
T4V: Exploring Neural Network Architectures
that Improve the Scalability of Neural Network

Verification

Vivian Lin1, Radoslav Ivanov2⋆, James Weimer1, Oleg Sokolsky1, Insup Lee1

1 PRECISE Center, University of Pennsylvania, Philadelphia, PA 19104, USA
{vilin,weimerj,sokolsky,lee}@seas.upenn.edu

2 Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, 12180
ivanor@rpi.edu

Abstract. This paper focuses on improving the scalability of NN veri-
fication through exploring which NN architectures lead to more scalable
verification. We propose a general framework for incorporating verifi-
cation scalability in the training process by identifying NN properties
that improve verification and incentivizing these properties through a
verification loss. One natural application of our method is robustness
verification, especially using tools based on interval analysis, which have
shown great promise in recent years. Specifically, we show that we can
greatly reduce the approximation error of interval analysis by forcing all
(or most) NNs to have the same sign. Finally, we provide an extensive
evaluation on the MNIST and CIFAR-10 datasets in order to illustrate
the benefit of training for verification.

1 Introduction

In the past several years, deep learning has shown great promise in traditionally
challenging learning tasks such as image classification [38], natural language pro-
cessing [5] and reinforcement learning [30]. Due to this impressive performance,
neural networks (NNs) are also increasingly being used in safety-critical systems
such as autonomous vehicles [2] and air traffic collision avoidance systems [21].
At the same time, however, researchers have discovered numerous robustness is-
sues with NNs, e.g., adversarial examples where small input perturbations may
lead to drastic changes in the NN outputs [37]. Since such issues might compro-
mise the safety of NN-based systems, it is essential to verify the safety of NN
components at design time, before these systems are deployed at large.

There has been a significant amount of work in the last few years on ana-
lyzing the safety of NNs [7,9,10,11,15,22,41,42,43,47]. However, although these
methods employ a variety of techniques, scalability remains a major obstacle
to applying any such method to realistic systems. For example, verifying even
simple input-output properties such as interval constraints on the inputs and
⋆ Work was done while Radoslav was a postdoc fellow at the University of Pennsylva-

nia.



2 V. Lin et al.

outputs of fully-connected NNs with rectified linear units (ReLUs) is known to
be NP-complete (exponential both in the number of inputs and the number of
neurons in the NN) [22,34]. To get around this challenge, researchers have devel-
oped a number of useful heuristics such as combining interval analysis with linear
programming [42] in order to make use of optimized solvers such as Gurobi [32].

As researchers continue to propose better tools through effective heuristics
and implementations, an orthogonal approach to alleviating the scalability chal-
lenge is through exploring the properties of NN architectures that result in more
scalable verification by existing tools and their corresponding heuristics [16,18].
However, there exists no formal general procedure of incorporating such prop-
erties into the training process and explicitly analyzing the trade-offs between
verifiability (i.e., verification scalability) and the original property that the NN
was trained for (e.g., classification accuracy).

In this paper, we propose to incorporate verifiability into the training process,
through a method called training for verification (T4V). Such an approach can in
principle be added to any training task. The high-level idea is as follows: suppose
the original training loss, Lo, is designed to achieve a desired property, ϕo, such as
classification accuracy and robustness; the goal is to identify an NN architecture
property ϕv that results in more scalable verification and a corresponding loss
Lv that can be added to Lo during training. Thus, by assigning different weights
to Lo and Lv, one can explore the trade-off between verifiability and the original
property and choose a desired setting.

To illustrate the process of T4V, we note that the verifiability property ϕv
depends greatly on the specific verification approach. For example, as mentioned
above, having a small Lipschitz constant is desirable for sampling-based meth-
ods [16]. In this work, we focus on approaches based on interval analysis since
those tools have shown promising results in both open-loop [39,42,47] and closed-
loop settings [18]. We have identified an important verifiability property related
to interval analysis, namely that all (or most) NN weights in any layer should
have the same sign. We show theoretically and through examples that if this
property does not hold, then interval analysis can result in drastic overapprox-
imation error. Finally, we propose a corresponding loss function, Lv, that pro-
motes same-sign weights through penalizing negative weights and that is added
to the original loss, Lo, through a weighted average.

We evaluate the proposed method by training a number of NN architec-
tures on the MNIST [24] and CIFAR-10 [23] datasets where the goal is to verify
robustness properties of the trained NN using the interval-analysis-based tool
Fast-and-Complete [47]. We show that in all cases one might achieve signifi-
cant improvements in verifiability at a small cost in robustness and accuracy.
Eventually, an inflection point is reached after which the gains in verifiability
are offset by prohibitive loss in robustness and accuracy. Although we perform
this evaluation on robustness verification, our proposed T4V framework can also
be used for verifying properties other than robustness. Some examples of these
other applications can be found in Section 4.
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In summary, this paper has three contributions: 1) a general framework for
T4V that explicitly incorporates verifiability in the training process; 2) an il-
lustration of the framework on the robustness verification problem; 3) extensive
evaluation on the MNIST and CIFAR-10 datasets.

2 Related Work

A number of directions have been studied by existing work on the NN safety
problem. One type of approach is to train NNs so that they are guaranteed to sat-
isfy some safety property. For example, robustness certification techniques [13,29,33,44,45]
aim to compute an upper bound on the robustness of a NN, then minimize this
bound during training by incorporating it into the loss function. However, these
works do not provide guarantees on unseen data. A related method [8] proposes
predictor-verifier training (PVT), in which a predictor NN learns a task and
a verifier network learns a robustness bound on the predictor NN. Although
this approach empirically improves NN robustness to adversarial examples, the
learned robustness bound only provides an approximation of the true bound.
Finally, another area of interest has been in training NNs that are correct by
construction [25,28]. However, these methods only provide guarantees for global
properties and are unable to provide local robustness guarantees during training.

Due to the challenges in training provably robust NNs, the formal verifica-
tion of NNs after training is an important alternate approach to solving the
NN safety problem. Several techniques exist to analyze the input-output prop-
erties of NNs: 1) casting the problem as a satisfiability modulo theory (SMT)
program [15,22] or a mixed-integer linear program (MILP) [7,39,42,47]; 2) com-
puting reachable sets for the NN outputs using various abstractions such as
polyhedra [35], zonotopes [11], or star sets [41]; 3) estimating the NN Lips-
chitz constant [10] or the distance to the classification boundary for a given
image [43] through relaxed linear or convex optimization programs. Further-
more, approaches have been developed for verifying the safety of closed-loop
systems with NN controllers [6,16,17,18,19,20,36,40] by combining some of the
above ideas with classical hybrid system reachability methods [4,14]. Despite
this impressive progress, existing verification tools struggle to scale to the large
size of NNs typical in real-world problems [22,34].

In response to the scalability issues of existing verification tools, a third type
of approach to the NN safety problem has emerged. Specifically, many papers
leverage various heuristics to make the formal verification of large NNs more at-
tainable. For example, the verification tool Neurify [42] combines interval analy-
sis with linear programming, which can be efficiently solved by existing optimiza-
tion tools (e.g., Gurobi [32]). Other prior work is motivated by the observation
that certain NN architectures are easier to verify by their proposed tools [16,18],
e.g., NNs with smaller Lipschitz constants are better for sampling-based meth-
ods [16]. These techniques, which are perhaps the most relevant predecessors to
T4V, train NNs to adopt properties that make them more amenable to verifi-
cation by existing tools. One paper [46] identifies a heuristic, namely that NNs
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with ReLU activations are easier to verify when their ReLUs are stable for all
possible perturbations of an input, and encodes it into the loss function during
training. Another method [31] penalizes an interval bound on the output of the
NN in the loss function, which (although originally intended to improve training
stability in interval bound propagation [13]) inherently reduces the overapprox-
imation error of interval analysis verification tools. Despite these advances, our
T4V framework is the first formal general procedure for training NNs to adopt
these properties and explictly analyzing the trade-offs that result.

3 Preliminaries and Problem Statement

This section first introduces the standard approach to NN training and verifi-
cation, with a focus on robustness verification tools. Finally, we state the T4V
problem.

3.1 Standard NN Training

The standard classification setting can be summarized as follows: given a train-
ing dataset, Z = {(x0, y0), . . . , (xN , yN )}, of N examples {(x0, . . . , xN} (e.g.,
images) and corresponding labels {y0, . . . , yN}, an NN f is selected from a fam-
ily of NN architectures F so as to minimize some loss, Lo : F ×Z → R, such as
negative log likelihood or least squares [12]. Typically, the family F is a param-
eterized set of NN architectures such that selecting f amounts to choosing the
NN parameters, θ, that minimize Lo:

min
θ

N∑
i=1

Lo(fθ, (xi, yi)). (1)

A large number of NN architectures have been proposed in the last several
years, including fully-connected, convolutional, residual, etc. To simplify the pre-
sentation, in this paper we consider standard feedforward NNs, which includes
fully-connected and convolutional NNs. Formally, a feedforward NN f can be
represented as a composition of its M layers:

f(x) = fM ◦ fM−1 ◦ · · · ◦ f1(x), (2)

where each layer fi(x) = σi(Wix + bi) performs a linear function with weight
matrixWi and biases bi, followed by a non-linear activation σi, such as the ReLU:
σi(x) = max(0, x). Note that the NN parameters θ := {W0, b0, . . . ,WM , bM} are
identified during training as illustrated in (1). A classifier fc(x) can then be
constructed from the neural network f(x) by taking the argmax of its last layer:

fc(x) = argmaxi fi(x), (3)

where fi(x) is the ith component of f(x).
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3.2 NN Verification

As discussed in the introduction, a number of formal verification methods have
been developed recently to analyze various properties of trained NNs. The vast
majority of these techniques were proposed for robustness analysis, as motivated
by the discovery of adversarial examples [37]. In this work, we also focus on
robustness verification as the main property of interest, though our proposed
T4V method can be applied to any other property as well.

Robustness Property Intuitively, an NN is robust if perturbing its inputs by
a small amount leads to a correspondingly small change in the output. Since it is
not feasible to compute robustness bounds for all inputs, existing methods focus
on verifying robustness around a given example. Specifically, given an example
x and a perturbation bound ϵ, the robustness verification problem is to establish
whether there exists an ϵ-bounded perturbation of x that leads to a change in
the label predicted by fc Formally, given fc, x, and ϵ, the robustness property
is stated as follows:

∀x′ ∈ Bϵ(x), fc(x
′) = fc(x), (4)

where Bϵ(x) = {x′ | ∥x′ − x∥∞ ≤ ϵ} is an L∞ ball around x.3 Thus, the bigger
the ϵ for which (4) holds, the more robust fc is.

Verification Methods As noted in the introduction, verifying (4) is NP-
complete for fully-connected NNs with ReLU activations, exponential both in
the number of inputs (i.e., the dimension of x) and in the number of neurons
in f [22,34]. To circumvent this limitation, a variety of heuristics have been
proposed, ranging from casting the problem as a MILP [7] to performing reach-
ability analysis [41]. In this work, we focus on methods based on interval analy-
sis [39,42,47] since they have shown great promise in the last couple of years [1].

We now provide a high-level overview of the tools Neurify [42] and Fast-and-
Complete (FAC) [47], which employ similar approaches in terms of combining
interval analysis with linear programming. Intuitively, the ultimate goal of these
methods is to cast (4) as a relaxed LP and use an optimized solver such as Gurobi.
Since ReLUs are non-linear, one needs to obtain a linear relaxation of each ReLU
neuron. Such a linear relaxation can be obtained by computing bounds on the
inputs to each ReLU (using interval analysis) and then approximating the ReLU
with a linear function over those bounds [42].

Once a linear relaxation of each ReLU is obtained, the entire LP is solved
using Gurobi. If no counterexample is found, then the property is true. If a
counterexample is found, one needs to check if it is a true or false positive: if
it is a true positive, then the property is false; if the counterexample is a false
positive, then the LP needs to be refined by splitting an overapproximated ReLU
into its individual components and solving both resulting LPs (thus potentially
leading to an exponential number of splits). Please consult prior work [42,47]
3 We use L∞ in the interest of clarity, though other norms can be used as well.
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about various improvements in terms of which ReLUs to split first and how to
obtain the tightest bounds [l, u] for the input to each ReLU.

As noted above, this procedure has an exponential complexity in the worst
case due to the possibility of having to split each ReLU in the NN. Thus, the
run-time of such an approach can be greatly improved by tightening the bounds
obtained using interval analysis, which is the goal of T4V.

3.3 Problem Statement

We now state the T4V problem, both in its general version as well as the specific
instantiation related to robustness verification.

Problem 1 (Training for Verification). Suppose some base loss function Lo has
been selected to achieve some property ϕo, e.g., classification accuracy, of an NN
during training. Suppose also that a verification algorithm A is used to verify a
given property ψ. The training for verification (T4V) problem is 1) to identify
an NN property ϕv that results in more scalable verification of ψ by A and 2)
incorporate ϕv into the NN during the training process using a corresponding
loss function Lv.

Problem 2 (Training for Robustness Verification). The training for robustness
verification problem is an instantiation of the T4V problem, where A is an
interval-analysis-based verification algorithm [42,47] and ψ is a robustness prop-
erty.

4 Training for Verification: High-Level Approach

This section provides our high-level approach to T4V. This method can in prin-
ciple be applied to any training approach and any desired verification algorithm,
although the specifics may vary as discussed below.

In a standard training setting, the NN parameters are selected so as to mini-
mize some loss Lo, as discussed in Section 3. In classification problems, this loss
is usually negative loss likelihood or cross entropy. If robustness is considered
in addition to classification accuracy, then one can also add an additional term
such as adversarial robustness [27] or interval bound propagation [13]. None of
these methods consider verification during the training phase, however, since
verification is usually performed post-hoc.

In this paper, we propose introducing verification considerations to the train-
ing process. Since NNs are usually highly overparameterized, there exist multiple
NNs within the same family that achieve a similar loss Lo. Thus, it makes sense
to choose an NN that not only achieves a low Lo but is also easy to verify. In
order to do so, one needs to identify an NN property ϕv that leads to more scal-
able verification. The property ϕv is likely to be specific to the verification task
and the tool being used, since different tools use different heuristics to tackle the
scalability challenge.
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Assuming for now that such a property ϕv is identified (examples are provided
at the end of the section), the next task is to choose a corresponding loss function,
Lv, that incentivizes this property during training. Given Lv, one can now modify
the training loss by combining Lo and Lv, for example in a convex combination:

L = αLo + (1− α)Lv, (5)

where α ∈ (0, 1). Thus, by varying α and observing the corresponding effect
on Lo, the user can select the appropriate trade-off between verifiability and
the original property. Note that in some cases, the loss Lv might even improve
the original property, e.g., regularization is known to improve generalizability in
classification tasks, especially with overparameterized models such as NNs [12].
We now provide two example properties ϕv and corresponding losses Lv.

Example 1 (Sampling-based Reachability Analysis). Reachability analysis is a
useful technique in closed-loop verification, e.g., when NNs are used as con-
trollers [16,18]. In this setting, the task is to compute the reachable set of outputs
of the NN given a set of inputs. One way of approximating the reachable set is
by constructing a polynomial approximation of the NN over the input set using
polynomial regression [16]. In order to bound the error of the approximating
polynomial, one could use a sampling-based method by making use of the NN’s
Lipschitz constant. Thus, NNs with lower Lipschitz constants would improve the
scalability of the above method since fewer points would need to be sampled.

In the context of the proposed T4V method, the desired verifiability property
ϕv is that the NN has a low Lipschitz constant. One way to incentivize this
property is to introduce an L2 regularizer on the NN weights W, i.e., Lv =
WTW . While prior work [16] has made the observation that lower Lipschitz
constants improve verification scalability, we believe our proposed framework
can make explicit the relationship between NN verifiability and performance as
a controller. For example, for an NN used as an agent in a deep reinforcement
learning problem, our framework can help understand the trade-off between NN
verifiability and rewards earned by the NN agent.

Example 2 (Taylor-model-based Reachability Analysis). An alternative method
to reachability analysis is to construct a polynomial approximation with error
bounds (i.e., a Taylor model) for each neuron in the NN [19,20]. This method
makes use of interval analysis to propagate the error bounds through the NN.
Thus, the error bounds can grow quickly, especially in large NNs. One way to
reduce the error growth, as discussed also in Section 5 in the context of robustness
verification, is to ensure that all weights in a given layer have the same sign.

Thus, the property ϕv is that all weights are positive, without loss of general-
ity. One way of promoting this property is through introducing a higher penalty
on negative weights, explained further in Section 5.

The remainder of this paper considers in more detail another example of
T4V, namely for the case of robustness verification using interval analysis.
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Fig. 1: Illustration of the growth of the approximation error incurred by interval
analysis on the harmonic oscillator system.

5 Training for Robustness Verification

This section presents an illustration of the proposed T4V method, for the case
of robustness verification using interval-analysis-based tools. We first identify a
property ϕv that results in smaller approximation error due to interval analysis.
We then introduce the corresponding verifiability loss, Lv, and show how to
combine it with the original loss, Lo.

5.1 On the benefit of same-sign weights for interval analysis

As discussed in Section 3, interval analysis is a major component of state-of-the-
art robustness verification tools. At the same time, interval analysis can introduce
significant approximation error, especially in high-dimensional settings. Prior
work [26] has discussed multiple reasons for the error growth, such as rotations,
ill-conditioned matrices, etc.

To illustrate one such case of approximation error growth, consider the har-
monic oscillator dynamical system [26]:

xk+1 =

[
cosϕ sinϕ
− sinϕ cosϕ

]
xk, (6)

where ϕ = 45◦, and x0 ∈ [−1 − ϵ,−1 + ϵ] × [−ϵ, ϵ]. In this example, the initial
set for x0 is a box with size 2ϵ (ϵ can take on any positive value). With each
step k = 1, 2, 3, . . . , the reachable set for xk is rotated by 45◦. If one were to
use interval analysis to approximate the reachable set, the approximation error
would grow quickly over time, as shown in Figure 1, due to the rotation present
in the harmonic oscillator system.

The harmonic oscillator example is instructive because an NN can be con-
sidered a dynamical system, where the neurons at layer k are xk. Thus, for the
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purposes of analyzing error growth, we can view the NN description in (2) as a
linear system of the sort:4

xk+1 =Wk+1xk, (7)

where k = 0, . . . ,M , x0 is the input to the NN, and Wk are the individual layer
weights. Note that we ignore the bias terms bk because they do not affect the
shape of the sets.

With this intuition in mind, we can choose a property for eachWk and enforce
it during training. Unfortunately, most properties that result in lower approx-
imation error [26] are difficult to enforce as they would significantly constrain
the NN architecture: e.g., eliminating rotations would mean that we a priori fix
the directions of all rows of each Wk and only train their magnitudes. Hence,
we have identified a new property that can be more easily incentivized during
training as a soft constraint. Namely, interval analysis approximation error is
reduced when all (or most) entries of each Wk have the same sign. The benefit
of this property is illustrated in the following theorem.

Before stating the theorem, we introduce some notation relevant to interval
analysis. Let x ∈ [l, u], i.e., x lies in the (potentially multidimensional) interval
[l, u]. When clear from context, we use the shorthand notation [x] := [l, u]. We
say a matrix A ∈ Rm×n is a same-sign matrix if all entries of A have the same
sign. As a reminder, for a scalar constant a ≥ 0, a× [l, u] = [al, au]; when a < 0,
a× [l, u] = [au, al]. Finally, when A ∈ Rm×n with rows a1, . . . am and x ∈ Rn, we
use the shorthand notation A[x] to mean the interval vector [y] where the first
component is the interval [l1, u1] = aT1 [x], and so on.

Theorem 1. Let x ∈ [x] and let A = AM . . . A1 be the product of M matrices
with compatible dimensions. If all Ai are same-sign matrices, then the set A[x]
is the same as the set AM . . . [A1[x]].

Proof. We prove the claim by induction on the number of matrices M . The claim
is trivially true for M = 1.

Suppose that the claim is true for k, i.e., A[x] = Ak . . . [A1[x]]. Now consider
Ak+1. We need to show that Ak+1[A[x]] = (Ak+1A)[x].

Let [x] = [a, b], with a and b vectors. Note that all entries of each A and
Ak+1 must have the same sign, so we can write A = sign(A)|A| and Ak+1 =
sign(Ak+1)|Ak+1|, where |A| denotes the element-wise absolute value of A.

Note that since |A| has non-negative values, [|A|[x]] = [|A|a, |A|b], which
implies Ak+1[A[x]] = sign(A)sign(Ak+1)|Ak+1|[|A|a, |A|b]. Similarly, since |Ak+1|
has non-negative values, |Ak+1|[|A|a, |A|b] = [|Ak+1| · |A|a, |Ak+1| · |A|b].

Conversely, since Ak+1A = sign(Ak+1)sign(A)|Ak+1| · |A|, then (|Ak+1| ·
|A|)[x] = [|Ak+1| · |A|a, |Ak+1| · |A|b], which proves the claim. ■

Theorem 1 means that if we have a sequence of same-sign matricesA1, . . . , AM

applied to an interval vector [x], using interval approximation after each multi-
plication is the same as premultiplying the matrices and using interval analysis
4 Note that the ReLU activations may sometimes reduce the approximation error since

all negative values are mapped to 0. However, they do not add any further error, so
analyzing only the linear parts of the NN is an important first step.
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only once. This is important because in an NN we cannot premultiply all layer
weights due to the presence of activations. Thus, Theorem 1 means that if all
weights have the same sign, then applying interval analysis at each layer does
not result in drastic approximation error growth. Note that if the conditions
of Theorem 1 do not hold, the error could grow substantially, as shown in the
following example.

Example 3. Let x ∈ [[−0.01, 0.01], [−0.01, 0.01]]⊤. Let v1 = [1, 1]⊤, v2 = [3, 3]⊤, v3 =
[5,−3]⊤. Suppose we want to compute v⊤3 [v1 v2]⊤[x].

Note that (v⊤3 [v1 v2]
⊤)[x] = [−4 − 4][x] = [−0.08, 0.08]. On the other hand,

if we apply interval analysis sequentially, we get
v⊤3 [[v1 v2]

⊤[x]] = v⊤3 [[−0.02, 0.02], [−0.06, 0.06]]⊤ = [−0.28, 0.28], which is a sig-
nificantly larger interval.

5.2 Incentivizing Same-Sign Weights During Training

There are multiple ways to achieve the same-sign property during the training
process. One approach would be to use constrained optimization and train the
NN under the constraint that all weights in a layer have the same sign. However,
such a constraint might be too limiting and might significantly affect training
performance. Thus, we choose instead to relax these constraints using mech-
anisms inspired by the common Lagrangian relaxations from optimization [3].
Specifically, we incorporate our same-sign weights constraint directly in the loss
through a larger penalty on negative weights. While it may be possible to achieve
better training results using a scheme where some layers have only negative
weights and others have only positive weights, we leave this analysis for future
work. Specifically, the verification loss has the form:

Lv =

M∑
i=1

γ∥Wn
i ∥+ (1− γ)∥W p

i ∥, (8)

where Wn
i = min(0,Wi),W

p
i = max(0,Wi), ∥ · ∥ denotes the Frobenius norm,

and γ ∈ [0, 1] is a hyperparameter that determines how big the penalty on neg-
ative weights should be. Note that computing W p

i and Wn
i requires a max and

min function, similar to the ReLU implementation. We also emphasize that our
verification loss Lv, when incorporated with the original Lo loss via (5), is rem-
iniscent of the standard weight norm penalizations used in machine learning.
Such regularization techniques have been shown to improve generalizability [12],
and although we have repurposed them to achieve an imbalance of weight dis-
tribution (weighted more heavily towards negative weights or positive weights),
our loss Lv is likely to improve generalization over a non-regularized NN. This
is also observed in our experiments.

The choice of γ in (8) depends on the specific training task. Since NNs are
overparameterized for many benchmarks such as MNIST and CIFAR-10, NNs
can be well trained even with a γ that is close to 1. However, as the complexity
of the training task increases, it is possible that even small deviations of γ past
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0.5 may significantly hurt training performance. In our experiments, we chose
γ = 0.9 since we were able to train NNs with very small negative weights while
maintaining high accuracy.

Finally, note that a more effective strategy may be to also assign different
weights to different layers, so as to recognize their relative importance. In partic-
ular, larger layers, both in terms of the number of inputs and number of neurons,
result in larger approximation error when using interval analysis (interval anal-
ysis does not maintain relationships between variables, which accrues additional
error in higher dimensions). Hence, it is natural to introduce a larger penalty for
larger layers. Furthermore, earlier layers are more important in terms of error
growth since the error is magnified as the analysis progresses through the fol-
lowing layers. Since a formal analysis of these factors is not straightforward, we
assign the same weight to all layers and leave this investigation for future work.

6 Experiments

This section provides an evaluation of the proposed T4V method on the MNIST [24]
and CIFAR-10 datasets [23]. MNIST is a dataset of 28× 28 grayscale images of
handwritten digits, and CIFAR-10 is a dataset of 3× 32× 32 color images of 10
classes of objects such as airplane, automobile, etc. We use the FAC tool [47] in
the verification evaluation, which is described at a high level in Section 3.5

6.1 Experimental Setup

We illustrate the benefit of our approach in two different scenarios, one in which
the original loss is purely classification-oriented, and one in which the original
loss promotes both classification accuracy and robustness. For each scenario, we
evaluate the effect of T4V on NN verifiability. We also evaluate NN robustness,
as the T4V process could improve verifiability by reducing robustness (a non-
robust network can be trivially proven unsafe via counterexample). Our results
alleviate such concerns. We show that in both scenarios, adding the verification
loss Lv improves verifiability, often at little or no cost in accuracy and robustness.

Scenario 1: Classification accuracy In the first scenario, the original loss
is cross-entropy loss, denoted by LCE , which is a standard loss in classification
tasks [12]. In the interest of space, we omit the formal definition of cross-entropy;
intuitively, for each example x, LCE tries to minimize the difference between
the NN’s output label “distribution” (e.g., a softmax layer) and the true label’s
distribution (given as a one-hot encoding, for example). Thus, the final T4V loss
in this case is:

L := αLCE + (1− α)Lv. (9)
5 All code used to produce the experiments can be found at
https://github.com/vwlin/T4V

https://github.com/vwlin/T4V
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Scenario 2: Classification accuracy and robustness In the second scenario,
the original loss enforces not only classification accuracy but also robustness.
This scenario illustrates two points: 1) the proposed method is general and can
be used for a variety of original losses; 2) since the proposed Lv loss naturally
improves robustness over a non-regularized network (as discussed in Section 5),
we show that it can improve verifiability even in settings where the NN is already
quite robust.

There are a number of existing methods that are aimed at improving NN
robustness such as adversarial training [27] and interval bound propagation
(IBP) [13]. In this work, we use IBP since it performs fairly well on the MNIST
and CIFAR-10 datasets; we leave the evaluation over other robustness losses for
future work. At a high level, IBP works as follows: for a given batch of B training
examples x1, . . . , xB , an interval of size 2ϵIBP is created around each point; then
we propagate the intervals [x1 − ϵIBP , x1 + ϵIBP ], . . . , [xB − ϵIBP , xB + ϵIBP ]
through the NN using interval analysis; the size of the output interval is used
as the IBP loss, LIBP . Note that, in addition to improved robustness, IBP also
alleviates the approximation error of interval analysis. Thus, the final loss be-
comes

L := α(βLCE + (1− β)LIBP ) + (1− α)Lv, (10)

where β is a hyperparameter regulating the relative weight of LIBP .

6.2 Implementation Details

For our evaluation on MNIST, we train three different fully-connected NN archi-
tectures of increasing size in order to illustrate the benefit of our approach: 1) an
NN with 2 hidden layers and 50 neurons per hidden layer; 2) an NN with 2 hid-
den layers and 200 neurons per hidden layer; and 3) an NN with 5 hidden layers
and 200 neurons per hidden layer. Without regularization, these NNs achieve
classification accuracy of 95.6%, 95.8%, and 97.5%, respectively (as averaged
over 3 trials with different random seeds).

To train the NNs for Scenario 2 on MNIST, for each NN we used values
of β and ϵIBP that do not greatly affect the original LCE loss; the specific
values are ϵIBP = 0.04 (normalized from the pixel range [0, 255] to [0, 1]), and
β = 0.84, β = 0.96, β = 0.97 for the three NNs, respectively. Note that bigger
values of β are needed for larger NNs since interval analysis can result in large
output intervals, as discussed in Section 5.

For our evaluation on CIFAR-10, we note that CIFAR-10 is a significantly
harder dataset than MNIST, both due to the number of dimensions and to the
richness of the images. In addition, since FAC does not support regularization
such as dropout and batch normalization, it is challenging to train NNs with very
high accuracy that can be encoded in the tool. Thus, we use the following archi-
tecture (as inspired by the CIFAR-Base model in the original FAC paper [47]):
1) a convolutional layer of 8 filters (with a kernel size of 4 and stride of 1); 2)
a convolutional layer of 16 filters (with a kernel size of 4 and stride of 1); and
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3) a fully-connected layer of 128 neurons. Note that when expanded, the convo-
lutional layers have 6728 and 10816 neurons, respectively, which is significantly
larger than the NNs used for MNIST. Without regularization, this NN achieves
an average (over 3 trials) classification accuracy of 73.38%.

For both scenarios and datasets, to evaluate verification scalability, we ran-
domly select 200 images from the test set and run the FAC tool with a selected
perturbation size ϵ on each NN for each correctly classified image. An image is
said to be verified if the verification completed within a timeout of 60s for the
MNIST dataset and 120s for the CIFAR-10 dataset. We define verifiability to be
the fraction of images that were verified by FAC. We evaluate robustness with
respect to the same safety property that we verify with FAC (i.e., that an ϵ per-
turbation will not cause a change in classifier decision). We first ϵ-perturb 1000
randomly selected images from the test set (a superset of the 200 images used to
evaluate verifiability) using the PGD attack [27]. We then measure robustness
as the fraction of images for which the classification decision of the NN did not
change after the attack. Note that this robustness measure is an overestimate
of the NN’s true robustness, as the PGD attack is not guaranteed to find the
optimal adversarial perturbation for each image. Thus, for a closer estimate of
robustness, we use 1000 images rather than 200 images. Finally, to obtain infor-
mative evaluations of verifiability and robustness, we select the perturbation ϵ
(the same ϵ is used for both evaluations) so that the robustness verification task
is neither overly trivial (ϵ too small) nor insurmountably difficult (ϵ too large)
for the FAC tool to complete on each NN.

6.3 Distribution of Weights

For a subset of the NNs trained on MNIST for Scenarios 1 and 2, the distribution
of learned weights are shown in Figure 2. We find that without our verification
loss Lv (i.e., when α = 1.00), the weights roughly follow a bell-shaped distri-
bution centered at 0. In contrast, after training with Lv (i.e., when α < 1), all
negative weights are of nearly zero magnitude. For our NNs trained on CIFAR-
10 for Scenarios 1 and 2, we show the distribution of learned weights in Figure 3.
Just as with the NNs trained on MNIST, the addition of our verification loss Lv

greatly reduces the magnitude of negative weights.

6.4 MNIST Evaluation

The MNIST evaluation on Scenario 1 is shown in Figure 4.6 We observe that,
as we decrease α (i.e., we assign more weight to Lv) verifiability increases sig-
nificantly for each setup, reaching as high as 90% for the two-layer NNs. Also
note that the increase in verifiability usually comes at the expense of some drop
in accuracy (more pronounced in the five-layer NN). At the same time, for val-
ues of α very close to 1, one can obtain significant benefits in verifiability at
6 For assessing the magnitude of ϵ, note that image pixels can only take discrete values

between 0 and 255.
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(a) 2 layers, 50
neurons per layer,
Scenario 1.

(b) 4 layers, 200
neurons per layer,
Scenario 1.

(c) 2 layers, 50
neurons per layer,
Scenario 2.

(d) 4 layers, 200
neurons per layer,
Scenario 2.

Fig. 2: MNIST weight distributions on Scenarios 1 and 2. Each histogram is over
a single trial. The vertical axes are on a log scale.

(a) Scenario 1. (b) Scenario 2.

Fig. 3: CIFAR-10 weight distributions on Scenarios 1 and 2. Each histogram is
over a single trial. The vertical axes are on a log scale.

only minor costs in accuracy. Finally, the proposed Lv also naturally improves
robustness. However, the improvements in robustness and verifiability are not
always correlated, as discussed next.

The evaluation on Scenario 2 is shown in Figure 5. Once again, the verifi-
ability improves significantly as we decrease α. Note that, due to the addition
of LIBP , these NNs are much more robust (for larger ϵ) to input perturbations.
In this case, the increase in verifiability comes at some cost in both accuracy
and robustness, with the degree of this trade-off tunable by the hyperparameter
α just as in Scenario 1. However, for the five-layer NN, the suitable range of α
is much narrower than for the smaller networks. Due to the larger size of the
five-layer NN, it is increasingly difficult as α decreases to balance the competing
objectives of accuracy, low IBP loss, and low verification loss. The result of this
complex loss is great variance across seeds when α is reduced beyond a certain
threshold (analyzing the reasons for this variance, e.g., the importance of layer
weighting in Lv, is left for future work).
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(a) 2 layers, 50 neurons
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(b) 2 layers, 200 neurons
per layer, ϵ = 15.
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(c) 5 layers, 200 neurons
per layer, ϵ = 8.

Fig. 4: MNIST evaluation on Scenario 1. All curves are averaged over 3 trials.
Shaded regions indicate min/max outcomes for each setup.
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(a) 2 layers, 50 neurons
per layer, ϵ = 25.
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(c) 5 layers, 200 neurons
per layer, ϵ = 15.

Fig. 5: MNIST evaluation on Scenario 2. All curves are averaged over 3 trials.
Shaded regions indicate min/max outcomes for each setup.

6.5 CIFAR-10 Evaluation

The CIFAR-10 evaluation is shown in Figure 6, where the verifiability definition
is the same as in the case of MNIST (with a timeout per image of 120s). We
observe the same overall trends as in the MNIST case – adding the Lv loss
improves verifiability significantly, at some cost in accuracy (though robustness
is improved in both scenarios). Note that there is more variance across seeds
in the CIFAR-10 evaluation, most likely due to the challenging dataset and the
larger size of the NNs. Finally, note that the robustness benefits of LIBP are
less pronounced than in the MNIST case – this is consistent with prior work
where achieving robustness has been shown to be significantly harder for color
images such as those in CIFAR-10 [27]. As part of future work, we will explore
whether using other robustness losses leads to a better robustness/verifiability
combination on CIFAR-10.
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(a) Scenario 1.
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Fig. 6: CIFAR-10 evaluation on the two scenarios, ϵ = 3. All curves are averaged
over 3 trials. Shaded regions indicate min/max outcomes for each setup.

7 Discussion and Future Work

This paper presented an approach to training for verification. We proposed a way
of incorporating a verification loss into the training process, thus significantly
improving verification scalability. An evaluation was provided on MNIST and
CIFAR-10 illustrating the generality and effectiveness of this technique.

Since T4V is a new area, there are a number of interesting directions for
future work. As shown in Section 6, the proposed method introduces greater
variance during the training process for larger NNs, so an important question
is whether verifiability is fundamentally at odds with accuracy or whether it is
simply a matter of finding the right local optimum during training. As a first
step, we intend to investigate the effect on the training process of assigning
different values of the γ hyperparameter at each layer.

Another interesting direction is to apply this technique in closed-loop set-
tings. Since in closed-loop verification one needs to perform reasoning over mul-
tiple time steps, an extra challenge in this problem is that if the NN controller is
not robust, verification is likely to fail even if the NN itself is “verifiable”. Finally,
we intend to apply the proposed method to other losses and verification tasks
(e.g., semantic robustness) in order to investigate its benefits and limitations.
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