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ABSTRACT
Mechanical ventilation is a life-saving intervention that provides

breathing support for patients who cannot breathe independently,

it is especially common in patients admitted to intensive care units

(ICU). Extubation is the process of removing the hardware from

the airway used to provide mechanical ventilation when it is no

longer required. However, extubation has many potential complica-

tions, with an overall failure rate of 2-25% of patients. We present

AutoWean, a system that improves the prediction of extubation

outcomes in ICU patients by displaying risk levels via a feedback

system provided to clinicians. Our system uses an ensemble method

that combines the output of labeling functions leveraging domain

knowledge from clinicians to distinguish high and low-risk patients

for each risk factor. We evaluated our AutoWean model on a dataset

collected over two years containing 827 extubations over 494 pa-

tients that were weaned at ICU’s at the Hospital of University of

Pennsylvania. The results show that patient risk can be stratified

among five risk categories. The three highest risk bins indicate an

extubation failure rate of over 60%, while approximately 35% for the

two lowest risk bins. Most importantly, AutoWean provides deci-

sion support to clinicians attempting to delineate which borderline

patients should be given a trial of extubation.
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1 INTRODUCTION
Breathing is a natural process that supports critical functions in

the body, such as oxygenation and the removal of waste products.

Mechanical ventilation is a life-saving intervention that provides

breathing support for patients who cannot breathe independently.

It is common to use mechanical ventilators for intensive care unit

(ICU) patients, with approximately half of all ICU patients requiring

mechanical ventilation [23, 4]. Intubation is the process of plac-

ing the endotracheal tube into the airway to facilitate respiratory

support. Extubation is the process of removing the endotracheal

tube from the airway when respiratory support is no longer re-

quired. Similarly, weaning is the gradual process of withdrawing

mechanical ventilation support [1].

Extubation is a perilous process rife with potential complications.

Extubation failure occurs in 2 to 25% of patients [28]. These patients

experience complications such as oxygen desaturation, hypercap-

nea [27], fatigue, or difficult reintubations that can even lead to

death. The risk of these complications increases with the duration

of ventilator dependence, with a particularly marked increase in

complications at greater than one week. Conversely, extubating

prematurely can also cause significant complications. Thus, med-

ically maximizing the patient prior to extubation is critical, with

factors such as timing, sedation, and ventilator management being

crucial to optimal patient outcomes.

Numerous medical research and clinical trials have been done

to recognize critical factors for weaning a patient [33, 29, 9, 13, 30].

In general, extubation occurs after a weaning readiness test involv-

ing spontaneous breathing trials (SBT) or low levels of ventilation

assistance [33]. A successful SBT indicates tolerance of unassisted

breathing imposed in postextubation [33], a sign of readiness to

extubate. In addition to SBT, other criteria are used to assess ex-

tubation timing. Seymour et al. [29] claim that minute ventilation

recovery time post-SBT can predict extubation outcomes in ICU

patients. Cohen et al. [9] found out that frequency/tidal volume

ratio (f/VT) with Automatic tube compensation (ATC) at the start

of the breathing trial is effective in predicting successful weaning.

In additional studies [13], [30], more risk factors for extubation

failures are identified.
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This study aims to develop an extubation risk estimation model,

AutoWean, using a majority vote to improve the prediction of extu-

bation outcomes in ICU. The evaluation is performed on the dataset

collected from the ventilators across ICUs in the Hospital of Uni-

versity of Pennsylvania from 2021 to 2022. Our AutoWean model

provides risk levels of given extubations based on the labeling func-

tions formulated by clinicians and medical research. Each labeling

function calculates the prediction score for individual risk factors

labeled high and low-risk, respectively. The calculated weights are

applied to the model, outputting the risk level into five categories:

high, high/med, med, med/low, and low.

The goal of our approach is to support extubation timing de-

cisions and reduce the significant complications associated with

extubation failure, i.e., reintubation within 48 hours of extubation.

Our AutoWean system evaluates patients’ risks through the en-

sembler, which combines the output of labeling functions where

domain knowledge for distinguishing between high and low risk

are encoded. Then, feedback is provided to the clinicians for inter-

pretation of the risk level and extubation decision.

We perform our AutoWean model’s evaluation on the dataset

collected from the ventilators across ICUs in the Hospital of Uni-

versity of Pennsylvania from 2021 to 2022. In total, 827 extubations

were extracted over 494 ICU admissions with ventilator support

over those two years. We collect data from medical devices giving

us access to time-series respiratory information and categorical

variables. Due to the limitations of our data aquisition system, we

do not have access to demographic info or ground truth labels.

Regardless of this, we are able to extrapolate enough information

to create a useful system. Our results show that extubations placed

in three high-risk bins had an extubation failure percentage over

60%, and approximately 35% for two low-risk bins.

More specifically, our contributions are as follows:

(1) We develop the AutoWean model to improve extubation risk

estimation for patients in ICU using labeling functions that

leverage the domain knowledge of clinicians.

(2) We present a clinical decision support system that can aid

clinician with the potential to aid clinicians in extubation

timing decisions.

(3) Evaluate AutoWean system on the dataset collected from

ventilators in ICUs across the Hospital of University of Penn-

sylvania and present result of extubation failure rate in five

risk categories.

The remainder of this paper is structured as follows: Section

2 summarizes the work related to our research. In Section 3, we

motivate and formulate our problem as well as describe our dataset.

Section 4 details the data processing and feature extraction. Section

5 describes the the System. Section 6 discusses the evaluation of

our system and its comparisons to other state-of-the-art methods.

Section 7 discusses possible future work that can be done to improve

the model and labeling functions. Finally, we wrap up our paper

with a conclusion in Section 8.

2 RELATEDWORK
Weaning a patient from a ventilator is one of the most common,

important, and at time frustrating challenges for the clinician in

the ICU. Recently, researchers have been attempting to decrease

the extubation failure rate in ICU by analyzing extubated patient

data and applying machine learning to predict extubation outcomes.

This section discusses the machine learning and clinical decision

support systems in healthcare and examples of such systems used

for extubation prediction.

2.1 Machine Learning in Healthcare
Today, technological evolution in medicine has led to the produc-

tion and collection of massive amounts of healthcare data[19]. This

data is utilized for better treatment [3], personalized medicine [8],

etc [26]. With analysis and interpretation of this big data, machine

learning algorithms can distinguish the pattern in patient data

and predict the outcome or treatment based on their individual

attributes [10], [25]. In certain applications [11], ML-based predic-

tion models, or AI, outperform human’s ability to process, analyze,

and find patterns in complex, high-dimensional data [16]. In turn,

machine learning techniques are adopted in diverse applications in

healthcare, and the number of such applications is increasing every

year [18],[2].

Clinical decision support systems (CDSS) are intended to pro-

vide clinicians, staff, patients, and other individuals with knowl-

edge and person-specific information, intelligently filtered and pre-

sented at appropriate times, to enhance patient treatment and out-

comes [25],[32],[34]. These systems widely adopt machine learning

tools as a method of providing individualized recommendations.

CDSS directly aid in clinical decision-making, in which the char-

acteristics of an individual patient are matched to a computerized

clinical knowledge base, and patient-specific assessments or recom-

mendations are then presented to the clinicians or the patient for

a decision [31]. CDSS leverage data that is already collected and

stored in electronic health records (EHR) and research databases [7].

These systems are made to support the clinician. Thus, in real clin-

ical scenarios, information must be easy to access and interpret.

Then, clinicians can fuse the CDSS recommendations with any

additional contextual information that they acquire from direct

interaction from the patient [20]. In its best instantiation, CDSS

is synergistically combined with clinicians’ insight and high-level

cognitions to create high quality medical care. In this work, we

strive to create a CDSS that aids clinician decisions in patients that

are difficult to extubate.

2.2 Extubation Outcome Prediction
Fabregat et al. [12] used classification learners on the patient data

from ICU in Spain given a dataset of 697 extubations. In total this

dataset only had 50 extubation failures. Their dataset contains 20

predictors including time series variables from monitoring devices,

demographics, medical records, and respiratory logs. They tested

Logistic Discriminant Analysis (LDA), Gradient Boosting Method

(GBM), and Support Vector Machines (SVM) and found that the

SVM was the most accurate classifier with an accuracy of 94.6%.

Overall this method shows high accuracy over their data. However,

this work is limited by their small dataset. With the low number

of extubations, they used 20 minutes binning over 2 hour period

before extubation. Each bin become a new datapoint creating 4182

data points or six times the original number of extubations. While

we were not able to get access to their dataset or model to verify,
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it is possible that extubations from the same patient were placed

into both the training and test data. This could create bias in their

model and analysis so future work will be needed to compare to

their method.

Chen et al. [6] developed a Light Gradient Boosting Machine

(LightGBM)model for extubation failure prediction on 3636 patients

from the freely accessible clinical data MIMIC-III [17]. Initially, 68

features were evaluated based on their average prediction result

with the top 36 features being chosen for the final model. These

features include patient demographics, vital signs, laboratory mea-

surements, ventilator information, clinical intervention, and clinical

scores. Similar to our research, they do not have direct intubation

and extubation information, so they inferred patients’ extubation

with ventilation parameters associated with the usage of ventilators

indicated a status change from intubated to not intubated. Overall,

their model showed a high accuracy of 80.2%. But their analysis

was limited as they do not use bins for the time series data and take

values outside of the intubation period. In addition, they imputed

the missing value of the features with mean or median value. Only

nine of the 68 features had 0% missing degrees, whereas all other

features’ missing degrees were 0-40%. On the other hand, features

used for our extubation risk estimation model did not have any

missing values.

3 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we describe the dataset used for training and eval-

uation in this paper, the labeling functions which encode clinical

insights, and the problem formulation. First, we will describe our

dataset. Then we will discuss the clinical knowledge encoded as

labeling functions. Finally, we will present the problem.

3.1 Dataset
Of a study approved by the Institutional Review Board of the Uni-

versity of Pennsylvania (IRB #851405). In this study, medical device

data was collected from our data acquisition system, VitalCore [7],

a medical device integration platform. VitalCore is connected to

247 ventilators from four different vendors in ICUs across the Hos-

pital of University of Pennsylvania. These ventilators send data

in an HL7 message format [15] to the servers in VitalCore every

minute, where it is stored for future analysis. Overall, we were

able to collect 827 extubations belonging to 494 patients over the

course of two years. Among the 827 extubations, 373 of them are

extubation failures while 454 are extubation successes. Overall, we

have a higher extubation failure rate of 45% compared to an average

of 10-20% in ICU [24]. We attribute the difference to the timeline

of our collected dataset from 2021 to 2022, during the COVID-19

pandemic.

As the treatment of COVID-19 evolved so did its protocols. At

times this led to frequent extubation attempts for patients on ven-

tilators. We identified patients who were extubated significantly

more than the average number. In particular, eight patients were

extubated more than ten times accounting for 2-5 which occurs

over half of the patients with multiple extubation attempts [21]. In

total, 90 out of 99 extubations were failures, increasing the extuba-

tion failure rate significantly by approximately 6%. Regardless, we

include them as valid extubations in our dataset.

Before building and testing our model, we set aside a hold out

set. Thus, we split our dataset 𝑍 = (𝑋,𝑌) into two portions 𝑍1 =

(𝑋1, 𝑌1) and 𝑍2 = (𝑋2, 𝑌2). 𝑍1 accounts for approximately 87% of

our total dataset and is used for training and testing the models. 𝑍2

accounts for approximately 13% of our data and will be used during

evaluation as a hold-out dataset. The percentage of the dataset

being used as a hold-out set is not perfectly 10% as we ensure

patients with multiple extubations only appear in one of 𝑍1 or 𝑍2.

Across the two portions of our datasets, we observe a similar rate

of extubation failure at 44% in 𝑍1 and 41% in 𝑍2.

3.2 Labeling Functions
We collected labeling functions from clinician knowledge, published

medical research, and basic data analysis. These labeling functions

should either distinguish a patient as high risk or low risk. For

example, a patient being on a ventilator for over 72 hours is an

example of a high risk labeling function and total ventilation time

less than 24 hours is an example of a low risk labeling function.

If a patient is not classified as high or low risk for any specific

feature, they can be thought of as unknown risk. This can occur

when data is missing or when data is outside of the scope of the

labeling functions. Overall, we collected sixteen labeling functions

from clinicians, published research, and basic analysis techniques.

3.3 Problem Formulation
Our input space 𝒳 encompasses the dataset described above such

that every 𝑥 ∈ 𝒳 describes a feature collected from our medical

devices. In addition, we have a label space 𝒴 = {−1, 1} where 1
represents an extubation failure and -1 represents a successful ex-

tubation. Clinically, extubation is considered a failure if the patient

is reintubated within 48 hours of the extubation. Thus, our ground

truth labeling function can be described as 𝑓𝑔𝑡 ∶ 𝒳 ↦ 𝒴 .

Next, we collected and evaluated a set of labeling functions from

clinicians, expert research, and data analysis techniques. These la-

beling function distinguish high and low risk factors for extubation

failures. They use a label space
¯𝒴 = {ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤} corresponding to

two conclusive and mutually exclusive risk levels of extubation

failure: high and low. To make the system intuitive, we extend

our label space to
ˆ𝒴 = {ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤,𝑢𝑛𝑘𝑛𝑜𝑤𝑛} by adding a label

for unknown risk. Thus, we have two sets of binary partial label

functions: (1) a set 𝐻 such that ∀𝑓ℎ ∈ 𝐻 , 𝑓ℎ ∶ 𝒳 ↦ ˆ𝒴ℎ where

ˆ𝒴ℎ = {ℎ𝑖𝑔ℎ,¬ℎ𝑖𝑔ℎ} such that ¬ℎ𝑖𝑔ℎ = {𝑙𝑜𝑤,𝑢𝑛𝑘𝑛𝑜𝑤𝑛} and (2) a

set 𝐿 such that ∀𝑓𝑙 ∈ 𝐿, 𝑓𝑙 ∶ 𝒳 ↦ ˆ𝒴𝑙 where
ˆ𝒴𝑙 = {𝑙𝑜𝑤,¬𝑙𝑜𝑤}

such that ¬𝑙𝑜𝑤 = {ℎ𝑖𝑔ℎ,𝑢𝑛𝑘𝑛𝑜𝑤𝑛}.
The goal of this paper is to evaluate each patients’ risk for failing

extubation. By using 𝑋 , 𝑌 , 𝐻 and 𝐿, we seek a labeling function

𝑓
∗ ∶ 𝒳 ↦ ˆ𝒴 such that 𝑓

∗
the probability of a extubation failure

occurring decreases from the high to low-risk category. Addition-

ally, we seek to create a risk stratification that provides decision

support to clinicians on the patients that are borderline. In the fol-

lowing section, we introduce AutoWean, a solution to the problem

formulation we just described.
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4 DATA PROCESSING AND FEATURE
EXTRACTION

In this section, we describe the inclusion criteria and algorithms we

used to process and select our data. Then, we describe the feature

extraction process.

4.1 Data Processing
We process our data in four steps. First, we detect if a patient is

connected to the ventilator to identify potential intubation and ex-

tubation times. Second, we define and determine periods of reduced

pressure (PRP’s) that estimate clinical SBT’s. Third, we label ground

truth as extubation pass or failure. Fourth, we discuss and remove

special cases from the dataset.

Patient Detection Ventilators may still send HL7 messages

when they are not connected to patients. However, as disconnected

ventilators do not contain tidal volume in their HL7 messages, we

use it to distinguish ventilator states. The absence of tidal volume

means that patient is not connected to the ventilator. Moreover, a

ventilator may be connected to a different patient when a patient is

weaned and never intubated again. While a ventilator does not send

any patient identification information, a monitoring device located

in the same room sends HL7 messages with a patient identification

number to the VitalCore system. We use this to distinguish patients.

Given the extracted list of tidal volume belonging to one patient,

we compute potential intubation and extubation time periods. In

the next step we use these to determine signs of a PRP.

Figure 1: Example of Identifying Periods of Reduced Pres-
sure and Distinguishing Planned Extubations

Periods of Reduced Pressure The Hospital of University of

Pennsylvania uses a guideline to evaluate patients for potential

extubation. This guideline ensures clinicians take into account

SBT’s and a number of other factors. During an SBT, clinicians

decrease the amount of pressure used to support patients’ breathing.

This is done to assess the patients’ ability to generate sufficient

pressure to breathe on their own if extubated. Normally, medical

professionals record SBT initiation and termination time in EHR

(Electronic Health Records), but we do not have access to this data

through our system, only medical device data. Accordingly, we

estimate SBT’s with pressure level change in ventilator settings.

Before each extubation, we validate if the pressure level decreased

Algorithm 1 Compute PRP

Input: Pressure Level List 𝑃𝐿𝑣 , Ventilator Pressure Level Times-

tamp List 𝑃𝐿𝑡 , List of Potential Intubation and Extubation Time

𝐷

Output: List of PRP Start Time, PRP End Time,

Intubation Start Time, Extubation End Time 𝑃

Initialize empty list 𝑃

Initialize variables 𝑙𝑖𝑑𝑥 ← 0

for {𝑠, 𝑒} in 𝐷 do
Initialize empty list 𝐿

while 𝑙𝑖𝑑𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐿𝑡 ) & 𝑃𝐿𝑡 [𝑙𝑖𝑑𝑥 ] < 𝑠 do
𝑙𝑖𝑑𝑥 ← 𝑙𝑖𝑑𝑥 + 1

end while
while 𝑙𝑖𝑑𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝐿𝑡 ) & 𝑃𝐿𝑡 [𝑙𝑖𝑑𝑥 ] ≥ 𝑠 & 𝑃𝐿𝑡 [𝑙𝑖𝑑𝑥 ] < 𝑒

do
𝐿 ← 𝐿⋃{𝑙𝑖𝑑𝑥}
𝑙𝑖𝑑𝑥 ← 𝑙𝑖𝑑𝑥 + 1

end while
if 7 ≤ 𝑃𝐿𝑣[𝑙𝑖𝑑𝑥 − 1] ≤ 10 then
𝑘 ← 𝑙𝑖𝑑𝑥 − 1

while 𝑃𝐿𝑣[𝑙𝑖𝑑𝑥 − 1] = 𝑃𝐿𝑣[𝑘] & 𝑘 > 𝐿[0] do
𝑘 ← 𝑘 − 1

end while
Set PRP start time 𝑝𝑟𝑝𝑠 ← 𝑃𝐿𝑡 [𝑘 + 1]
Set PRP end time 𝑝𝑟𝑝𝑒 ← 𝑃𝐿𝑡 [𝑙𝑖𝑑𝑥 − 1]
if 𝑝𝑟𝑝𝑒 − 𝑝𝑟𝑝𝑠 ≥ 2 hours then
𝑙 ← 𝑙𝑖𝑑𝑥 − 1

while 𝑝𝑟𝑝𝑒 − 𝑃𝐿𝑡 [𝑙] < 2 hours do
𝑙 ← 𝑙 − 1

end while
Update PRP time 𝑝𝑟𝑝𝑠 ← 𝑃𝐿𝑡 [𝑙 + 1]

end if
if 𝑝𝑟𝑝𝑒 − 𝑝𝑟𝑝𝑠 > 30 minutes then
𝑃 ← 𝑃 ⋃{𝑝𝑟𝑝𝑠 , 𝑝𝑟𝑝𝑒 , 𝑠, 𝑒}

end if
end if

end for
return 𝑃

from a higher level to anything from seven to ten and remained

steady for at least 30 minutes to estimate the SBT. We refer to this

phase as a period of reduced pressure (PRP). Only when there is

a PRP prior to potential extubation do we consider them as real

extubation. Further details for finding PRPs of an individual patient

is shown in Algorithm 1 and Fig. 1.

Ground Truth Label Ventilator disconnection for greater than

ten continuous minutes likely indicates one of the following:

(1) Extubation

(2) Transference to a travel ventilator for offsite imaging or

studies

(3) Undergoing of invasive procedures that stop mechanical

ventilation without extubation

To distinguish planned extubation fromunplanned or non-extubations,

we take periods where tidal volume was absent for more than ten
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minutes and trace back to check if PRP was done immediately prior

to ventilation disconnection. That is, we only consider extubations

in which clinicians evaluate patients’ breathing ability. Once we

obtain actual extubations from Algorithm 1, the ground truth be-

comes 1 when the time that takes to reintubate is less than 48 hours;

otherwise -1.

We label extubation result as a failure if the same patient is

reintubated within 48 hours of previous extubation, otherwise suc-

cess. However, in some circumstances, it could be hard to deter-

mine whether extubation was successful or not. For instance, pa-

tients intubated for more than two weeks are presumed to have

tracheostomy tubes. Accordingly, we remove all of their extubations

from our dataset as tracheostomy is often considered for prolonged

mechanical ventilation and failed extubation. Furthermore, some

patients were extubated in different facilities. Given our limited

data, it is hard to discern their actual extubation result in previous

facilities as they could have been on a transport ventilator to move

their location. Thus, we only take into account extubations in the

last facility.

4.2 Feature Extraction
In our dataset, we compute categorical variables such as a previous

number of extubations and total ventilation duration time, and

time-series variables like respiratory rate (RR) abnormal time and

rapid shallow breathing index (RSBI). Using Algorithm 1 we can

extract every extubation belonging to each patient and calculate the

previous number of extubations that occurred prior to it. Also, we

can easily compute the total ventilation time. No further processing

is required for categorical data and we can directly use the value

for our model.

On the contrary, time-series variables have abundant and re-

dundant data points as they are sent every minute during patient

intubation. To capture information most relevant to extubation out-

comes, data points within PRP have prognostic values of weaning

results [35]. It is considered that patients are likely to fail extuba-

tion if the patient’s respiratory rate during SBT is above 35 breaths

per minute for more than five minutes [5]. Therefore, we examine

events where the respiratory rate is abnormal, i.e., over 35 bpm,

and record its total time. Furthermore, we compute RSBI by tak-

ing the average respiratory rate(RR) and tidal volume(VT), using

Equation 1.

𝑅𝑆𝐵𝐼(𝑏𝑝𝑚/𝐿) = 𝑅𝑅(𝑏𝑝𝑚)
𝑉𝑇 (𝐿) (1)

5 AUTOWEAN SYSTEM
The Autowean system is a clinical decision support system that

evaluates and provides feedback on a patient’s risk of extubation

failure. It leverages domain knowledge from clinicians followed

by machine learning techniques to identify patients who may not

tolerate extubation. Once the risk level has been determined, it pro-

vides feedback to the clinician who will make decisions regarding

patient care. It is comprised of three components: feature evaluator,

ensembler, and feedback system. The feature evaluator evaluates

each labeling function to determine its usefulness to the ensembler.

The ensembler uses machine learning techniques to combine the

outputs of the labeling functions. The feedback system displays the

risk level to the clinician for interpretation and clinical decision

support. An overview of the AutoWean system is depicted in Figure

2.

5.1 Labeling Function Evaluator
Many of our labeling functions are designed by clinicians or have

been evaluated through medical research. Furthermore we use data

analysis techniques to create additional labeling functions. Thus,

before we use a labeling function in our system we evaluate it to

determine if it is a good predictor of extubation success or failure.

To do this we use 𝑍1 = (𝑋1, 𝑌1) which accounts for approximately

87% of our total dataset. In total that gives us 317 extubation failures

and 406 extubation successes to evaluate our labeling functions.

With each tested labeling function, we calculate a prediction score

as follows:

Given a labeling function 𝑓 ∈ 𝐹 , we calculate its prediction score

over all 𝑥 ∈ 𝑋1 as

𝑠𝑓 =

∑𝑥∈𝑋
1

1(𝑓 (𝑥) = 1 ∧ 𝑓𝑔𝑡 (𝑥) = 1)
∑𝑥∈𝑋

1

1(𝑓 (𝑥) = 1) (2)

i.e. the percentage of patients that fail extubation out of the patients

labeled by the labeling function. If a labeling function has a very

high score it is a strong predictor of extubation failure. We will

denote this set of lableing functions as 𝐻 . If a labeling function has

a very low score it is a strong predictor of extubation success. We

will denote this set of labeling functions as 𝐿. If a labeling function

has a score in the middle, it is not a strong predictor of success or

failure. We remove these labeling functions before the next step.

5.2 AutoWean Model
The AutoWean model leverages an ensemble approach to combine

the outputs of both high and low risk labeling functions. Specifically

it uses a weighted majority to classify the risk level for each patient.

It is trained using data from 𝑍1 and will be evaluated in a later

section via cross validation as well as using 𝑍2 as a hold out set. We

show the overall algorithm used to generate this model in Algorithm

2.

Given a labeling function 𝑓ℎ ∈ 𝐻 , its weight𝑤 𝑓ℎ is

𝑤 𝑓ℎ =

∑𝑥∈𝑋
1

1(𝑓ℎ(𝑥) = ℎ𝑖𝑔ℎ ∧ 𝑓𝑔𝑡 (𝑥) = 1)
∑𝑥∈𝑋

1

1(𝑓ℎ(𝑥) = ℎ𝑖𝑔ℎ) (3)

i.e. the percentage of patients that actually go on to fail extubation

out of the patients labeled as high risk by 𝑓ℎ .

Similarly, given a labeling function 𝑓𝑙 ∈ 𝐿, its weight𝑤 𝑓𝑙 is

𝑤 𝑓𝑙 =

∑𝑥∈𝑋
1

1(𝑓𝑙 (𝑥) = 𝑙𝑜𝑤 ∧ 𝑓𝑔𝑡 (𝑥) = 1)
∑𝑥∈𝑋

1

1(𝑓𝑙 (𝑥) = 𝑙𝑜𝑤) (4)

i.e. the percentage of patients that go on to fail extubation out of

the patients labeled as low risk by 𝑓𝑙 . We can see that the weights

𝑤 𝑓ℎ , 𝑤 𝑓𝑙 ∈ [0, 1] as they are percentages. Moreover, the weights

measure a labeling functions actual risk using the ground truth

𝑓𝑔𝑡 in the dataset 𝑋1. For every 𝑓ℎ ∈ 𝐻 , as 𝑤 𝑓ℎ approaches 1, the

calculated risk level increases. On the other hand, for every 𝑓𝑙 ∈ 𝐿,

as𝑤 𝑓𝑙 approaches 0, the calculated risk level decreases.

Next, we compute the majority vote by applying the following

equation to each 𝑥 ∈ 𝑋 :
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Figure 2: System Architecture

Algorithm 2 AutoWean Model Algorithm

Input: Training Dataset 𝑍1 = (𝑋1, 𝑌1), High-Risk Labeling Func-
tions 𝐻 , Low-Risk Labeling Functions 𝐿, Thresholds 𝑡𝑙 , 𝑡𝑙𝑚 , 𝑡𝑚 ,

𝑡𝑚ℎ

Output: Risk Estimation Function 𝑓
∗

Obtain the ground truth labeling function 𝑓𝑔𝑡 from 𝑍1

Initialize empty lists𝑤𝐿 ,𝑤𝐻 , 𝑠

for 𝑓ℎ in 𝐻 do

𝑤 𝑓ℎ =
∑𝑥∈𝑋1

1(𝑓ℎ(𝑥)=ℎ𝑖𝑔ℎ∧𝑓𝑔𝑡 (𝑥)=1)
∑𝑥∈𝑋1

1(𝑓ℎ(𝑥)=ℎ𝑖𝑔ℎ)
𝑤𝐻 .𝑎𝑝𝑝𝑒𝑛𝑑(𝑤 𝑓 ℎ)

end for
for 𝑓𝑙 in 𝐿 do

𝑤 𝑓𝑙 =
∑𝑥∈𝑋1

1(𝑓𝑙 (𝑥)=𝑙𝑜𝑤∧𝑓𝑔𝑡 (𝑥)=1)
∑𝑥∈𝑋1

1(𝑓𝑙 (𝑥)=𝑙𝑜𝑤)
𝑤𝐿 .𝑎𝑝𝑝𝑒𝑛𝑑(𝑤 𝑓 𝑙 )

end for
for 𝑥 in 𝑋1 do
𝑠𝑥 = 𝑐ℎ ∑

𝑤𝑓 ℎ∈𝑤𝐻

𝑤 𝑓ℎ1(𝑓ℎ(𝑥) = ℎ𝑖𝑔ℎ)

−𝑐𝑙 ∑
𝑤𝑓 𝑙∈𝑤𝐿

𝑤 𝑓𝑙 1(𝑓𝑙 (𝑥) = 𝑙𝑜𝑤)

𝑠 .append(𝑠𝑥 )

end for
for 𝑠𝑥 in 𝑠 do

Define 𝑓
∗(𝑥) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑙𝑜𝑤 𝑠𝑥 < 𝑡𝑙

𝑙𝑜𝑤/𝑚𝑒𝑑 𝑡𝑙 ≤ 𝑠𝑥 < 𝑡𝑙𝑚

𝑚𝑒𝑑 𝑡𝑙𝑚 ≤ 𝑠𝑥 < 𝑡𝑚

𝑚𝑒𝑑/ℎ𝑖𝑔ℎ 𝑡𝑚 ≤ 𝑠𝑥 < 𝑡𝑚ℎ

ℎ𝑖𝑔ℎ 𝑠𝑥 ≥ 𝑡𝑚ℎ

end for
return 𝑓

∗

𝑠(𝑥) = 𝑐ℎ ∑
𝑓ℎ∈𝐻

𝑤 𝑓ℎ1(𝑓ℎ(𝑥) = ℎ𝑖𝑔ℎ)

−𝑐𝑙 ∑
𝑓𝑙∈𝐿

𝑤 𝑓𝑙 1(𝑓𝑙 (𝑥) = 𝑙𝑜𝑤)
(5)

The sum 𝑠(𝑥) ∈ 𝑅 shows an estimated numerical value of ex-

tubation failure risk: the larger 𝑠(𝑥), the higher risk the patient

has.

Finally, we will pick two thresholds 𝑡𝑙𝑚 and 𝑡𝑚ℎ ∈ 𝑅 to split the

low, medium and high risk levels based on the 𝑠(𝑥) computed. The

final extubation failure risk estimation function 𝑓
∗ ∶ 𝒳 ↦ ˆ𝒴 is

𝑓
∗(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑙𝑜𝑤 𝑠𝑥 < 𝑡𝑙

𝑙𝑜𝑤/𝑚𝑒𝑑 𝑡𝑙 ≤ 𝑠𝑥 < 𝑡𝑙𝑚

𝑚𝑒𝑑 𝑡𝑙𝑚 ≤ 𝑠𝑥 < 𝑡𝑚

𝑚𝑒𝑑/ℎ𝑖𝑔ℎ 𝑡𝑚 ≤ 𝑠𝑥 < 𝑡𝑚ℎ

ℎ𝑖𝑔ℎ 𝑠𝑥 ≥ 𝑡𝑚ℎ

(6)

5.3 Feedback System
Once the risk level has been determined, we convey this informa-

tion to the clinicians. This rating system simplifies the complex data

from a large number of source to an easily understood and quickly

conveyed assessment of risk. Clinically there are patients that need

no further evaluation and on a cursory exam, one is able to decide

whether they are extubatable or not. The clinical utility of this sys-

tem comes from the stratification of borderline cases. This is shown

by the low/med, med, and med/high bins. It provides a validated

decision support structure that is easy to reference when justifying

clinical decisions, particularly for these challenging patients.

Extubation success Extubation failure

Low risk TN FN

High risk FP TP

Table 1: The four possible outcomes.

5.4 Theoretical Guarantee
In this section, we illustrate the theoretical guarantee of our system.

It provides the upper bound on two important error metrics, namely,

false negative rate (FNR) and false positive rate (FPR) for clinical

decisions. This provides clinicians with confidence in the accuracy
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of the predictions of the system. Specifically, we provide a Probably

Approximately Correct (PAC) [14] guarantee on the probability of

the clinical decision being correct, which is achieved by stratifying

the sum 𝑠(𝑥) with two PAC thresholds 𝜏fp and 𝜏fn as in [22]. In

Table 1, we listed out the four possible results for extubation based

on the risk prediction:

Accordingly, False Negative Rate (FNR) and False Positive Rate

(FPR) are defined as below:

FNR =
FN

FN + TP

FPR =
FP

FP + TN

In other words, FN means we predict a patient that has a high

likelihood of failing extubation to have low risk, and FP means we

consider a patient that will succeed in the extubation to have high

risk. Both FN and FP are undesirable, and we should minimize or

control them at a low level for our system to be helpful.

Therefore, we provide a PAC that both the FNR and FPR are

lower than a predefined level 𝜖 with a probability of 1 − 𝛿 [22].

In particular, we first split the 𝑠(𝑥) in the training dataset 𝑍1 into

two subsets based on extubation success and failure. On the failure

subsets, we sort the 𝑠(𝑥) in ascending order, and choose the score

located at the 𝑘fn-th position as the threshold 𝜏fn. The position

choice enforces the 𝜖 constraint for FNR with probability 1 − 𝛿 .

Similarly, we use the score at the 𝑘fp-th position on the success

subset as 𝜏fp, which guarantee FPR with probability 1− 𝛿 . Since 𝜏fn
is calucalted from the failure subsets with higher 𝑠(𝑥) than that of

the success subsets, it is reasonable to assume 𝜏fn > 𝜏fp. Then, the

two thresholds guide our decision as follows:

𝑓
∗(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑙𝑜𝑤, 𝑠(𝑥) < 𝜏fp

𝑚𝑒𝑑, 𝜏fp ≤ 𝑠(𝑥) ≤ 𝜏fn

ℎ𝑖𝑔ℎ, 𝑠(𝑥) > 𝜏fn

(7)

Specifically, if we let 𝑡𝑚ℎ = 𝜏fn and 𝑡𝑙𝑚 = 𝜏fp, we guarantee that:

𝑃[FNR ≤ 𝜖] ≥ 1 − 𝛿

𝑃[FPR ≤ 𝜖] ≥ 1 − 𝛿

In summary, using the two thresholds 𝑡𝑚ℎ and 𝑡𝑙𝑚 on the sum

𝑠(𝑥), we theoretically guarantee the accuracy of the clinical decision
is higher than 1 − 𝜖 with a confidence of 1 − 𝛿 . To validate the

effectiveness of our theoretical guarantee, we empirically evaluate

its performance in the following Evaluation section.

6 EVALUATION
In this section, we evaluate the performance of our extubation risk

estimation model. We present our labeling functions predictive of

the risk and their weights for each risk level. Next, we show three

different hyperparameters used with our labeling functions and

compare their result. Then, we display the cross-validation result of

our model based on the appropriate selection of the hyperparameter

and the weights. Finally, we perform validation of our model over

the holdout set.

For the purposes of the analysis in section, we will further split

𝑍1 into a training and testing set. 𝑍3 = (𝑋3, 𝑌3) will be used for

training and accounts for 70% of our total data. 𝑍4 = (𝑋4, 𝑌4) is
the testing dataset comprised of 17% of our dataset. 𝑍2 = (𝑋2, 𝑌2)
is used as a hold-out set and makes up 13% of our dataset. Since

many patients have multiple extubations, we divide our dataset

while ensuring that each patient only appears in one of 𝑍1, 𝑍2, 𝑍3,

or 𝑍4. We show a phenotyping for these datasets including their

folds in our cross validation (CV) in Table 2.

Risk Factor

High risk Low risk Unlabeled

W # W # W #

Previous number of extubation 75 163 30 444 54 116

RR abnormal time 67 51 44 463 38 209

RSBI 74 19 45 85 42 619

Total ventilation time 67 225 29 355 45 143

Table 3: Labeling Function. W: Weight, #: Total Number of
Extubations in the Risk Level, RR: Respiratory Rate, RSBI:
Rapid Shallow Breathing Index

6.1 Labeling Function Accuracy
Based on domain knowledge, we present labeling functions capable

of identifying the risk level for each risk factor. The list of weights

and numbers of extubations for given risk factors are displayed in

Table 3. Extubations in the high-risk group are likely to be failed,

whereas in the low-risk are likely to be passed. The weights indicate

the percentage of extubation failure out of the total number of

extubations. Patients that did not meet the criteria of either high

or low-risk are classified as unlabeled as shown in Table 4. For

instance, 78% of patients extubated more than or equal to two times

were reintubated within 48 hours. Conversely, about 70% of patients

without prior extubation experienced successful liberation from

the ventilator, i.e., only 30% failed extubations. Moreover, we do

not label the patients who were extubated once, as the outcome is

around half and therefore, unpredictable.

We designed labeling functions with an accuracy of over 65%

for high-risk and less than 45% for low-risk. We only have four

labeling functions as various types of ventilators across the Hospital

of University of Pennsylvania had varying functionalities and did

not support collecting some risk factors that clinicians deemed

important. However, most of our labeling functions, except for

RSBI, cover more than two-thirds of the extubations. Moreover, the

high predictive power of individual labeling functions reduces the

noise of the model during evaluation and aims to provide consistent

risk stratification between different dataset.

6.2 Hyperparameter Tuning
Table 5 shows the list of hyperparameter configurations that de-

termine how overall voting works in favor of high and low-risk

weights. When 𝑐ℎ = 𝑐𝑙 = 1, low-risk labeling functions are added to

the total vote, as well as high-risk labeling functions. On the other

hand, if the configuration is 𝑐ℎ = 1 and 𝑐𝑙 = −1, the low-risk votes

are subtracted from the high-risk votes. The inverse of the low-risk

factors subtracted from 100 derives a similar effect as 𝑐ℎ = 𝑐𝑙 = 1

when subtracted from overall votes. Of the three hyperparameters

in Table 5, the first and third rows showed the same results. Overall,

subtracting the low-risk factors performs the best out of all three

settings, achieving high extubation failure estimation for the three
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Table 2: Phenotyping on dataset. EF: Extubation Failure, ES: Extubation Success, P: Patient, 𝐼𝑎𝑣𝑔: Average of Total Intubation
Time, ICU: Intensive Care Unit, CCU: Critical Care Unit, HVICU: Heart and Vascular ICU, MICU: Medical Intensive Care Unit,
NTSICU: Neuroscience Trauma Surgical ICU, SICU: Surgical ICU, CV: Cross Validation

Evaluation Dataset EF #(%) ES #(%) P # 𝐼𝑎𝑣𝑔 CCU/HVICU ICU MICU NTSICU SICU

CV1 Train 244 (43%) 320 (57%) 285 31.1 122 18 68 94 18

CV1 Test 73 (46%) 86 (54%) 89 32.1 44 29 25 60 1

CV2 Train 238 (42%) 326 (58%) 285 32.5 205 56 113 165 25

CV2 Test 79 (50%) 80 (50%) 89 27.2 44 27 34 44 10

CV3 Train 269 (46%) 322 (54%) 285 31.9 186 79 115 188 23

CV3 Test 48 (36%) 84 (64%) 89 29.1 63 4 32 21 12

CV4 Train 267 (45%) 327 (55%) 285 30.5 194 74 122 173 31

CV4 Test 50 (39%) 79 (61%) 89 35.3 55 9 25 36 4

CV5 Train 250 (43%) 329 (57%) 286 30.8 206 69 116 161 27

CV5 Test 67 (47%) 77 (53%) 88 33.5 43 14 31 48 8

Hold Out Validation 56 (41%) 48 (59%) 50 33.9 30 16 34 10 14

highest risk bins. In addition, it retains the lowest false-negative

rate; that is, the extubation failure rate is low. Minimizing the ex-

tubation failure rate in low-risk bins is critical as it reduces the

number of extubating unprepared patients and prevents serious

complications.

6.3 5-Fold Cross Validation
We used the labeling function weights in Table 3 and the hyperpa-

rameters 𝑐ℎ = 1 and 𝑐𝑙 = −1 to perform a 5-fold cross-validation

on the training dataset. Among 494 patients, we randomly assigned

approximately 10% of patients to the holdout set and the rest to the

training set in which the number of patients has equally partitioned

into five sets. As a patient can be reintubated multiple times, the

number of extubations varies for each set. We use four sets for

training and one for testing when evaluating each fold. When we

train on all of 𝑍1 we get the risk stratisfication shown in Figure 3.

Furthermore, we provide the phenotyping across cross-validation

folds and hold out set in Table 6. Hold out set 𝑍2 was not included

in Table 3 and cross-validation. The ratio of extubation failure vs.

success differs across the folds, but the three highest risk categories

always have higher extubation failure while the two lowest risk

categories have higher success. In general, the model performance

meets our expectations in which the extubation failure percentage

drops as the risk level decreases.
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Figure 3: Overall Model. Rate of extubation failure is given
as a percentage for each bin.

6.4 Hold Out Evaluation
Finally, we evaluated our model with the holdout dataset containing

50 patients with 104 extubations. Among these extubations, there

were 56 failures over 17 patients. As shown in Table 6, extubations in

all risk categories showed high predictability of extubation failures.

It is worth noting that no patients were classified as high-risk.

The failure percentage in medium-risk (62.5%) was slightly lower

Feature High Risk Low Risk Unknown

Previous number of extubation 𝑥 ≥ 2 𝑥 = 0 𝑥 = 1

RR abnormal time (min) 𝑥 > 10 𝑥 = 0 0 < 𝑥 ≤ 10

RSBI 90 ≤ 𝑥 ≤ 200 60 < 𝑥 < 90 (𝑥 ≤ 60)∣(𝑥 > 200)
Total ventilation time (hr) 𝑥 > 72 𝑥 < 24 24 ≤ 𝑥 ≤ 72

Table 4: Labeling Function Criteria
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Risk Weighting Hyperparameter

High risk High/Med risk Medium risk Med/Low risk Low risk

W # W # W # W # W #

Labeling Function 𝑐ℎ = 1, 𝑐𝑙 = 1 66.7 15 70.5 78 36.5 271 36.4 154 47.6 42

Labeling Function 𝑐ℎ = 1, 𝑐𝑙 = -1 85.7 14 76.7 86 61.0 82 33.3 198 27.2 184

Labeling Function 𝑐ℎ = 1, 𝑐𝑙 = −( 100

∑𝑓𝑙∈𝐿
𝑤𝑓 1

1(𝑓𝑙 (𝑥)=𝑙𝑜𝑤) − 1) 66.7 15 70.5 78 36.5 271 36.4 154 47.6 42

Table 5: Weighting Methods and Hyperparameter Tuning Results
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Figure 4: Hold Out Risk Stratification. Rate of extubation
failure is given as a percentage for each bin.

than the average of 67.6% and low-risk was higher than all cross-

validation results. Nonetheless, our model is capable of providing a

consistent prediction of extubation outcomes for each risk-level.

6.5 Guarantee Validation
We first use a labeled training set for calibration, i.e., computing

the two thresholds 𝜏fn and 𝜏fp, and then test whether the guarantee

holds on a test set. Then, we repeat the experiment for 1000 Monte

Carlo trials. In each trial, we compose an i.i.d. calibration set con-

taining 20% of the data from the labeled training set and use the rest

as a test set to validate the guarantee. Finally, we evaluate the thresh-

olds we get from the 1000 trials on a separate hold-out set 𝑍2 that is

never exposed to it. We confirm the average FNR and FPR are below

the average 𝜖 to validate the guarantee on the unseen hold-out set.

Additionally, we keep track of the ratio
ˆ𝛿 where the expected error

is smaller than 𝜖 to validate whether the 𝛿 = 0.2 constraint is met.

Besides FNR and FPR, we also compute the weighted combination

of the two and denote it as ERR. Compared with a threshold that

maximizes the F1 score 𝜏f1, our PAC thresholds not only provide a

theoretical guarantee but also achieve lower empirical FNR, FPR,

and ERR.

The result is shown in Table 7. For the 𝜖 = 0.37 constraint, both

FNR and FPR are smaller than 0.37, and hence we satisfy the error

constraint. On the other hand, we can see that
ˆ𝛿 = 0.12 is below

𝛿 = 0.20, indicating that we satisfy the confidence constraint we

impose when calculating the thresholds. Notice that both thresholds

lead to smaller FNR than FPR, which is desirable since FN is a more

severe outcome than FP. On top of that, we have a smaller FPR

than the baseline, suggesting that our method is less likely to cause

alarm fatigue than the baseline.

Table 7: Comparing our result against the baseline threshold
𝜏f1, we satisfy the guarantee and have smaller error.

𝜖 𝛿 FPR FNR ERR
ˆ𝛿

Ours 0.37 0.20 0.32 0.23 0.25 0.12

Baseline - - 0.37 0.23 0.31 -

7 DISCUSSION AND FUTUREWORK
In this section, we discuss future work to improve our model. First,

auto-generation of labeling functions can be developed to find the

high and low-risk thresholds automatically. Furthermore, more

risk predictors that are prognostic of extubation outcomes can be

Dataset

Low Risk Med/Low Risk Medium Risk High/Med Risk High Risk

W # W # W # W # W #

CV1 27.2 184 33.3 198 61.0 82 76.7 86 85.7 14

CV2 29.4 238 32.3 158 67.5 126 71.0 31 90.0 10

CV3 30.7 313 50.72 138 73.5 102 71.0 31 83.3 6

CV4 26.8 298 52.5 137 77.0 110 76.1 46 100.0 2

CV5 29.6 213 25.9 139 59.0 122 76.5 68 73.0 37

Hold

Out 35.0 40 35.7 14 62.5 16 78.8 33 - -

Table 6: 5-Fold Cross Validation and Hold Out Evaluation
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Figure 5: Risk Stratisfication Over Cross Validation. Rate of extubation failure is given as a percentage for each bin.

identified to increase the number of labeling functions and improve

the performance of the model.

7.1 Auto Generation of Labeling Functions
In its current instantiation, the AutoWean system relies on the

creation of labeling functions by clinicians, expert research, or

data analysis. While this creates high quality labeling functions,

it adds additional time and effort to an already labor intensive

data collection phase. In the future, auto generation of labeling

functions would be a powerful addition. For example, it should

be possible to automatically learn decision trees with a depth of

one. These decision trees should should be reminiscent of the basic

labeling functions that are created for the AutoWean model. But,

as many medical datasets are limited, it is important to verify that

the labeling function not only makes sense from a data analytics

aspect but also from the medical standpoint.

7.2 Labeling Functions
In this study, risk factors were selected based on the clinician’s

recommendations and domain-specific knowledge. Intuitively, in-

corporating more risk factors into our model would increase the

number of labeling functions, enhancing the model performance.

However, acquiring more risk predictors from ventilators was lim-

ited since ventilators from a specific vendor did not support certain

variables. This made it hard for us to design more effective labeling

functions as only part of the patients had data points for strong

predictors.

Nonetheless, we can find additional variables from monitoring

devices connected to the patient. Monitoring devices send HL7 mes-

sages that include variables such as vital sign measurements. Also,

we can pull out patients’ information from Admit, Discharge, Trans-

fer (ADT) message that has just recently been started to be received

by our data acquisition system. This would complement patients’ de-

mographic information, which our dataset lacks. Once appropriate

risk factors are added to our dataset, the auto-generation of labeling

functions can be used in combination with clinical verification to

improve extubation risk estimation.

7.3 Open-Source Dataset
The AutoWean system is evaluated on the dataset collected from

the Hospital of University of Pennsylvania instead of a widely used

open-source dataset such as MIMIC-III [17]. Our initial research

involved theMIMIC-III dataset but it yielded scarce entries after pre-

processing and feature extraction. While analyzing the MIMIC-III

dataset, we identified numerous erroneous values and timestamps,

as well as high missing degrees for important features. In contrast,

our collected dataset contains a sufficient number of extubations

that have both accurate and high resolution time-series data. Al-

though MIMIC-III could not be used for our AutoWean system, the

model could be generalized for other medical datasets if they have

an adequate number of data points for the labeling functions used

in the AutoWean model.

8 CONCLUSION
In this paper, we presented AutoWean, a model that estimates ex-

tubation outcomes and provides risk stratification based on the

labeling functions distinguishing between high-risk and low-risk

patients. We evaluated 827 extubations identified from 494 patients

who were ventilated in the ICUs across the Hospital of University

of Pennsylvania from 2021 to 2022. The risk level is partitioned into

five categories where a higher bin indicates higher risk. The re-

sult shows that extubations placed in high, med/high, and medium

risk levels are prognostic of failures and successes in low, low/med

risks. This meets our goal of aiding clinical decisions via suggesting
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extubation timing decisions through a feedback system with high

confidence.
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