evaluate the real-time computational require-

ments of VG in terms of required disk-space and execution time.

Speci�cally, in Table 9, we report the disk-space requirements for

VG, MagNet, and KDE. MagNet requires storing the auto-encoders
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Table 5: Accuracy of CNNs on the Proposed Tra�c Sign Dataset

.

Accuracy

Clean

Data

Adversarial

Data

Clean

Stop

Adversarial

Stop

Clean Speed

Limit 35

Adversarial

Speed Limit 35

Clean

Yield

Adversarial

Yield

LISA 82.72% 31.62% 78.14% 36.03% 72.52% 18.51% 96.12% 40.41%

GTSRB - - 82.24% 21.33% - - - -

Table 6: LISA-CNN: Comparative Experiments in terms of AUC against KDE on AdvNet.

LISA B90 B110 B150 B170 B200 R5 R15 R20 JPEG92 Z3 Z25 Z28 Z30 Z31

VG 79.95% 83.21% 87.94% 89.00% 89.43% 78.18% 75.13% 71.20% 66.37% 27.13% 67.89% 51.32% 56.14% 60.84%

KDE 81.56%

Table 7: GTSRB-CNN: Experiments in terms of AUC on AdvNet Stop Signs.

GTSRB B90 B110 B150 B170 B200 R5 R15 R20 JPEG92 Z3 Z25 Z28 Z30 Z31

VG 93.93% 95.15% 96.97% 97.43% 97.81% 90.76% 94.00% 92.61% 86.21% 3.36% 32.24% 33.34% 67.41% 83.11%

Table 8: LISA-CNN: AUC-based performance of VG on the drive-by experiment.

LISA B90 B110 B130 B150 B170 B200 R5 R15 R20 JPEG92

VG 100% 100% 100% 100% 100% 100% 91.89% 99.92% 100% 77.35%

KDE 99.63%

(a) (b)

Figure 9: ROC curve (red) corresponding to VisionGuard
equipped with brightness transformation with HSV = 200

on AdvNet (Figure 9(a)) and the drive-by experiment (Fig-
ure 9(b)); AUROC = 89.43% for LISA CNN [3]. �e detection
threshold τ = 0.43 yields TP rate = 80% and FP rate = 19% on
AdvNet and TP rate = 100% and FP rate = 0% on the drive-by
experiment. Each point in the ROC curve corresponds to a
detection threshold while the bblue line represents the ROC
of a random detector.

Table 9: Disk-space requirements of VisionGuard, MagNet,
and KDE per dataset

MNIST CIFAR10 ImageNet AdvNet

VG 0 0 0 0

MagNet 24KB 16KB DNF (> 2 weeks) X

KDE 5.1MB 4.2MB ≈ 4.8GB 901KB

Table 10: Average Execution Time (secs) per Image and De-
tector

MNIST

(JPEG92)

CIFAR10

(JPEG92)

ImageNet

(JPEG92)

AdvNet

(B200)

VG 0.0016 0.0187 0.08 0.0179

MagNet 0.002 0.011 X X

KDE 0.0006 0.0005 0.0003 0.0004

that are used at runtime. �e auto-encoders used in [17] are stored

as keras models and require 24 KB and 16 KB for MNIST and CI-

FAR10, respectively. KDE requires disk-space to store the last hid-

den layer output of the DNN for all training images. In particular,

KDE requires 5.1 MB, 4.2 MB, 4.8 GB, and 901 KB for MNIST, CI-

FAR10, ImageNet, and AdvNet images, respectively. In contrast,

VG does not have any disk-space requirements, as it does not rely

on training sets or building new DNNs and performs the image

transformations in memory. In Table 10, we also report the runtime

requirement of VG; note that these runtimes can be improved de-

pending on the implementation but they are signi�cantly smaller

than the runtime required to cra� adversarial a�acks in Table 1.

Speci�cally, VG requires 0.0016, 0.0187, 0.08, and 0.0179 secs on

average to check if an MNIST, CIFAR10, ImageNet, and AdvNet

image is adversarial, respectively. Observe that as the dimensions

of the input images increase, the runtime of VG increases slightly as

well. �is is expected as the JPEG compression/decompression time

complexity is O(n), where n is the number of pixels [38]. Observe

in the same table that MagNet and VG have similar execution times

due to their similar structure but the KDE detector is faster than
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both as it does not require applying transformation to images. Nev-

ertheless, as discussed earlier, its fast execution time is accompanied

with poor performance on large-scale image domains; see Table 4.

Finally, note that VG is fast enough for real time applications, such

as autonomous cars. For instance, the YOLO neural network [39]

typically operates in autonomous driving applications at 55 frames

per second (FPS) (or at 155 FPS for a small accuracy trade o�) i.e.,

55 images are generated per second [40]. If VG requires 0.08 secs

to reason about trustworthiness of an 224 × 224 × 3 image, then it

can be used to analyze 0.08secs ∗ 55FPS = 4.4 frames per second. In

other words, it can be used to analyze every 12-th frame assuming

that the car camera operates at 55 FPS.

5 CONCLUSIONS
In this paper, we proposed VisionGuard an a�ack- and dataset-

agnostic defense against digital and physical adversarial input im-

ages to perception systems that scales to large-scale image domains.

To determine whether an image is adversarial or not, VisionGuard

checks if the output of the classi�er remains consistent under label-

invariant transformations that tend to squeeze out adversarial com-

ponents. Finally, we also proposed AdvNet, the �rst dataset that

includes clean and physically a�acked images.
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