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Abstract
Uterine atony accounts for a vast majority of all postpartum hem-

orrhages (PPH), the leading cause of maternal mortality world-

wide. Uterine atony occurs when the uterine muscle (called the

myometrium) does not sufficiently contract to arrest parturient

bleeding after delivery. While there exist treatments for uterine

atony, delays in intervention reduce their effectiveness. To improve

time-to-intervention, postpartum hemorrhage risk prediction tools

have been integrated into the standard-of-care for obstetrics. Un-

fortunately, these tools miss almost half of all PPHs. This paper

presents VIBRANT as a clinical decision support tool providing

early prediction of potentially life-threatening uterine atony. VI-

BRANT is physiologically inspired and designed to identify signals

of myometrial fatigue argued to be present in streaming maternal

heart rate data. Evaluations of the system indicate that VIBRANT ,

at a clinically actionable specificity, identifies over 80% of potentially

life-threatening uterine atony missed by current gold-standard risk

prediction tools. Moreover, the system provides between 2 and 8

hours advance warning to care teams prior to delivery for parturi-

ents at high-risk, providing ample time for preparation and timely

intervention. VIBRANT has been licensed to a commercial partner

and is in preparation for a clinical trial to support a regulatory

submission and pre-market approval.
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1 Introduction
Postpartum hemorrhage (PPH) – excessive bleeding after delivery

– is the leading cause of maternal mortality worldwide, affecting

between 1% to 5% of all deliveries and resulting in over 70 thousands

deaths, annually [46, 47]. Moreover, PPH disproportionately affects

women-of-color, regardless of education level or socioeconomic

status [20]. The vast majority (80%) of PPHs are due to uterine

atony [19], which occurs when the uterine muscle fibers do not

arrest parturient bleeding at the site of placental detachment during

delivery – resulting in PPH [11]. Consequently, most uterine atony

(and resulting PPH) occur within a few minutes of delivery and

requires quick intervention.

Treatments exist. There are safe and effective treatments for

uterine atony to arrest bleeding and prevent PPH, including med-

ications (e.g., uterotonics), mechanical intervention, blood trans-

fusions, and (in extreme scenarios) surgical procedures such as

hysterectomy. However, the effectiveness of these treatments di-

minishes with time-to-intervention. Unfortunately, economic and

resource constraints facing birthing facilities prevents having these

life-saving treatments prepped and nearby for all deliveries. Worse,

since uterine atony (and the corresponding PPH) often occurs

shortly after delivery, there is little (often no) time to prepare treat-

ments post-delivery. The combination of these factors contributes to

an increase in time-to-intervention for uterine atony and ultimately

PPH rates.

State-of-the-art. To help clinical teams better prepare for po-

tential PPHs (and uterine atony), state-of-the-art risk screening

tools that identify parturients
1
at elevated risk of PPH have been

integrated into clinical workflow and planning. These tools aim

to provide a safe and effective way to predict a PPH prior to de-

livery, so care teams can be proactive (as opposed to reactive) and

adequately prepare for a timely intervention before a high-risk par-

turient delivers. However, a significant and ongoing shortcoming

of these gold-standard tools is that more than 40% of hemorrhages

occur in patients designated as low risk [18]. In light of these poor

predictive values, researchers are actively exploring a number of

1
A parturient is defined as someone who is in labor.
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approaches to improving the existing models of risk assessment,

including the incorporation of intrapartum factors or non-obstetric

risk factors [1, 17, 41, 53].

Our approach. In this work, we take a novel and fundamentally

different approach. We postulate that myometrial
2
fatigue precedes

uterine atony. While not directly measurable in laboring patients,

myometrial fatigue has been shown to shift muscle cell metabolism

from aerobic to anaerobic, resulting in accumulation of lactic acid in

bothmyocytes and amniotic fluid [49].We posit that anothermarker

of myometrial fatigue can be seen with specific trends in maternal

heart rate during active labor contractions. This is based on the

physiological fact that during contractions, blood is forced from

the uterus and into the maternal circulatory system, resulting in an

autotransfusion that increases maternal cardiac output and changes

maternal heart rate [34]. We combined these facts to develop a new

physiological biomarker for myometrial fatigue that is observable

through maternal heart rate data. To develop and evaluate a risk

prediction tool based on the above rationale, we employ a model-

based systems engineering approach.

First, leveraging the clinical literature, we develop a first-of-its-

kind physiologically-inspired biomarker that relates myometrial

fatigue to cardiac output (which combines maternal heart rate and

blood volume). We call this biomarker theMyometrial Fatigue Index.
Unfortunately, cardiac output is difficult to practically measure

in real-time, so we derive a surrogate statistic that only requires

maternal heart rate data, but retains equivalence as a statistic for

testing myometrial fatigue. To ensure robustness, we also identify a

set of confounding factors that affect maternal heart rate dynamics

and identify a set of nuisance transformations over maternal heart

rate telemetry that cover the effect of confounding factors.

Second, leveraging the minimal model, we develop a test for

myometrial fatigue that is provably maximally invariant to the

identified nuisance transformations. Maximally invariant statistics,

originally developed for radar signal processing, have recently been

utilized in multiple medical applications. In this application, we

employ the statistics to design a detector that tests for non-linear

ranked relationships invariant to confounding factors that contain

elements of the surrogate myometrial fatigue index statistic dis-

criminating the presence and absence of myometrial fatigue. To

instantiate the test, we present an implementable version suitable

for real-world deployment, called VIBRANT (and illustrated in

Figure 1) .

Third, we evaluate VIBRANT on a dataset collected during labor

and delivery that demonstrates clinically-significant performance.

At a clinically acceptable specificity of over 90%, the system achieves

over 80% sensitivity at predicting PPH associated with uterine

atony. Clinically, this can be interpreted as the proposed system

identifying the 10% of parturients that contain over 80% of potential

life-threatening uterine atony currently missed by the standard-of-

care risk predictors.

In summary, the major contributions of this work are as follows:

(1) Develop a biomarker for myometrial fatigue. We de-

velop the myometrial fatigue index as a new biomarker that

relatesmyometrial fatigue to cardiac output. To facilitate real-

world utilization, we also identify an equivalent surrogate

2
The myometrium is the thick muscular middle layer of the uterus wall.

implementation using only maternal heart rate telemetry

and describe the corresponding confounding factors.

(2) Introduce VIBRANT as a robust test for the biomarker.
We develop VIBRANT as a test that is maximally invariant

to the confounding factors and leverages maternal heart

rate to discriminate the presence/absence of intrapartum

myometrial fatigue – as a surrogate for predicting risk of life-

threatening uterine atony. We also present a clinical decision

support system architecture that describes a commercially-

viable implementation of the risk predictor.

(3) Evaluate VIBRANT on real-world data against a gold-
standard alternative. We evaluate VIBRANT on a dataset

collected during labor and delivery that demonstrates clinically-

significant performance – catching hours ahead of delivery

over 80% of potential life-threatening uterine atony currently

missed by the standard-of-care.

The remainder of this paper is structured as follows. Section 2

summarizes the work related to our research. In Section 3, we

describe requirements and a problem statement to satisfy these

requirements. Section 4 derives the Myometrial Fatigue Index,

presents a statistic that is equivalent for testing, and formally

models corresponding confounding factors. Section 5 presents VI-

BRANT as an implementation-friendly surrogate for life-threatening

uterine atony risk prediction. Section 6 presents an evaluation of

VIBRANT in the context of current state-of-the-art standard-of-

care. Section 7 presents on-going work on obtaining regulatory

pre-market approval. Finally, we conclude the paper in Section 8.

Figure 1: VIBRANT System Architecture

2 Related Work
In this section we overview the related work. Specifically, we de-

scribe the causes of uterine atony, present the treatment landscape,

and briefly overview the state-of-the-art for improving maternal

outcomes associated with uterine atony (and PPH).

2.1 Causes of Uterine Atony
The vast majority (80%) of PPHs

3
are caused by problems with

Tone (clinically known as uterine atony) [19]. The physiological

3
The other causes of PPH are associated with trauma (e.g., laceration), tissue (e.g., re-
tained placenta), or thrombin (e.g., problems with clotting) [5].
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relationship between uterine atony and PPH is well understood.

The figure-of-eight muscle fibers of the uterus are wrapped around

blood vessels at the former intrauterine site of the placenta. As the

placenta delivers, thesemuscle fibers must contract around the open

vessels at the site of placental detachment.When thesemuscle fibers

fail to contract, resulting in uterine atony, a parturient can bleed

profusely, resulting in PPH which is defined by the American Col-

lege of Obstetricians and Gynecologists (ACOG) as ≥ 1000 mL blood

loss [44]. However, the cause of uterine atony is far less clear, where

several underlying risk factors have been shown to be associated

with excessive bleeding and PPH, including (but not limited to) uter-

ine overdistention, certain medications/anesthesia, prolonged/fast

labor, high body mass index, uterine fibroids, chorioamnionitis, and

placenta disorders [10].

Of particular interest to this work, is the fact that fast/prolonged

labor is known to correlate with – but not cause – uterine atony. To-

wards understanding uterine atony causation, it is known that the

thick uterine wall muscle (i.e.,myometrium) can experience fatigue

in cases of both prolonged or quick delivery [31]. From studying

athletes, it is well known that a shift in muscle cell metabolism

from aerobic to anaerobic can occur in both prolonged and quick

intense periods of exertion, resulting in an accumulation of lactic

acid that can impair muscle function (i.e., fatigue) [8]. Similarly, my-

ometrial fatigue in parturients has been shown to shift muscle cell

metabolism from aerobic to anaerobic, resulting in accumulation of

lactic acid in both myocytes and amniotic fluid [49]. Consequently,

it has been postulated in the clinical community that parturient

myometrial fatigue is a significant precursor of uterine atony [31].

However, continuously and directly measuring levels of myome-

trial fatigue in human subjects during active labor remains an open

challenge.

2.2 Treatments for Uterine Atony
While safe and effective treatments for uterine atony (and PPH)

exist, their effectiveness is complicated by availability, timely diag-

nosis/intervention, and implicit bias. The first line treatment for

suspected uterine atony is to administer uterotonic drugs, often

in rapid succession until the uterus is firm and the bleeding sub-

sides [22]. However, often these medications are not positioned

nearby in birthing scenarios, increasing the time-to-intervention

and reducing intervention effectiveness. When uterine atony is

suspected, clinicians often perform physical treatments (e.g., bi-
manual uterine compression) or invoke mechanical means to arrest

bleeding [23, 50]. Ultimately, in severe and delayed-intervention

cases, uterotonics and physical treatment may not work and more

aggressive treatments are employed, including surgeries such as

uterine artery embolization or hysterectomy [23]. Rapid transfu-

sions of blood products are frequently needed to replace lost blood

in order to save a patient’s life – but in some areas, blood products

are not always readily available.

Healthcare providers often rely on visual estimation of blood

loss or patient behavior, resulting in inaccurate outcome diagnoses.

This leads to underestimated blood loss or missed atony/PPH cases,

resulting in increasedmorbidity andmortality. The accessibility and

efficacy of interventions vary worldwide, with challenges in trans-

porting and storing essential drugs like oxytocin and carboprost

tromethamine, which requires refrigeration. Racial and economic

disparities further compound the issue with implicit bias often un-

derpinning these disparities [20]. Implicit bias has been shown to

affect treatment administration (and corresponding clinical care

outcomes) and maternal care providers are not immune to this

bias [38].

The factors above combine to contribute to the over 60 thousand

annual deaths from uterine atony. Of these subjects, a majority

experienced PPH due to uterine atony shortly after delivery while

under the observation of the clinical care team. Most troubling,

research suggests that up to 93% of PPH deaths are preventable [7],

where delays in diagnosis and treatment significantly contributes to

preventable pregnancy-related deaths and extreme morbidity [15].

2.3 State-of-the-Art: Improving Outcomes
Given the prevalence and severity of PPH and uterine atony, there

are many ongoing efforts to improve maternal outcomes. Multiple

recent surveys have been published on the state-of-the-art clinical,

technological, economical, and human factor solutions to reduce

PPH rates (often associated with uterine atony) [18, 54]. Conse-

quently, in this subsection, we restrict our review to technological

techniques for postpartum detection and intrapartum prediction.

2.3.1 Postpartum Detection Techniques. Diagnosis of excessive

bleeding is usually based on visual estimation of blood loss, quan-

titative blood loss, vital sign changes and patient report of symp-

toms [22, 48]. Healthcare providers’ establishment of a diagnosis

based on visual assessment of blood loss or patient reporting of

symptoms tends to be inaccurate. Some cases are underestimated

or missed completely, which significantly increases morbidity and

mortality [2]. Gravimetric methods to measure blood loss quanti-

tatively have less error than visual estimation techniques [3] and

are experiencing increased adoption; however, the process remains

manual and burdensome. In response to these challenges, multi-

ple approaches to detect excessive blood loss have been explored

including optical quantitative blood loss (e.g., [58]), non-invasive
hemoglobin monitoring (e.g., [26]), and monitoring of vital sign

trends (e.g., [40]) – and have shown promise in improving delayed

PPH outcomes. While detection of delayed PPH is an important

endeavor, the vast majority of all PPH and uterine atony occur

within minutes of delivery while clinical care teams are present

and observing the parturient – which limits the effectiveness and

impact of postpartum detection systems in practice [16].

2.3.2 Intrapartum Prediction Techniques. Recognizing the short-

comings of postpartum (after delivery) detection techniques, in-

trapartum (during labor and delivery) prediction techniques are

considered standard-of-care [11, 18]. Early versions of these risk

prediction tools relied on expert-designed risk factors and strat-

ifications [18], and though validation studies [17, 24, 53, 67] and

subsequent revisions to the tools themselves have evolved to incor-

porate evidence-driven measures. Consistent shortcomings of these

screening tools are their low-to-moderate specificity and sensitivity;

positive predictive values of <10%, and more than 40% of hemor-

rhages occurring in patients designated as low risk [18]. To add, the

standard-of-care surveys are performed at static times during the

labor process and do not incorporate any patient biometric data. In
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light of these poor predictive values, researchers are actively explor-

ing a number of approaches to improving the existing models of

risk assessment, including the incorporation of intrapartum factors

or non-obstetric risk factors [1, 17, 41, 53]. While some of these

approaches have seen limited utilization, none have been widely

adopted and do not represent the current standard-of-care. Notably,

a major challenge with adoption of these emerging systems is that

they are not turnkey solutions. Each healthcare system has different

devices and data streams integrated at varying fidelities and utilize

different methods of manually recording observed patient data –

which significantly increases integration efforts and system tuning

prior to utilization. Also, these systems typically are designed (often

using machine learning) to correlate with patient outcomes and are

not designed to identify a cause of PPH – which introduces both

technological risks (e.g., distribution shifts) and regulatory risks.

3 Problem Formulation
In this section, we motivate and present the performance require-

ments for a commercially-viable risk predictor of life-threatening

uterine atony. To begin, we note that the definition of life-threatening
PPH (and uterine atony) in the clinical literature typically refers to

scenarios with observed blood loss far exceeding the definition of a

PPH [39]. Since this work focuses on risk prediction prior to deliv-

ery (and not detecting life-threatening PPH events), we introduce a

definition of potentially life-threatening uterine atony to be PPH

with associated uterine atony and requiring clinical intervention.

Definition 1 (Potentially Life-Threatening Uterine Atony).
A potentially life-threatening uterine atony is uterine atony result-
ing in PPH (blood loss greater than 1000 mL) and requiring clinical
intervention.

In the remainder of this work, and solely for readability purposes,

we refer to potentially life-threatening uterine atony as just uterine

atony where convenient. We now introduce the problem considered

in this work.

Problem Statement (Early Prediction of Uterine Atony). De-
velop a test that predicts uterine atony and satisfies the performance
and implementation requirements (described below).

Performance Requirements. The performance requirements of

an uterine atony risk predictor are well informed by the clinical

literature. To facilitate clinical adoption of a uterine atony risk

predictor – and leveraging the multiple validation studies and re-

views on existing standard-of-care intrapartum PPH risk prediction

tools [17, 18, 24, 53, 67] – performance requirements can be stated

as follows:

• Sensitivity (≥ 80%).Amajor shortcoming of existing standard-

of-care risk prediction tools is that more than 40% of hem-

orrhages occur in patients identified as low-risk (i.e., 60%
sensitivity) [18]. To demonstrate potential for clinically sig-

nificant impact, we aim to reduce the number of missed

uterine atony by half. Consequently, we aim to achieve a

sensitivity greater than 80% on (potentially life-threatening)

uterine atony predictions.

• Specificity (≥ 90%). When tuned to achieve 60% sensitiv-

ity, current standard-of-care risk prediction tools achieve

specificity less than 90% [18]. At this specificity, the risk

predictions are deemed clinically actionable. Consequently,

to ensure actionable alerts, we aim to achieve a specificity

greater than 90%.

• High-Risk Timing (≥ 30 minutes before delivery). Pre-
dicting a parturient to be at high-risk for uterine atony too

close to delivery makes clinical action much more difficult.

While care teams often must respond quickly to a developing

unpredicted PPH, these teams and corresponding treatments

are far more effective with sufficient time (up to 30 minutes)

to maximally prepare for PPH intervention. Consequently,

we aim to predict patients at high-risk for uterine atony at

least 30 minutes hour prior to delivery.

• High-Risk Frequency (once per parturient max). Once a
subject is predicted as high-risk for uterine atony, clinical

care teams will begin preparing for a potential PPH. These

preparations may include (but are not limited to) assigning

additional personnel, adjusting resources, preparing medica-

tions, executing blood typing and crossmatch, and relocating

equipment. Consequently, to avoid clinical decision support

whip-lash (similar to alarm fatigue), all parturients predicted

to be high-risk shall remain at high-risk for the remaining

duration of their labor and delivery.

Implementation Requirements To have impact on real-world

clinical outcomes will require implementation into clinical care,

where clinical outcome predictors are subject to regulation – espe-

cially in the U.S.. Additionally, the cost of executing a regulatory-

grade pivotal clinical trial requires commercial viability to raise the

necessary funding from outside investors (e.g., private equity, ven-
ture capital, and/or government). While enumerating all the specific

implementation requirements necessary for commercialization and

clinical adoption are beyond the scope of this work, at this stage we

seek to identify necessary (but not sufficient) implementation re-

quirements to reduce future commercialization risk. Specifically, we

motivate and consider the following implementation requirements:

• Regulatory. To reduce regulatory risk and expedite adop-

tion, the implementation must be adjunctive (i.e., comple-

mentary) to existing standard-of-care. This means that any

implementation must not supersede or replace the current

standard-of-care (i.e., static risk assessments), but rather be

used in coordination. Consequently, when static risk assess-

ments identify parturients at high-risk, the subject must

be considered high-risk regardless of our implementation’s

assessment.

• Integration. A full-function low-cost turn-key implementa-

tion that can scale with minimal clinical integration effort

should be feasible. The minimal-integration turn-key imple-

mentation would enable piloting/adoption of the solution

by care facilities prior to requiring upfront integration costs.

Ideally, the implementation would utilize data that can be

collected from existing regulator-approved hardware com-

mon to all care facilities, such that the turn-key solution can

be easily transitioned into an electronic health record based

solution (if desired) to lower hardware costs.

• Usability. Recognizing that the usability and acceptability

of the turn-key implementation is paramount to its market

penetration and adoption, it must be engineered to maximize
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patient comfort and ease of setup/use for nursing staff. The

implementation should alert at most once per patient (the

first time a subject transitions from nominal-risk to high-

risk) to avoid overburdening clinical staff or causing alarm

fatigue. Additionally, the implementation should have no

patient-facing auditory or tactile alarms to eliminate patient

distractionwhile sleeping/resting (as is common during early

stages of labor or with epidural anesthesia).

4 Modeling Myometrial Fatigue
Muscle fatigue is defined as the reduction in the muscle’s maximal

capacity to generate force [64]. While there are several ways to

measure intrauterine pressure (e.g., intrauterine pressure catheter
and electrohysterogram) [29], to directly calculate myometrial force

requires multiplying intrauterine pressure by the internal surface

area of the uterus (i.e., force = pressure × area). Since labor contrac-

tions progressively shrink the uterus, it follows that a requirement

to measure myometrial force using intrauterine pressure is the

availability of a real-time measurement for uterine area during

labor contractions. Although ultrasound and MRI techniques can

be used to statically calculate uterine area pre-labor [9], there are

no commercial systems that can provide a real-time measurement

of uterine area during labor. Since myometrial force (and by corre-

lation fatigue) cannot be directly measured, we aim to relate the

observable impact of myometrial fatigue on measurable signals

(using current technology).

Specifically, in this section, we seek to develop a new biomarker,

the Myometrial Fatigue Index, that can relate nominal/increased

myometrial fatigue to maternal heart rate as a surrogate for cardiac

output. The aim is to capture, crudely, observable trends in maternal

heart rate that are physiologically motivated to be driven bymyome-

trial fatigue. Similar techniques have been successfully employed

in multiple hard-to-measure clinical applications including artifi-

cial pancreases [6, 12], pacemakers [25], and stroke detection [37].

Often referred to as minimal models, their aim is to capture use-
ful relationships for a target application, not be the most accurate

dynamical physiological model. Consequently, when leveraging

minimal models in real-world clinical applications, it is necessary

to identify how confounding factors affect the modeled dynamics

such that systems built using minimal models are robust.

4.1 Myometrial Fatigue Index
Myometrium dynamics are approximately bi-modal. Crudely,
the myometrium acts as a bi-modal system during labor with two

states: contracted and relaxed. Once in active labor, themyometrium

generally enters the contracted state every 2 to 5 minutes (usually

with increasing frequency as labor progresses) and generally stays

in this state for between 45 and 90 seconds. After a contraction ends,

the myometrium re-enters the resting state and the cyclic process

continues throughout labor. The length and duration of contractions

– monitored by tocodynamometry, intrauterine pressure catheter,

or electrohysterogram [29] – vary during labor.

Each cycle, contractions increase cardiac output. While the

combined maternal-fetal pre-delivery blood volume is effectively

constant, the myometrium state affects myometrium blood volume

and cardiac output, where cardiac output is clinically defined as

the amount of blood the heart pumps in one minute [28]. When

in the relaxed state, the myometrium blood volume normalizes

to a steady-state blood volume and steady-state cardiac output,

although the true steady-state value can be different for each con-

traction [55]. When the myometrium contracts, the blood vessels

within the uterus are squeezed causing between 300mL to 500mL

of blood to be pushed back into the maternal circulation (known

as an autotransfusion) which results in an increase in cardiac out-

put [13, 30, 51, 61–63]. Physiologically, the increase in cardiac out-

put due to uterine contraction autotransfusion is largely attributed

to the increase in cardiac preload [33] associated with isotonic and

isometric muscle contractions [36, 60]. At the end of each contrac-

tion, the myometrium relaxes, the uterine blood volume normalizes,

and cardiac output returns to a (potentially new) relaxed steady-

state until the next contraction.

Myometrial fatigue affects the increase in cardiac output.
In general, the amount of autotransfusion during muscle contrac-

tions is proportional to cardiac output [35]. Stated differently, con-

traction autotransfusion increases with cardiac output – regardless

of myometrial fatigue. This is due to multiple physiological effects

including: blood flow distribution, muscle vasodilation, vascular

resistance, and heightened demand for oxygen in working mus-

cles. Conditioned on resting cardiac output, the amount and rate

of autotransfusion during muscle contractions is known to be de-

pendent on muscle fatigue [36, 45] – where fatigued muscles have

smaller autotransfusions during contraction than their non-fatigued

state [42]. Consequently, as the myometrium fatigues, there will be

less change in cardiac output between relaxed and contracted states.

Leveraging the above, we define the myometrial fatigue index (MFI)

as follows:

Definition 2 (Myometrial Fatigue Index (MFI)). The myome-
trial fatigue index (MFI) is the change in cardiac output between

contracted (𝑐𝑜𝑐 [𝑘]) and resting (𝑐𝑜𝑟 [𝑘]) states normalized by the

resting cardiac output:

𝑀𝐹𝐼 [𝑘] = 𝑐𝑜𝑐 [𝑘] − 𝑐𝑜𝑟 [𝑘]
𝑐𝑜𝑟 [𝑘]

(1)

where 𝑘 denotes the 𝑘-th contraction cycle from the end of contrac-

tion 𝑘 − 1 to the end of contraction 𝑘 .

The MFI provides an insightful statistic by which to test for myome-

trial fatigue in parturients. Namely, parturient’s MFI decreasing

over multiple contractions (i.e.,𝑀𝐹𝐼 [𝑘] ≥ 𝑀𝐹𝐼 [𝑘 − 1] ≥ . . . ) sug-
gests the presence of myometrial fatigue. We will formalize a test

for myometrial fatigue using MFI in Section 5. While the MFI is

physiologically motivated, we note that 𝑀𝐹𝐼 has two significant

limitations. Limitations of MFI:
• Calculating the MFI requires determining cardiac output,

which is non-trivial. (See Section 4.2)

• Parturient cardiac output is affected by other confounding

factors – not just myometrial fatigue (See Section 4.3)

These limitations will be addressed in the following subsections.

4.2 Measuring Myometrial Fatigue
Determining the MFI requires measuring cardiac output. Cardiac

output is determined at any instance as heart rate (ℎ𝑟 ) times stroke
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volume (𝑠𝑣) – i.e., 𝑐𝑜 = ℎ𝑟 ×𝑠𝑣 [28]. Heart rate can be measured non-

invasively by many common sensors and devices, but measuring

stroke volume requires specialized equipment (e.g., echocardiogra-
phy, doppler techniques). In this subsection, we present a surrogate

measure for MFI, and show that under reasonable assumptions de-

creasing surrogate values occur if and only if MFI is also decreasing.

When fatigue is unlikely, stroke volume increases andma-
ternal heart rate decreases during contractions. During active
labor, cardiac output always increases during contractions. How-
ever, in the latent (early) phase of stage 1 labor, the increase in

cardiac output during contractions often materializes as increased

stroke volume – due to cardiac preload – and a corresponding de-

crease in maternal heart rate [63]. The decrease in heart rate is a

result of the body’s autonomic response to maintain hemodynamic

stability during periods of increased stroke volume [30, 61]. For

completeness, we point out that this effect is consistent with the

previous subsection (Section 4.1) since during early labor, the in-

crease in stroke volume during contractions is substantially greater

than the corresponding decrease in maternal heart rate, such that

cardiac output still increases during contractions [30, 61]. More-

over, it is generally assumed that myometrial fatigue occurs as labor

progresses (late stage 1 and stage 2) and is unlikely to occur early

in pre-labor and stage 1 labor when maternal heart rate decreases

with labor contractions [31].

When fatigue is likely, both stroke volume and maternal
heart rate increase during contractions. As labor progresses –
and usually while still in the latent phase of stage 1 labor – both

stroke volume and heart rate begin to increase during contractions.

At this point, the relative increase in maternal heart rate during con-

tractions is roughly proportional to the relative increase in stroke

volume [31, 32]. Most importantly, the likelihood of myometrial

fatigue increases as labor progresses [31].

We formalize how we measure MFI in real-world scenarios by

introducing a surrogate MFI measurement:

Definition 3 (SurrogateMyometrial Fatigue Index (sMFI)). The
surrogate myometrial fatigue index (sMFI) is the change in maternal

heart rate between contracted (ℎ𝑟𝑐 [𝑘]) and resting (ℎ𝑟𝑟 [𝑘]) states
normalized by the maternal heart rate:

𝑠𝑀𝐹𝐼 [𝑘] = ℎ𝑟𝑐 [𝑘] − ℎ𝑟𝑟 [𝑘]
ℎ𝑟𝑟 [𝑘]

(2)

where 𝑘 denotes the 𝑘-th contraction cycle from the end of contrac-

tion 𝑘 − 1 to the end of contraction 𝑘 .

We note that 𝑠𝑀𝐹𝐼 [𝑘] is calculated using exclusively maternal heart

rate and is measurable using common sensors (e.g., pulse oximeters,

electrocardiogram monitors, heart rate monitors). Additionally, we

introduce the temporary variable:

𝜎 [𝑘] = 𝑠𝑣𝑐 [𝑘] − 𝑠𝑣𝑟 [𝑘]
𝑠𝑣𝑟 [𝑘]

(3)

to denote the stroke volume during contraction cycle 𝑘 . Although

𝜎 [𝑘] is not easily measurable, we leverage the relationship between

stroke volume and maternal heart rate when maternal heart rate

increases during contractions and make the following reasonable

real-world assumption.

Assumption 1 (Maternal Heart Rate and Stroke Volume).

∀𝑘, 0 ≤ 𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1] ←→ 𝜎 [𝑘] ≤ 𝜎 [𝑘 − 1] (4)

In words, Assumption 1 formalizes that changes between contrac-

tions of maternal heart rate and stroke volume (normalized to their

respective resting state) are directionally equivalent. In other words,

if normalized maternal heart rate increases then normalized stroke

volume also increases, and vice versa. We also note that the assump-

tion is only assumed to be true when maternal heart rate increases

during contractions (i.e., 0 ≤ 𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1]). Under this
assumption, it follows that directional changes in normalized ma-

ternal heart rate (i.e., sMFI) can be used as an equivalent surrogate

for observing directional changes in MFI, formally stated as:

Proposition 1 (Conditional Equivalence of sMFI and MFI).
Given Assumption 1:

∀𝑘, 0 ≤ 𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1] ←→ 𝑀𝐹𝐼 [𝑘] ≤ 𝑀𝐹𝐼 [𝑘 − 1] (5)

Proof. Proof provided in appendix. □

The importance of this proposition is that monitoring changes

in a surrogate measure based exclusively on maternal heart rate

(which can be obtained easily) provides equivalent information as

calculating MFI (which is very challenging). We stress that sMFI

does not equate to MFI – sMFI only provides the same directional

information as MFI (i.e., increasing vs. decreasing). In this sense,

when maternal heart rate increases during contractions, we can

effectively bypass calculating MFI and provide equivalent infor-

mation for testing myometrial fatigue using just sMFI. Thus, we

have negated the first limitation of MFI presented at the end of

Section 4.1 by introducing a surrogate measure, sMFI, to obtain the

same testing information for myometrial fatigue without needing

to calculate cardiac output (and correspondingly stroke volume).

4.3 Modeling Confounding Factors
The MFI and sMFI are vulnerable to confounding factors associated

with other physiological processes – not just myometrial fatigue.

We present our approach for addressing confounding factors in

terms of sMFI (not MFI) since sMFI is measurable. We note that this

is not a limitation of our approach since sMFI will be utilized for test-

ing myometrial fatigue, not MFI. Moreover, we do not immediately

address challenges of measurement noise – which will be addressed

statistically in the testing approach in Section 5. Consequently, in

this subsection, we discuss confounding physiological factors (not
measurement noise) for maternal heart rate telemetry and present

a mathematical formulation capturing the corresponding impacts

on sMFI.

During labor, maternal heart rate is affected by physiological

processes that are confounding for testing myometrial fatigue using

sMFI. Maternal heart rate is known to naturally increase with labor

due, in part, to exertion requiring increased cardiac output [51].

Additionally, maternal heart rate during contractions increases as

pain increases, the Valsalva maneuver, and anxiety (among oth-

ers) [14, 63].

To capture these confounding factors on maternal heart rate, we

define a corresponding nuisance set of endomorphisms capturing

their effect on maternal heart rate telemetry [56]. While not origi-

nating in medical applications, representing confounding factors as



VIBRANT: Early Prediction of Life-Threatening Uterine Atony Using Maternal Heart Rate CHASE ’25, June 24–26, 2025, New York, NY, USA

transformations of the data has been successfully applied to other

medical applications where measurements are known to vary with

other physiological processes or parameters [37, 52, 65]. The benefit

of capturing nuisance transformations formally is that it allows

for their provably complete removal/attenuation [56]. We define

the nuisance set capturing the maternal heart rate nuisance factors

described above in the following, where R+ is the set of positive
reals and 1𝑥 is an indicator function and equates to 1 when x is

true and 0 otherwise.

Definition 4 (Heart Rate Nuisance Set).

Gℎ𝑟 =
{
𝑔 : R+ → R+

�� 𝑔(𝑎;𝑏) = 𝑎 + 𝑐1(𝑎>𝑏) , 𝑐 ∈ R+ } (6)

Each function contained in Gℎ𝑟 represents a potential nuisance that
could be imposed on maternal heart rate – and there are an infinite

number of functions in Gℎ𝑟 .
Recall that calculating sMFI requires maternal heart rate mea-

surements during contracted and relaxed states – both of which are

subject to maternal heart rate confounding factors. Consequently,

we can extend the effect of Gℎ𝑟 on maternal heart rate to a set of

nuisance transformations affecting sMFI , namely:

Definition 5 (sMFI Nuisance Set).

G𝑠𝑀𝐹𝐼 =
{
𝑔 : R2+ → R2+ |𝑔 = (𝑔𝑐 , 𝑔𝑟 ), 𝑔𝑐 , 𝑔𝑟 ∈ Gℎ𝑟

}
(7)

In words, each function contained in G𝑠𝑀𝐹𝐼 represents a potential

nuisance transformation that could be imposed on sMFI, generated

by applying all the heart rate nuisance set transformations to theℎ𝑟𝑐
and ℎ𝑟𝑣 variables. To resolve the second limitation of MFI presented

at the end of Section 4.1, in the following section we will prove

a candidate statistic for testing myometrial fatigue is maximally

invariant to the confounding factors captured in the sMFI nuisance

set (i.e., G𝑠𝑀𝐹𝐼 ).

5 Predicting Life-Threatening Uterine Atony
In this section, we present a test for myometrial fatigue as a predic-

tor for (potentially life-threatening) uterine atony. At a high-level,

our approach to developing the test involves two steps. First, we

leverage the sMFI nuisance set developed in the previous section

to introduce a maximally invariant statistic to the corresponding

nuisance transformations. Next, and leveraging the maximally in-

variant statistic, we develop a test for evaluating myometrial fatigue.

Finally, we present VIBRANT which provides a real-world imple-

mentation of the test for myometrial fatigue.

5.1 Maximally Invariant Statistic
In this subsection, we seek to remove the effect of confounding

factors through the design of maximally invariant statistics. For a

set of (possibly infinite) nuisance transformations, a maximally in-

variant statistic removes the effect of the nuisance transformations

– and only their effect. Mathematically, a maximally invariant is

traditionally defined as:

Definition 6 (Maximally Invariant Statistic [56]). A statistic,

𝑡 (𝑥 ;𝑦), is maximally invariant to set of transformations, G, if:
invariant : ∀𝑔 ∈ G, 𝑡 (𝑔(𝑥 ;𝑦)) = 𝑡 (𝑥 ;𝑦)
maximal : ∀𝑥, 𝑥 ′, 𝑡 (𝑥 ;𝑦) = 𝑡 (𝑥 ′;𝑦′) → ∃𝑔 ∈ G, 𝑥 = 𝑔(𝑥 ′) (8)

Before introducing a candidate maximally invariant statistic, we

formalize the necessary maternal heart rate measurement space as

𝑦 [𝑘] = [ℎ𝑟𝑐 [𝑘], ℎ𝑟𝑟 [𝑘], ]⊤ ∈ R2+ . (9)

Leveraging the confounding factors in the previous section, the

measurement space is subject to the sMFI nuisance set, G𝑠𝑀𝐹𝐼 .

Consequently, we present the following statistic as a candidate for

a maximally invariant statistic to G𝑠𝑀𝐹𝐼 :

𝑡 (𝑦 [𝑘];𝑦 [𝑘 − 1]) =
[
1ℎ𝑟𝑐 [𝑘 ] ≤ℎ𝑟𝑐 [𝑘−1]ℎ𝑟𝑐 [𝑘]
1ℎ𝑟𝑟 [𝑘 ] ≤ℎ𝑟𝑟 [𝑘−1]ℎ𝑟𝑟 [𝑘]

]
∈ R2+ (10)

where 𝑡 is a function of the maternal heart rate measurement for

contraction cycle 𝑘 parameterized by the maternal heart rate mea-

surement during the 𝑘 − 1 contraction cycle, namely 𝑦 [𝑘 − 1].
Leveraging 𝑡 , we now prove it to be maximally invariant.

Proposition 2. The statistic 𝑡 is maximally invariant to G𝑠𝑀𝐹𝐼

Proof. Proof provided in Appendix. □

In words, the statistic 𝑡 contains precisely all the information

in the measurement 𝑦 that is not confounded by the nuisance set

for sMFI. Stated more simply, 𝑡 removes the confounding factors

– and only the confounding factors. We note that when maternal

heart rate during uterine contractions is increasing (i.e., ℎ𝑟𝑐 [𝑘] >
ℎ𝑟𝑐 [𝑘 − 1]) then the first element of 𝑡 is zero. Similarly, when the

maternal heart rate during relaxed periods between contractions is

increasing (i.e., ℎ𝑟𝑟 [𝑘] > ℎ𝑟𝑟 [𝑘 − 1]) the second element of 𝑡 is also

zero. Lastly, when maternal heart rate is decreasing during both

contracted and relaxed periods, the maximally invariant statistic

(i.e., 𝑡 (𝑦 [𝑘];𝑦 [𝑘 − 1])) is equivalent to the original measurement

(i.e., 𝑦 [𝑘]).

5.2 Testing for Myometrial Fatigue
In this subsection, we leverage the maximally invariant statistic

from the previous subsection to test for myometrial fatigue as a

predictor for uterine atony. We observe that sMFI can only be

calculated using the maximally invariant statistic, 𝑡 , when maternal

heart rate is decreasing during periods of contraction and relaxation,

namelyℎ𝑟𝑐 [𝑘] ≤ ℎ𝑟𝑐 [𝑘−1], andℎ𝑟𝑟 [𝑘] ≤ ℎ𝑟𝑟 [𝑘−1]. For notational
simplicity in the following, we write

𝜙 [𝑘] = ℎ𝑟𝑐 [𝑘] ≤ ℎ𝑟𝑐 [𝑘 − 1] ∧ ℎ𝑟𝑟 [𝑘] ≤ ℎ𝑟𝑟 [𝑘 − 1] (11)

to be a logical test of decreasing maternal heart rate corresponding

to uterine contractions and relaxations. Leveraging 𝜙 , a robust test

for myometrial fatigued using sMFI can be formulated:

Definition 7 (Testing Myometrial Fatigue using sMFI). My-

ometrial fatigue exists if the sMFI has decreased.

H𝑊 [𝑘] :
{
𝐻𝐹 : 𝑠𝑀𝐹𝐼 [𝑛] ≤ 𝑠𝑀𝐹𝐼 [𝑛 − 1] ∧ 𝜙 [𝑛], ∀𝑛 ∈ K𝑊 [𝑘]
𝐻𝑁 : otherwise

where𝐻𝐹 and𝐻𝑁 correspond to the fatigued and nominal hypothe-
ses, and K𝑊 [𝑘] = {𝑘, . . . , 𝑘 −𝑊 } and𝑊 ∈ N+ is a parameter

representing the duration in the UFI to signify fatigue.

Since the robust test for myometrial fatigue is based on a maximally

invariant statistic it follows that it is also invariant to the confound-

ing factors. The robust test is parameterized by a window𝑊 , which

effectively controls the significance of the test. The window size
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determines how many consecutive contraction cycles are needed

to alert for uterine fatigue.

Muscle fatigue is non-linear. It is worth noting that muscle

fatigue is non-linear, with initially there being very little observ-

able fatigue, followed by a period of marked and increasing fatigue

which eventually resolves to a steady-state fatigue level [27]. Con-

sequently, the test for myometrial fatigue will only be sensitive

during periods of marked and increasing fatigue – not prior to fa-

tigue nor after steady-state fatigue is achieved. This process makes

the selection𝑊 important. Selecting𝑊 too small and the test will

be noisy, and conversely, selecting𝑊 too large and the test will not

be sensitive to uterine fatigue. The selection of𝑊 will be addressed

in the next subsection.

5.3 VIBRANT Implementation
In this subsection we describe our implementation of the robust

test for myometrial fatigue as a predictor of uterine atony (and

PPH). There are two main challenges with implementingH𝑊 (as

presented in Definition 7). First, the strict requirements on mono-

tonicity of maternal heart rate and sMFI may be violated in the

presence of myometrial fatigue due to noisy maternal heart rate

telemetry measurements (e.g., due to motion artifact). Second, cal-

culating maternal heart rate during contractions and rest requires

identifying contractions – which is challenging. In this subsection,

we discuss relaxations of the strict monotonicity testing based on

maternal heart rate and present an approach for overcoming chal-

lenges with identifying maternal heart rate during contractions and

rest. This subsection concludes by stating the VIBRANT algorithm.

Overcoming strict monotonicity testing. Practically speak-

ing, maternal heart rate telemetry (and by extension sMFI) are

noisy. Consequently, in the real-world, requiring strict assessments

of noisy measurements as tests leads to reduced utility and perfor-

mance. Recognizing that the intuition behindH𝑊 [𝑘] is myometrial

fatigue corresponds to maternal heart rate telemetry that is decreas-

ing (both during contractions and rest) and sMFI is decreasing,

we opt for a statistical test (rather than absolute test) that cap-

tures these general trends. One classical approach that captures

monotonic trends is data is the spearman’s rank correlation coeffi-

cient [57], traditionally denoted as

(𝑐, 𝑝) = 𝜌 (set of 1-D input data) (12)

where, 𝑐 and 𝑝 are the correlation coefficient and p-value, respec-

tively. For testing myometrial fatigue, the spearman’s rank cor-

relation coefficient provides some useful features. First, it is non-

parametric, which makes it accurate for data with unknown distri-

butions. This is important since the distribution of maternal heart

rate is different for each parturient and changes over the course

of labor. Secondly, by thresholding the corresponding 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ,
the test can be effectively tuned to achieve different desired perfor-

mance levels.

Overcoming identification of contractions.While identify-

ing contractions is commonly done via tocodynamometry, intrauter-

ine pressure catheter, or electrohysterogram [29], extracting con-

tractions from maternal heart rate remains an open-challenge [59].

We recall that contractions during active labor occur at least every

10 minutes and only last up to approximately 90 seconds. Observing

that robustly testing for myometrial fatigue targets labor stages

where maternal heart rate increases due to contractions, we in-

troduce the following heuristic for calculating maternal heart rate

during rest and contraction. LetY[𝑘] represent the 𝑘-th set of heart
rate measurements corresponding to non-overlapping periods 10

minutes (such that at least one contraction is contained in Y[𝑘])
we write:

ℎ𝑟𝑐 [𝑘] = median (largest 5% of Y[𝑘])

ℎ𝑟𝑟 [𝑘] = median (Y[𝑘])

𝑠𝑀𝐹𝐼 [𝑘] = ℎ𝑟𝑐 [𝑘] − ℎ𝑟𝑟 [𝑘]
ℎ𝑟𝑟 [𝑘]

(13)

In words, ℎ𝑟𝑟 [𝑘] is chosen to be the median of all data in the period

(to mitigate the effects of outliers associated with contractions).

Our definition of ℎ𝑟𝑐 [𝑘] targets the median of the top 5% of the

data which should occur during myometrial contractions – assum-

ing maternal heart rate increases with the contractions and the

progression of labor. Note, when the maternal heart rate decreases,

we will observe that ℎ𝑟𝑐 [𝑘] and ℎ𝑟𝑟 [𝑘] will be much closer than

during periods where maternal heart rate increases and result in a

smaller 𝑠𝑀𝐹𝐼 [𝑘] – possibly within the measurement noise profile.

Consequently, it is unlikely that 𝑠𝑀𝐹𝐼 [𝑘] will exhibit monotonicity

during early labor when myometrial fatigue is unlikely.

We now introduce the VIBRANT test at period 𝐾 . For thresholds,

𝜂𝑐 and 𝜂𝑝 on the rank correlation coefficient and corresponding p-

value, respectively, and given a set of windowsW, we present the

VIBRANT test for myometrial fatigue at period 𝐾 in the following

algorithm. A feature of the 𝑉 𝐼𝐵𝑅𝐴𝑁𝑇 test is that it satisfies the

Algorithm 1 VIBRANT Test for Myometrial Fatigue at Period 𝐾

1: Initialize output as Low Risk
2: for Every 𝑘 ≤ 𝐾 do
3: Calculate ℎ𝑟𝑐 [𝑘], ℎ𝑟𝑟 [𝑘], and 𝑠𝑀𝐹𝐼 [𝑘]
4: for Every𝑊 ∈ W do
5: Calculate (𝑐𝑐 , 𝑝𝑐 ) = 𝜌 (ℎ𝑟𝑐 [𝑘], . . . , ℎ𝑟𝑐 [𝑘 −𝑊 ])
6: Calculate (𝑐𝑟 , 𝑝𝑟 ) = 𝜌 (ℎ𝑟𝑟 [𝑘], . . . , ℎ𝑟𝑟 [𝑘 −𝑊 ])
7: Calculate (𝑐 𝑓 , 𝑝 𝑓 ) = 𝜌 (𝑠𝑀𝐹𝐼 [𝑘], . . . , 𝑠𝑀𝐹𝐼 [𝑘 −𝑊 ])
8: if max(𝑐𝑐 , 𝑐𝑟 , 𝑐 𝑓 ) ≤ 𝜂𝑐 and max(𝑝𝑐 , 𝑝𝑟 , 𝑝 𝑓 ) ≤ 𝜂𝑝 then
9: Change output to be High Risk
10: end if
11: end for
12: end for

implementation requirements in Section 3 for alarm frequency. If

at period 𝐾 VIBRANT determines a parturient to be High Risk, then
for all future periods 𝐾 ′ > 𝐾 VIBRANT will also determine that

parturient to be High Risk. This is consistent with the physiological

reasoning that if the myometrium becomes fatigued, it will remain

fatigued through delivery. For completeness, the VIBRANT test

should only be used prior to delivery and begin monitoring dur-

ing active labor. Since parturients are assumed to be experiencing

contractions, the VIBRANT test should not be used on planned

cesarean births – and is only indicated for vaginal and non-planned

cesarean births. Lastly, the VIBRANT test is not indicated to work

in subjects not in labor.
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6 Evaluation
In this section, we evaluate VIBRANT against a current standard-of-

care admission PPH risk score. In the following, we first introduce

the dataset used for evaluation then present the results.

6.1 Evaluation DataSet
We performed a primary, prospective, observational study collect-

ing maternal heart rate data from patients admitted to the Pennsyl-

vania Hospital to validate the VIBRANT test (IRB #848588). Partici-

pants wore a commercially available Samsung GalaxyWatch Active

and the Raproto application [21] was used to collect to collect pho-

toplethsymgraphy (PPG) data. From the PPG data, maternal heart

rate was generated at a rate of 1 Hz using standard techniques [66].

To ensure conditions were representative of real-world practice,

no instructions to change clinical procedures were given while the

parturient was monitored. No collected data was revealed to par-

turients or their clinical care team, thus there was no opportunity to

influence the patient care setting during the observational study. At

the institution where the study was conducted, quantitative blood

loss (QBL) is not consistently performed as part of routine clinical

care (and is typically only done in severe cases), consequently visual

estimated blood loss (EBL) was utilized to determine PPH.

A total of 525 parturients were recruited from the corresponding

obstetric and midwifery practices at the study hospital. Parturients

18 years of age or older were eligible to enter the study if admitted

to give birth to a term (≥ 37 weeks gestation) live, singleton infant.

In this study, parturients were excluded if they were preterm (<37

weeks gestation), had a fetal demise, or were pregnant with mul-

tiples (twins, triplets, etc.). An admission PPH risk score – based

on the Association of Women’s Health, Obstetrics and Neonatal

Nurses (AWHONN) criteria – was recorded for each subject as a

baseline [4]. Parturients with the following characteristics were

omitted from the analysis herein:

• withdrawn from the study;

• missing chart data critical for analysis;

• scheduled cesarean births;

• prior history of postpartum hemorrhage.

To motive the exclusion criteria for this analysis, and as discussed at

the end of the Section 5, the VIBRANT test is not designed to work

on scheduled cesarean births where parturients do not experience

uterine contractions. Additionally, we remove parturients with a

known prior history of PPH since these subjects automatically

receive elevated care – patients with known prior PPH are 3x more

likely to have a PPH than the general population [43]. Consequently,

providing a prediction of uterine atony provides limited actionable

information since the care team is already prepared. The resulting

study population contained 380 parturients. In the study population,

11 experienced a potentially life-threatening PPH (2.9%) – which is

consistent with known PPH rates between 1% and 5%.

To identify subjects experiencing uterine atony, clinical notes for

the parturient in the chart data were examined for documentation

and discussion of uterine atony-related diagnosis and intervention

(e.g., uterine atony, boggy, lacking firmness). Of the 11 subjects ex-

periencing a PPH 6 parturients had documented uterine atony (1.6%

of total population, 55% of PPH). This rate is slightly lower than

anticipated (uterine atony accounts for approximately 80% of PPH),

likely due a lack of clinical notes on some subjects. Consequently,

in this evaluation we also omit the 5 parturients who experienced

PPH but did not have documented uterine atony, resulting in a

study population of 375 parturients.

6.2 Prediction Performance and Analysis
We evaluate VIBRANT on the dataset against the gold-standard

AWHONN PPH admission risk scoring system [4], the performance

results are provided in Table 1. We note that the VIBRANT satisfies

the performance requirements specified in Section 3.

Table 1: Prediction Results

VIBRANT AWHONN [4]

Sensitivity 83%

0%

(see discussion)

Specificity 90% 90%

Positive Predictive Value 13%

0%

(see discussion)

Negative Predictive Value 99% 97%

High-risk prediction

before delivery (in hours)

median ± interquartile range

4.0 ± [1.7, 7.9] 8.5 ± [3.9, 14]

Why does AWHONN have 0% sensitivity and 0% positive
predictive value? The answer is because the AWHONN system

– being standard-of-care – was implemented during our data col-

lection (as ethics requires). Consequently, clinicians had access to

the AWHONN predictions during delivery. This is not a limitation

of our approach or analysis. It stands to reason that AWHONN did

not predict any of the potentially life-threatening uterine atony

cases because clinicians – given sufficient warning – were able to

mitigate a PPH. Stated simply, when AWHONN identified a parturi-

ent as high-risk, clinicians used that information effectively. This

is consistent with the clinical literature that asserts 93% of all PPH

can be avoided with sufficient planning and resources [7]. Conse-

quently, the evaluation of VIBRANT was performed in a realistic

scenario – since VIBRANT is adjunctive to clinical care.

Analysis of VIBRANT ’s sensitivity and positive predic-
tive value.. The real-world results indicate that VIBRANT predicts

over 80% of the potentially life-threatening uterine atony currently

missed by standard-of-care admission risk scoring. This represents

a significant improvement and could significantly decrease PPH

rates once integrated into clinical care – assuming clinicians are

as effective at responding to the VIBRANT high-risk predictions

as they are at responding to AWHONN high-risk predictions. We

note that a 13% positive predictive value may appear low, but this

is because only 2% of the population experienced potentially life-

threatening uterine atony in our study. Impressively, this means

that the parturients VIBRANT predicts as high-risk are over 5x

more likely to experience uterine atony than the rest of the pop-

ulation. This is significantly better than a current gold-standard

benchmark – recalling from our dataset discussion – that subjects

with prior PPH automatically receive elevated care (which only has

a 3x more likely chance of PPH). Additionally, the VIBRANT per-

formance criteria satisfies the minimum requirements specified in

Section 3.
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Comparative analysis of specificity and negative predic-
tive value. The results demonstrate, comparatively, no clinically

significant difference in performance in terms of specificity and neg-

ative predictive value – with VIBRANT having a slight advantage

in negative predictive value. The fact that VIBRANT has similar

performance to AWHONN is promising for its real-world use. Rec-

ognizing a 90% specificity equates to a 10% false positive rate, it

is worth noting that a 10% false alarm rate is considered clinically

actionable (see AWHONN performance). At the 90% specificity

operating point, clinical care teams are highly likely to respond

to VIBRANT high-risk predictions, as evidenced by the fact that

care teams continue to respond to AWHONN (which also has a

90% specificity). Clinically, this can be interpreted as VIBRANT is

capable of identifying the 10% of parturients that contain over 80%

potentially life-threatening uterine atony currently current missed

by the standard-of-care risk predictors – a clinically significant

achievement.

Analysis of high-risk prediction timing. To be clinically ac-

tionable, high-risk predictions must occur with enough time to

prepare prior to delivery. In Table 1 we report the median and in-

terquartile range of high-risk predictions (prior to delivery) and a

cumulative distribution of high-risk prediction times (also prior to

delivery) are provided in Figure 2. We stress that AWHONN makes

predictions at admission time and prior to when maternal heart rate

monitoring commences. Consequently, AWHONN should always

predict earlier than VIBRANT . The distribution of VIBRANT sug-

gests that alarms occur sufficiently prior to delivery during active

labor to allow for ample time for care teams to respond. This gives

promise to the VIBRANT as a viable system to complement current

risk prediction techniques (e.g., AWHONN) to significantly reduce

PPH associated with uterine atony.

Figure 2: High-risk prediction timing. AWHONN predic-
tion occurs at admission, while VIBRANT prediction occurs
based on monitoring.

7 Regulatory Considerations
In this section, we briefly overview ongoing regulatory efforts and

considerations. VIBRANT is a clinical decision support system that

evaluates maternal heart rate data and provides actionable feedback

on a patient’s risk of PPH. Ongoing work focuses on system integra-

tion of VIBRANT for a pivotal clinical trial and eventual regulatory

approval and commercialization. Given the cost of executing a clin-

ical trial, the VIBRANT has been licensed to a commercial partner

for build-out and integration in clinical environments. Prior to wide-

spread integration into clinical care, the integrated VIBRANT sys-

tem will be subject to regulatory oversight as a clinical decision

support system. Consequently, we have presented the system to

the U.S. Food and Drug Administration (FDA) through the 510(k)

pre-submission process. The meeting with the FDA indicated that

VIBRANT will likely be regulated in the U.S. as a class II de novo

software-as-a-medical device. Critical to being granted regulatory

pre-market approval will be the successful completion of a clinical

trial to establish safety and efficacy on observable clinical outcomes.

To de-risk the impending high-cost clinical trial, the VIBRANT is

in preparation to be evaluated in a closed-loop pilot study as an

investigational device. The results of the pilot study will inform the

effect size of the device on reducing PPH rates which will be uti-

lized to perform a power analysis to determine the regulatory-grade

clinical trial size.

8 Conclusions
This paper introduced VIBRANT as a clinical decision support

tool providing early prediction of life-threatening uterine atony.

VIBRANT is physiologically motivated and designed to identify

signals corresponding to myometrial fatigue in maternal heart rate

data. Evaluations of the system indicate that VIBRANT has high ac-

curacy and provides between 2 to 8 hours advance warning prior to

delivery for parturients at high-risk of experiencing life-threatening

uterine atony postpartum. Accurate advanced warning is critical

to reducing PPH rates as it allows for preparation and planning by

clinical care teams. Uterine atony represents 80% of all PPH which

is the leading cause of maternal mortality world-wide. While VI-

BRANT has the potential to address a large portion of PPH missed

by current tools, it is one (of potentially many tools/techniques)

that will be needed to solve the world-wide PPH problem. Conse-

quently, predicting maternal outcomes remains an open research

area with substantial opportunity for innovation.
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A Proofs
A.1 Proof of Proposition 1

Proof. We begin by recalling from Assumption 1 that (under

our monitoring conditions) when 0 ≤ 𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1] it
holds that 𝜎 [𝑘] ≤ 𝜎 [𝑘 − 1]. Next, we write:

𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1]

↔ℎ𝑟𝑐 [𝑘] − ℎ𝑟𝑟 [𝑘]
ℎ𝑟𝑟 [𝑘]

≤ ℎ𝑟𝑐 [𝑘 − 1] − ℎ𝑟𝑟 [𝑘 − 1]
ℎ𝑟𝑟 [𝑘 − 1]

↔ℎ𝑟𝑐 [𝑘]
ℎ𝑟𝑟 [𝑘]

≤ ℎ𝑟𝑐 [𝑘 − 1]
ℎ𝑟𝑟 [𝑘 − 1]

(14)

and

𝜎 [𝑘] ≤ 𝜎 [𝑘 − 1]

↔𝑠𝑣𝑐 [𝑘] − 𝑠𝑣𝑟 [𝑘]
𝑠𝑣𝑟 [𝑘]

≤ 𝑠𝑣𝑐 [𝑘 − 1] − 𝑠𝑣𝑟 [𝑘 − 1]
𝑠𝑣𝑟 [𝑘 − 1]

↔𝑠𝑣𝑐 [𝑘]
𝑠𝑣𝑟 [𝑘]

≤ 𝑠𝑣𝑐 [𝑘 − 1]
𝑠𝑣𝑟 [𝑘 − 1]

(15)

Combining Equation 14 and Equation 15 above, we write

𝑠𝑀𝐹𝐼 [𝑘] ≤ 𝑠𝑀𝐹𝐼 [𝑘 − 1] and 𝜎 [𝑘] ≤ 𝜎 [𝑘 − 1]

↔𝑠𝑣𝑐 [𝑘]
𝑠𝑣𝑟 [𝑘]

ℎ𝑟𝑐 [𝑘]
ℎ𝑟𝑟 [𝑘]

≤ 𝑠𝑣𝑐 [𝑘 − 1]
𝑠𝑣𝑟 [𝑘 − 1]

ℎ𝑟𝑐 [𝑘 − 1]
ℎ𝑟𝑟 [𝑘 − 1]

↔𝑐𝑜𝑐 [𝑘]
𝑐𝑜𝑟 [𝑘]

≤ 𝑐𝑜𝑐 [𝑘 − 1]
𝑐𝑜𝑟 [𝑘 − 1]

↔𝑐𝑜𝑐 [𝑘] − 𝑐𝑜𝑟 [𝑘]
𝑐𝑜𝑟 [𝑘]

≤ 𝑐𝑜𝑐 [𝑘 − 1] − 𝑐𝑜𝑟 [𝑘 − 1]
𝑐𝑜𝑟 [𝑘 − 1]

↔𝑀𝐹𝐼 [𝑘] ≤ 𝑀𝐹𝐼 [𝑘 − 1]
□

A.2 Proof of Proposition 2
Proof. For invariance: Consider the case where ℎ𝑟𝑐 [𝑘] ≤

ℎ𝑟𝑐 [𝑘 − 1] and ℎ𝑟𝑟 [𝑘] ≤ ℎ𝑟𝑟 [𝑘 − 1]. We note that in all other

cases 𝑡 (𝑔(𝑦)) = 0 = 𝑡 (𝑦) since one of the indicators functions in 𝑡
evaluate to zero. Then:

𝑡 (𝑔(𝑦 [𝑘];𝑦 [𝑘 − 1]))

=


1ℎ𝑟𝑐 [𝑘 ]+𝑐𝑐1ℎ𝑟𝑐 [𝑘 ]>ℎ𝑟𝑐 [𝑘−1] ≤ℎ𝑟𝑐 [𝑘−1]

(
ℎ𝑟𝑐 [𝑘] + 𝑐𝑐1ℎ𝑟𝑐 [𝑘 ]>ℎ𝑟𝑐 [𝑘−1]

)
1ℎ𝑟𝑟 [𝑘 ]+𝑐𝑟1ℎ𝑟𝑟 [𝑘 ]>ℎ𝑟𝑟 [𝑘−1] ≤ℎ𝑟𝑟 [𝑘−1]

(
ℎ𝑟𝑟 [𝑘] + 𝑐𝑟1ℎ𝑟𝑟 [𝑘 ]>ℎ𝑟𝑟 [𝑘−1]

) 
=

[
1ℎ𝑟𝑐 [𝑘 ] ≤ℎ𝑟𝑐 [𝑘−1]ℎ𝑟𝑐 [𝑘]
1ℎ𝑟𝑟 [𝑘 ] ≤ℎ𝑟𝑟 [𝑘−1]ℎ𝑟𝑟 [𝑘]

]
=𝑡 (𝑦 [𝑘];𝑦 [𝑘 − 1])
For maximality: Consider the condition where: ℎ𝑟𝑐 [𝑘] ≤ ℎ𝑟𝑐 [𝑘 −
1], ℎ𝑟𝑟 [𝑘] ≤ ℎ𝑟𝑟 [𝑘 − 1], ℎ𝑟 ′𝑐 [𝑘] ≥ ℎ𝑟𝑐 [𝑘] and ℎ𝑟 ′𝑟 [𝑘] ≥ ℎ𝑟𝑟 [𝑘],
then:

𝑡 (𝑦 [𝑘];𝑦 [𝑘 − 1]) = 𝑡 (𝑦′[𝑘];𝑦′[𝑘 − 1])

→
[
1ℎ𝑟𝑐 [𝑘 ] ≤ℎ𝑟𝑐 [𝑘−1]ℎ𝑟𝑐 [𝑘]
1ℎ𝑟𝑟 [𝑘 ] ≤ℎ𝑟𝑟 [𝑘−1]ℎ𝑟𝑟 [𝑘]

]
=

[
1ℎ𝑟 ′𝑐 [𝑘 ] ≤ℎ𝑟 ′𝑐 [𝑘−1]ℎ𝑟

′
𝑐 [𝑘]

1ℎ𝑟 ′𝑟 [𝑘 ] ≤ℎ𝑟 ′𝑟 [𝑘−1]ℎ𝑟
′
𝑟 [𝑘]

]
→

[
ℎ𝑟𝑐 [𝑘]
ℎ𝑟𝑟 [𝑘]

]
=

[
ℎ𝑟 ′𝑐 [𝑘]
ℎ𝑟 ′𝑟 [𝑘]

]
→

[
ℎ𝑟𝑐 [𝑘]
ℎ𝑟𝑟 [𝑘]

]
=

[
ℎ𝑟𝑐 [𝑘] +

(
ℎ𝑟 ′𝑐 [𝑘] − ℎ𝑟𝑐 [𝑘 − 1]

)
ℎ𝑟𝑟 [𝑘] +

(
ℎ𝑟 ′𝑟 [𝑘] − ℎ𝑟𝑟 [𝑘 − 1]

) ]
→

[
ℎ𝑟𝑐 [𝑘]
ℎ𝑟𝑟 [𝑘]

]
=

[
ℎ𝑟𝑐 [𝑘] + 𝑐𝑐1(ℎ𝑟 ′𝑐 [𝑘 ]>ℎ𝑟𝑐 [𝑘−1]) , ∃𝑐𝑐 ∈ R+
ℎ𝑟𝑟 [𝑘] + 𝑐𝑟1(ℎ𝑟 ′𝑟 [𝑘 ]>ℎ𝑟𝑟 [𝑘−1]) , ∃𝑐𝑟 ∈ R+

]
→𝑦 [𝑘] = 𝑔(𝑦 [𝑘];𝑦 [𝑘 − 1]), ∃𝑔 ∈ G𝑠𝑀𝐹𝐼

Other conditions can be proved to be maximal in a similar manner

and omitted due to space requirements.

□


