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Abstract. Although neural network control systems have been used in
many applications, they are still challenged by the unreliability of neural
networks in the face of unseen data. Thus, it is important to formally
verify and assure the safety properties of neural network control systems.
A major challenge of this task is a pervading gap between realistic sim-
ulators and analyzable simulators of system plants. To narrow this gap,
we propose a method to closely approximate a realistic simulator with
a less complex simulator. Our approach relies on generative adversar-
ial networks to learn the error statistics between an existing analyzable
simulator and an existing realistic simulator. We additionally present
a general probabilistic guarantee on the input-output error of an ap-
proximation obtained by any method, including our own. We apply our
GAN-based approximation technique in a case study of glucose control
for type 1 diabetics and evaluate the resulting approximator against data
simulated from real patient parameters. We observe that our approach
more closely approximates a realistic insulin-glucose simulator than a
baseline method.

Keywords: Safety analysis · Neural network control systems · Model
approximation · Automatic glucose control.

1 Introduction

Neural networks (NNs) are widely recognized as a powerful tool in modeling
and control of complex systems [4, 35, 44]. Despite this, neural network control
systems (NNCSs) have significant flaws that continue to plague them during
their deployment. For example, NNs have been shown to behave unexpectedly
in the real world when data does not match those seen during training [41, 50,
57]. Generally undesirable, this unreliability is an especially relevant concern for
safety-critical systems, such as medical devices [18] and autonomous vehicles [4].
Hence, it is important to determine whether users can trust each individual
NNCS used in safety-critical systems. One natural step in this process is formally
verifying and assuring the safety properties of NNCSs.

Great progress has been made in accomplishing this task. In particular, a
common approach is to ensure the safety properties of a simulated closed-loop
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Fig. 1: Spectrum of analyzable and realistic simulators. Existing simulators fall
on either end of the spectrum.

system, consisting of the controller and a simulator or model of the plant [12, 16,
32, 33, 56, 63, 64, 70]. However, such solutions face a recurring challenge. Namely,
there exists a gap between simulators that are analyzable and simulators that are
realistic, as illustrated in Figure 1. Accurate simulators are often so complex, for
reasons including a large parameter set [46] or a large state space [29], that the
requisite analysis is intractable for existing tools. Conversely, simulators simple
enough to enable formal verification and assurance of safety properties are often
inaccurate models of the real world. Consequently, in many scenarios it remains
difficult to both efficiently and accurately check NNCS safety properties.

To narrow this gap between analyzable and realistic simulators, we propose
a method of approximating a realistic complex simulator with an analyzable
simulator that maintains the accuracy of the original. For this work, we focus on
realistic simulators whose complexity arises from an oppressively large parame-
ter set, which is difficult to efficiently explore, either by sampling-based or more
formal methods. In this setting, our broad goal is to find an approximator of the
original simulator that has a reduced parameter set. To do so, we use a genera-
tive adversarial network (GAN) to learn the error statistics between an existing
analyzable simulator and an existing realistic simulator. Our final approxima-
tion of the realistic simulator is the combination of the analyzable simulator and
our error model. Leveraging the natural structure of GANs, this method allows
for a low-dimensional parameter set while maintaining accuracy. Using meth-
ods from extreme value theory, we additionally provide a general probabilistic
bound on the input-output error between the original simulator and the model
approximating the simulator. We note that our technique is applicable to any
closed-loop system, but we focus on application to NNCSs due to the elevated
difficulty of proving NNCS safety properties.

Our method is particularly useful to NNCSs involved in the medical devices
domain. This area of work is commonly subject to difficulties balancing simulator
realism and analyzability. As an illustrative example, consider glucose control for
type 1 diabetics, in which the goal is to design a controller that automatically
selects an appropriate insulin dosage for the patient. The UVa/Padova Type 1
Diabetes Metabolic Simulator (T1DMS) [46] is a comprehensive FDA-approved
simulator for the human glucose-insulin dynamics, and hence it is a popular
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choice of simulator for checking the safety properties of a glucose controller.
However, the T1DMS involves a 32-dimensional parameter set that is too large
for existing tools to handle. Furthermore, the parameters corresponding to each
individual patient are often partially unknown, leading to discrepancies between
even the complex T1DMS and the actual glucose-insulin dynamics of the patient.
Such challenges place a significant burden on medical device manufacturers, for
whom it is desirable to evaluate a medical device’s safety before opting into
expensive clinical trials. With these considerations in mind, we select glucose
control for type 1 diabetics as a case study of our proposed method, and we
develop a GAN-based model with only three parameters to approximate the
T1DMS.

In summary, our contributions are 1) a GAN-based approach to learning a
reduced parameter set approximation of a simulator, 2) a general probabilistic
guarantee on the error between the original simulator and its approximation,
and 3) a case study of 2) applied to glucose control for type 1 diabetics with
data simulated from real patient parameters.

2 Related Work

There are many approaches to deriving guarantees on systems that involve NNs.
The most rigorous area of analysis is formal verification, which can be applied
to NNs in both the open-loop and closed-loop settings. In the open-loop set-
ting, the input-output properties of NNs are checked. Methods for open-loop
verification include formulating the analysis as an SAT/SMT problem [19, 37],
formulating the analysis as an MILP [17, 60, 65], and abstracting the input set
as intervals [66], polyhedra [54], zonotopes [24], or star sets [62] to be propa-
gated through the NN. In the closed-loop setting, these methods are extended
to perform reachability analysis on a closed-loop dynamical system, composed
of an NN controller and some model of a plant. One such approach is to cal-
culate the output range of the NN controller using an open-loop verification
method, then propagate this range through some time horizon according to the
system dynamics [32, 61]. However, such techniques are often overly conserva-
tive, caused by the propagation of the NN output over-approximation error [49].
A variety of alternate methods [16, 33, 56] have been proposed to reduce this
over-approximation error in closed-loop NN verification. Despite this extensive
literature, formal verification methods struggle to scale with NN size and input
size. For example, it has been shown that verifying NNs with ReLU activation
functions is NP-complete [37]. As such, other techniques for proving the safety
properties of NNCSs have been explored.

One orthogonal approach to formal verification is simulation-based methods.
Such techniques use a model of the system and a finite number of initial con-
ditions to produce simulation traces, from which some safety guarantee on the
entire set of initial conditions can be derived. In some cases, this safety guar-
antee is proven using information about the deviation between each simulated
trace and some set of unsimulated traces, which can be quantified by sensitiv-
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ity analysis [10, 11], discrepancy functions [14, 15], or bisimulation functions [25,
36]. Alternate methods build off of statistical model checking [52, 71] and Monte
Carlo methods, sampling the set of initial conditions to compute a probabilis-
tic guarantee on a safety property [8]. Recent work has applied simulation-based
techniques to check the input-output properties of NNs [69], perform reachability
analysis on NNCSs [64, 70], and perform falsification on NNCSs [12, 63].

Whether through formal verification or simulation-based methods, any ap-
proach to checking NNCS safety properties requires a model or simulator of the
system plant. Accompanied with this model is an inherent trade-off between how
realistic the model is and how analyzable the model is. As a result, researchers
have explored methods of reducing model complexity while maintaining accuracy
as a means of enabling safety analysis [1, 7, 34, 59]. One area of such literature
focuses on reducing the original model to an equivalent abstraction. For exam-
ple, abstraction has been used to facilitate symbolic model checking [7], which
has been applied to safety-critical applications like pacemakers [34]. As another
example, since many simple classes of hybrid systems are undecidable for reach-
ability analysis [29], some abstractions of hybrid systems have been explored for
verification [1, 59].

Another popular method of balancing the model realism-analyzability trade-
off is using NNs to approximate complex models, which is most similar to our
approach. As universal approximators [9, 30], NNs have long been used as func-
tional approximators of system dynamics [22, 40, 55]. More recently, one ap-
proach applied this technique to assist in checking the safety properties of closed-
loop systems [20]. In a similar vein, another work considered the problem of
performing simulation-based reachability analysis on NN-represented nonlinear
autoregressive-moving average (NARMA) models that approximate nonlinear
dynamics [68]. Finally, one method used NNs to overapproximate models with a
probabilistic guarantee, ensuring safety in situations where underestimated val-
ues lead to faults [13]. In application, NN approximation for system analysis has
shown utility in a number of fields, used to accelerate Monte Carlo simulation
methods for analyzing structural failure probabilities [58] and for studying con-
densed matter systems [53]. This approach has also been used extensively in the
verification of glucose controllers, and we refer the reader to Section 5 for a more
detailed review of such work. Unlike previous methods using NN approximations
to enable safety property assurance and verification, which approximate or ab-
stract a realistic model directly, we construct an approximation by learning the
error statistics between a realistic model and an analyzable model.

3 Preliminaries and Problem Statement

We first introduce some notation that will be used throughout the paper. We
denote the set of real numbers as R, the set of n-dimensional real vectors as Rn,
and the set of strictly positive real numbers as R++. We use E to refer to the
expected value, and xi

iid∼ X to denote that xi are independently and identically
distributed (i.i.d) random variables drawn from the distribution X .
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For this work, we abstract simulators and consider them as simple input-
output models. Note that this definition of simulators encompasses dynamical
models (i.e., the current and next state can be considered the input and out-
put, respectively) that are often used to simulate a real-world environment. We
therefore represent a given existing simulator as a model y mapping from input
space X ⊆ Rn to output space Y ⊆ Rm, with parameters from some P ⊆ Rp. We
also denote the set of simulator models mapping from X to Y with parameter
set Q ⊆ Rq as YX,Y,q = {yQ | yQ : X → Y, Q ⊆ Rq}.

Our central goal is to approximate the simulator y with some model ŷQ ∈
YX,Y,q, with the parameter set of ŷQ having a dimensionality smaller than the
original. The parameters of the new reduced model can then be dynamically
chosen using samples of the incoming data. The question of how the parame-
ters should be chosen is out of the scope of this work. Instead, as a first step
to addressing the approximation for parameter set reduction problem, we seek
a simulator ŷQ for which there exists some parameter Q ∈ Q that minimizes
approximation error for each P ∈ P. More formally, our problem is as follows.

Problem 1 (Approximation for Parameter Set Reduction). Assume that a simu-
lator y : X → Y with parameter set P ⊆ Rp, a set of models YX,Y,q with q < p,
and samples x1, x2, . . . , xt ∈ X are given. Find an approximator of y, denoted
ŷQ, that solves

argmin
ŷQ∈YX,Y,q

min
Q∈Q

1

t

t∑
i=1

ℓ (y(xi), ŷQ(Q, xi)) ,

where ℓ (y(xi), ŷQ(Q, xi)) is a distance metric that quantifies the distance be-
tween y(xi) and ŷQ(Q, xi).

The minimization over Q in the above optimization problem captures our goal
of finding a simulator for which there exists a minimizing parameter. Before
proceeding with the paper, we provide an illustrative example of Problem 1. Let
X = Y = R, and let y have parameter set P = {P}. Also consider a set of models
YX,Y,q = {ŷQa , ŷQb

}, where Qa = {Q1
a, Q

2
a} ⊆ Rqa and Qb = {Q1

b , Q
2
b} ⊆ Rqb ,

with qa, qb < p. Let ℓ be the euclidean distance and the simulator outputs at
samples x1, x2, x3, x4, x5 be as depicted in Figure 2. In this scenario, there is a
parameter selection for ŷQb

(i.e., Q1
b) that achieves the least error out of all four

possible approximations of y. Thus, the solution to Problem 1 is ŷQb
.

4 High-Level Approach

In this section, we describe our high-level approach to Problem 1. We first provide
background information on GANs for context, then describe our application of
GANs to the problem. We lastly present a probabilistic guarantee on the error
of any approximation method, including our own.
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Fig. 2: Example scenario for Problem 1. The solution in this case is ŷQb.

4.1 Generative Adversarial Networks

The goal of the GAN framework [27] is to train generative neural networks,
which generate data from a distribution imitating that of the training data.
This method deviates from prior work on generative models by formulating the
training process as a two-player game between a generator network G and a dis-
criminator network D. The generator aims to mimic the training distribution as
closely as possible, learning a mapping from a prior distribution pz(z) on a noise
input z to the distribution pdata(x) of the training data x. The discriminator,
adversary to the generator, aims to determine whether an input is from the true
training set or is generated by the generator. More formally, this minimax game
is formulated as the following optimization problem:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] .

For applications requiring data generation, the discriminator is often used for
training only and discarded in deployment. Our solution likewise uses the dis-
criminator for training, but only incorporates the generator in the final simulator.
Essential to our approach is the fact that the noise input of the generator can be
chosen to have any dimension, although in practice certain choices of dimension
are more suitable for training stability. This is discussed further in later sections.

The GAN framework can easily be extended to learn a conditional distribu-
tion [48]. In this conditional GAN framework, shown in Figure 3, the generator
takes a context (i.e., conditioning) input in addition to a noise parameter and
produces a sample from the learned conditional distribution. Although power-
ful, both GANs and conditional GANs are difficult to train. For example, one
common challenge is mode collapse, in which the generator generates only a
small subset of the possible outputs [47]. The Wasserstein GAN (WGAN) [3]
is a variant of GANs that alleviates these problems. Broadly, the generator of
a WGAN mimics the training distribution by minimizing the Earth Mover (or
Wasserstein-1) distance [51] between the training and generated distributions.
Given these benefits to training stability and preventing mode collapse, we use
a conditional Wasserstein GAN in our approach.
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Fig. 3: Block diagram of the conditional GAN structure.

(a) y with parameter
P ∈ P.

(b) ŷQ with parameter Q ∈ Q.

Fig. 4: Block diagrams of (a) original simulator with large parameter set P and
(b) approximator of simulator with reduced parameter set Q.

4.2 GAN-Based Parameter Set Reduction

To approximate a given simulator y, we propose to compose two sub-models.
Specifically, our approximation ŷQ of y is given by

ŷQ = ȳ + êS,

where ȳ is an existing simple simulator and êS is the generative network of a GAN
estimating the error e = y− ȳ. We denote the parameter set of ȳ as W ⊆ Rw, and
we denote the parameter set of êS as S ⊆ Rs, with w+s = q < p. Our construction
of ŷQ is shown as a block-diagram in Figure 4. The core of our approach is training
the GAN to learn the error e conditioned on an input x. There are several benefits
to this composition approach. First, by exploiting existing simulators, we reduce
our task to learning low magnitude error values, which is much simpler than
learning the simulator model itself due to increased training stability (smaller
NN weights help avoid exploding gradients [26]). Second, as training data we
sample input-output pairs from the existing simulators y and ȳ, allowing us to
create a training set of unlimited size.

We now describe each sub-model of our approach in greater detail. To choose
ȳ, we must identify a simple simulator that is meant to accomplish the same task
as y and that has a low-dimensional parameter set. That is, W ⊆ Rw, where 0 ≤
w ≪ p. In accordance with the realism-analyzability trade-off discussed earlier,
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such a simulator sacrifices accuracy for reduced complexity. To compensate for
this less accurate representation of the true plant, we augment ȳ with a secondary
model êS that approximates the error e = y − ȳ.

We derive our second model êS from a GAN with parameters S ⊆ Rs such
that w + s < p. Note that GANs naturally lend well to this purpose, as they
take a noise parameter with dimensions that can be chosen at the time of design.
This sets GANs apart from other architectures that may otherwise be used for
time-series data, such as long short-term memory models (LSTMs). We train
the generator of this GAN to learn the distribution of the error e(x) = y(x) −
ȳ(x) conditioned on input x, and we call the resulting generator êS. Our final
approximation is the sum of the two sub-models, ŷQ = ȳ + êS.

We make here a distinction between the predicted error, e = y − ȳ, and the
error of our simulator approximation, y − ŷQ. For the remainder of the paper,
we refer to e as the predicted error or error, and we refer to y − ŷQ as the
approximation error.

4.3 Probabilistic Guarantee on Approximation Error

We finally present a probabilistic guarantee on the input-output approximation
error between the simulator y and its approximator ŷQ.

Theorem 1 (Probabilistic Approximation Guarantee). Let ŷ : X → Y be
any approximation of the model y : X → Y, and let x1, x2 . . . , xt ∈ X, with xi

iid∼
X , be samples. Also let ℓ(y(xi), ŷ(xi)) be a metric that quantifies the distance
between y(xi) and ŷ(xi). Assume that there exists a sequence at ∈ R++ and a
sequence bt ∈ R such that

PX

(
maxi=1,2,...,t{ℓ(y(xi), ŷ(xi))} − bt

at
≤ α

)
converges to a non-degenerate distribution function as t → ∞ (i.e., the extreme
value theorem assumption). Then, for any δ ∈ (0, 1), there exists ϵ > 0 such
that, as t → ∞,

PX

(
max

i=1,2,...,t
{ℓ(y(xi), ŷ(xi))} ≤ ϵ

)
≥ 1− δ. (1)

Proof. We define the random variable z(t) = maxi=1,2,...,t{ℓ(y(xi), ŷ(xi))}. By
the extreme value theorem, as t → ∞, z(t) ∼ Z, where Z is one of three extreme
value distributions, Fréchet, Weibull, or Gumbel. For brevity, we consider here
the case that Z is the Gumbel distribution. The proof follows similarly for the
other two cases.

The Gumbel distribution is parameterized by the location µ and scale σ
parameters, and it is defined as

FZ(a) = exp {− exp{−(a− µ)/σ}} .
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For any δ ∈ (0, 1), let ϵ be such that ϵ ≥ −σ ln(− ln(1−δ))+µ. Then, by a series
of straightforward algebraic manipulations, we have that

ϵ ≥ −σ ln(− ln(1− δ)) + µ ⇐⇒ exp{− exp{−(ϵ− µ)/σ}} ≥ 1− δ

⇐⇒ FZ(ϵ) ≥ 1− δ

⇐⇒ PZ(z(n) ≤ ϵ) ≥ 1− δ,

as desired. □

Remark 1. As seen in the proof of Theorem 1, for the Gumbel distribution Z, a
choice of ϵ satisfying

ϵ ≥ −σ ln(− ln(1− δ)) + µ (2)

achieves Equation (1) for any δ ∈ (0, 1), as t → ∞. In practice, ϵ can also be
chosen based on less precise knowledge of the distribution parameters µ and
σ. For example, given bounds on the parameters such that µ ∈ (−∞, µ̄] and
σ ∈ [

¯
σ, σ̄], it is trivial to show that for any δ ∈ (0, 1), as t → ∞, Equation (2)

holds when {
ϵ ≥ −

¯
σ ln(− ln(1− δ)) + µ̄, if δ ≥ 1− e−1,

ϵ ≥ −σ̄ ln(− ln(1− δ)) + µ̄, otherwise.

A similar statement holds for the cases that Z is the Fréchet or Weibull distri-
bution.

Remark 2. We note that Theorem 1 is agnostic to the approximation technique.
Hence, it applies both to the approximation error of our simulator approximation
ŷQ and to any other approximation. Additionally, it relies only on the mild
extreme value theorem assumption.

5 Case Study: Glucose Control

We implement our GAN-based approximation approach for parameter set reduc-
tion in the safety-critical context of glucose control, including glucose control via
an NN controller. In this section, we provide a review of the glucose control prob-
lem, a description of our implementation, and finally our experimental results.

5.1 The Glucose Control Problem

For patients with type 1 diabetes, automatic glucose control alleviates the burden
of manually calculating and administering insulin dosages. Thus, there has been
an extensive effort to develop such controllers, also called artificial pancreases,
most commonly using model predictive control [18, 23, 28, 31, 45] or PD/PID
control [5, 67]. Figure 5 shows the typical glucose control loop in this setting, in
which a controller reads a glucose measurement from the patient and suggests
an insulin dosage. The glucose measurements are typically taken from a glucose
monitor, and the insulin dosage is supplied via an insulin pump, either in the
form of basal (small, continuous dose) or bolus (large, single dose) insulin.
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Fig. 5: Typical glucose control loop.

Given the safety-critical nature of this scenario and the high variability be-
tween patients, it is important that the safety properties of automatic glucose
controllers be verified. In particular, two safety properties of interest are that the
controlled glucose levels never rise above a certain threshold (i.e., hyperglycemia)
and never fall below a certain threshold (i.e., hypoglycemia). However, analyzing
the combined glucose controller and patient to check these properties remains
challenging. Such a task is typically performed on the glucose controller and
a model or simulator of the patient’s glucose-insulin dynamics, but the most
accurate models are often so complex that verification is intractable by exist-
ing tools. For example, the UVA/Padova Type 1 Diabetes Metabolic Simulator
(T1DMS) [46] is both FDA-approved and commonly used in the literature for
simulation of insulin-glucose dynamics. The full model relies on 32 parameters
to characterize the patient, many of which are often unknown for each patient or
difficult to measure. With so many often unknown parameters, it is challenging
to verify or assure safety properties using the T1DMS. For example, one work [5]
attempted to verify a PD glucose controller against a version of the T1DMS for
the surgical setting [6], which has a reduced set of 20 parameters. Using the
reachability tool dReach [38] at shallow search depths, the authors could not
verify the system for the full range of parameter values.

This difficulty in verifying the safety properties of glucose controllers is a
concern to many parties. Patients risk their own health in using an unsafe glu-
cose controller, and regulators serve to protect the patients’ interests. Perhaps
the most directly affected party are the medical device manufacturers develop-
ing tools like glucose controllers. For such manufacturers, clinical trials are an
important but expensive step to achieving FDA-approval. Verification of glucose
controllers beforehand is one option to safeguard against a failed clinical trial
and large scale financial cost. However, especially with the complex biological
systems of the human body, verification in the medical domain proves difficult
to achieve using accurate models (e.g., T1DMS).
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Given the importance and challenges of glucose-insulin modeling for verifi-
cation, data-driven models of the glucose-insulin system have been explored as
alternatives to the T1DMS. Some approaches [2, 18, 43] used NNs trained on
patient data and T1DMS-simulated data to predict future blood glucose levels
from a history of glucose and insulin readings. These methods either train a sin-
gle model (e.g., a convolutional NN composed with a recurrent NN [43] or new
architecture called the gradually connected NN [2]) or train three small fully-
connected NNs to predict the mean, upper quantile, and lower quantile of the
future glucose level [18]. Another technique [42] develops a data-driven model of
the plant to aid in glucose controller verification. Specifically, an array of linear
auto-regressive moving average state-space (ARMAX) models are trained from
patient data and then used to predict confidence intervals for a future glucose
level based on patient history. These models, which together produce a com-
posite confidence interval, are combined with reachability analysis to predict a
reachtube over-approximation of future PID-controlled glucose levels. While the
aforementioned data-driven models directly learn the glucose-insulin dynamics
using either patient data or data from the T1DMS, our NN learns the error
statistics between an existing analyzable simulator and the T1DMS using data
simulated from each. From this NN error model and the analyzable simulator, an
approximation of the T1DMS with a reduced parameter set can be constructed.

5.2 Implementation

We implement our approximation method for parameter set reduction in the
glucose control scenario, constructing a simulator to approximate the T1DMS.
In our approach, the T1DMS is the realistic simulator y, with a parameter set
of dimension p = 32.

For our low-complexity simulator ȳ, we choose a pre-trained feedforward
fully connected NN with 2 hidden layers and 8 neurons per hidden layer de-
signed for glucose control [18]. This simulator has no parameters (i.e., w = 0).
It takes as input a history H of 37 glucose readings and 37 insulin dosages
sampled 5 minutes apart (i.e., a 185-minute history), and it predicts the pa-
tient’s glucose level 6 samples (i.e., 30 minutes) into the future. More formally,
we denote the glucose reading and insulin dosage at time t as gt and ut, re-
spectively, and we denote the sampling period as T = 5 minutes. Then, given a
history H = {gt−36T , gt−35T , . . . , gt, ut−36T , ut−35T , . . . , ut}, this simulator pre-
dicts gt+6T . The NN is trained against synthetic data collected from an early
version of the T1DMS and the clinical trial data of 17 patients. To compensate
for the low complexity of the model, the original paper trains two additional
NNs to estimate the upper and lower quartiles of gt+6T . We instead propose to
learn the error itself of the model compared to the T1DMS.

Finally, for our model êS, we use a conditional Wasserstein GAN to learn the
distribution of the error e between the T1DMS y and the simple glucose model ȳ,
conditioned on the history H of insulin dosages and glucose measurements. For
the discriminator, we use a feedforward fully-connected architecture of 3 hidden
layers and 32 neurons per hidden layer. For the generator, we use a feedforward



12 V. Lin et al.

fully-connected architecture of 3 hidden layers and 64 neurons per hidden layer,
with an initial 10% dropout layer during training. In practice, we found that
a 3-dimensional noise input (i.e., s = 3) sampled from a Uniform([−10, 10])
distribution (i.e., S = [−10, 10]) results in the best training results. We train our
model on 45,000 (H, e) samples and validate on 15,000 samples. To construct
our training and validation sets, we first use the T1DMS to simulate the glucose
and insulin traces of 60,000 random synthetic patients (defined by their T1DMS
parameters, sampled i.i.d.) for 24 simulation hours. For each patient simulation,
we randomly select a sequence of glucose and insulin readings (excluding the
first and last two hours of simulation), and parse from it a history H and the
corresponding 30-minute look-ahead glucose measurement y(H). We then supply
each H to the NN glucose model ȳ and calculate the error e(H) = y(H)− ȳ(H).
The result is a history H and error e pair. Note that samples produced this way
are i.i.d., as the T1DMS parameters are sampled i.i.d. and each simulator run
is independent of the last. We randomly split the 60,000 (H, e) samples into the
training and validation sets.

Our final model approximator ŷQ is the sum of ȳ and êS, with only w+ s = 3
parameters compared to the 32 parameters of the T1DMS. In practice, at each
prediction step we supply a history H to both ȳ and êS, and we supply a three-
dimensional noise sample as parameter S ∈ S to êS. Note that this approach
requires some scheme for selecting an appropriate parameter S. Since the correct
parameter for each patient could change at each time step, this is a challenging
task. One potential solution is to restructure the simulator to predict both the
current and future glucose values. The parameter selection can then be made
based on the prediction accuracy of the current glucose value, as the true current
glucose value is known. The corresponding future glucose value serves as the final
prediction. In this paper, we leave further exploration of this parameter selection
problem for future work, and we focus on developing an error model êS for which
there exists an error-minimizing parameter.

In addition to our model approximator, our probabilistic guarantee for ap-
proximation error has utility in the context of glucose control. The guarantee
can provide a bound on the likelihood of false negatives when checking for risk
of hypoglycemia or hyperglycemia in simulation. The empirical evaluation of our
probabilistic approximation guarantee is out of the scope of this paper.

5.3 Results

Note that an evaluation of the error model êS completely characterizes the accu-
racy of the approximation ŷQ = ȳ+ êS. Hence, we evaluate our GAN’s ability to
estimate the conditional distribution of the error e, and we compare it against a
baseline approximator. For our baseline approximator, we fit a Laplacian distri-
bution to the training error samples. At test time, for each patient we randomly
sample from this fitted distribution to approximate the error.

We compare our GAN and baseline error approximators across a held out
dataset simulated using the parameters measured from 22 real patients. Similar
to the training and validation sets, to construct this test set we randomly sample
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Fig. 6: Comparison of GAN and baseline error approximators over 100 samples
for each patient. Boxes represent the interquartile range of approximation error,
and whiskers show the full range of approximation error.

a history H from the data of each patient (excluding the first and last two hours
of simulation) and record the true error e. Then for each patient, we sample
100 error predictions ê from the baseline approximator and construct a box and
whisker plot of the approximation error e− ê. We also sample 100 ê predictions
(by sampling 100 noise parameter inputs) from the GAN error model êS and
construct a box and whisker plot of e− ê. The approximation errors of the base-
line approximator and the GAN approximator are represented for each patient in
Figure 6 (for scale, an early publication on the T1DMS defined safe blood glucose
levels to be between 70 mg/dL and 180 mg/dL [39]). We observe that the GAN
approximations for e have a tighter distribution around zero approximation er-
ror. That is, the vanilla approximator tends to more grossly overapproximate or
underapproximate e than the GAN does. By extension, a model approximator
using the baseline error approximator is more likely to yield false positives and
false negatives when checking for hypoglycemia and hyperglycemia in simula-
tion. We attribute this result to the fact that the GAN leverages patient-level
information (i.e., the 185-minute glucose and insulin history H) to predict the
error, unlike the baseline approximator.

6 Discussion and Future Work

In this paper, we proposed a method to learn a simulator approximation with a
reduced parameter set, using GANs to learn the error between a highly param-
eterized simulator and a less parameterized simulator. We applied our method
to a case study of glucose control for type 1 diabetics, approximating the 32-
parameter T1DMS with a three-parameter simulator. We showed that our GAN-
based method is better able to use patient information to approximate a given
simulator than a baseline method. We also presented a probabilistic guarantee on
the input-output approximation error of any approximation method, including
ours. Our proposed method presents a promising first step to building the trust-
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(a) Offline verification. (b) Runtime monitoring.

Fig. 7: The two components of an offline verification and runtime monitoring
framework.

worthiness of NN-controlled safety-critical systems through efficient but realistic
simulators for safety property assurance and verification.

However, questions remain for future work. First, in this paper we discussed a
method to design a parameterized model that closely approximates a simulator.
How one should choose the best parameter of this model for each scenario is an
important next step in our future work. Additionally, our probabilistic guarantee
is likely not tight, as it is agnostic to the approximation method. Also, it requires
infinite samples. We leave the empirically evaluating the tightness of our bound
and deriving a finite-sample version for future work.

Finally, our proposed approximation technique is meant to balance analyz-
ability with realism, but is naturally subject to some approximation error. Hence,
we believe our approach is most useful in a framework of offline verification with
runtime monitoring, as pictured in Figure 7. In this framework, the desired safety
property is verified offline against the simulated closed-loop system, consisting
of the simplified simulator ŷQ and the controller. Online, a runtime monitor
checks the consistency of the simulator ŷQ against real-world data, the result of
which aids the controller in making its control decision. When used in such a
framework, ŷQ must be designed to enable both verification and monitoring by
existing tools. One potential technique for this task is a variant of knowledge
distillation that minimizes the Lipschitz constant of the reduced-order simulator
post-hoc [21]. We leave the exploration of this challenge and the implementation
of such a framework for future work.
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