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METHODS , SYSTEMS , AND COMPUTER For example , the subject matter described herein can be 
READABLE MEDIA FOR PHYSIOLOGY implemented in software executed by a processor . In one 

PARAMETER - INVARIANT MEAL exemplary implementation , the subject matter described 
DETECTION herein may be implemented using a computer readable 

5 medium having stored thereon computer executable instruc 
PRIORITY CLAIM tions that when executed by the processor of a computer 

control the computer to perform steps . Exemplary computer 
This application claims the benefit of U.S. Provisional readable media suitable for implementing the subject matter 

Patent Application Ser . No. 62 / 322,003 , filed Apr. 13 , 2016 ; described herein include non - transitory devices , such as disk 
the disclosure of which is incorporated herein by reference memory devices , chip memory devices , programmable logic 
in its entirety . devices , and application specific integrated circuits . In addi 

tion , a computer readable medium that implements the 
GOVERNMENT INTEREST subject matter described herein may be located on a single 

device or computing platform or may be distributed across 
This invention was made with government support under 15 multiple devices or computing platforms . 

Grant Nos . CNS - 1035715 and U.S. Pat . No. 1,231,680 As used herein , the term " node ” refers to a physical 
awarded by the National Science Foundation . The govern computing platform or device including one or more pro 
ment has certain rights in the invention . cessors and memory . 

As used herein , the terms “ function ” and “ module ” refer 
TECHNICAL FIELD 20 to software in combination with hardware and / or firmware 

for implementing features described herein . 
The subject matter described herein relates to insulin 

management . More specifically , the subject matter relates to BRIEF DESCRIPTION OF THE DRAWINGS 
methods , systems , and computer readable media for physi 
ology parameter - invariant meal detection . Embodiments of the subject matter described herein will 

now be explained with reference to the accompanying 
BACKGROUND drawing , wherein like reference numerals represent like 

parts , of which : 
Blood glucose management systems are an important FIG . 1 is a diagram illustrating decision points and related 

class of medical systems that provide vital everyday deci- 30 data associated with meal detections ; 
sion support service to diabetics . An artificial pancreas , FIG . 2 is a diagram illustrating receiver operating char 
which integrates a continuous glucose monitor , a wearable acteristic ( ROC ) curves of four meal detectors ; 
insulin pump , and control algorithms running on embedded FIG . 3 is a diagram illustrating cumulative detection rates 
computing devices , can significantly improve the quality of of four meal detectors from the onsets of meals ; 
life for millions of Type 1 diabetics . A primary problem in 35 FIG . 4 is a diagram illustrating the per - subject misses of 
the development of an artificial pancreas is the accurate four meal detectors ; 
detection and estimation of meal carbohydrates , which cause FIG . 5 is a diagram illustrating cumulative detection rate 
significant glucose system disturbances . Meal carbohydrate curves of four meal detectors running at operating points 
detection is challenging since post - meal glucose responses identified in the in silico trial ; 
greatly depend on patient - specific physiology and meal 40 FIG . 6 is a diagram illustrating a system for performing 
composition . meal detection ; and 

Accordingly , there exists a need for methods , systems , FIG . 7 is a diagram illustrating an example process for 
and computer readable media for physiology parameter performing meal detection . 
invariant meal detection . 

DETAILED DESCRIPTION 
SUMMARY 

The subject matter described herein relates to methods , 
Methods , systems , and computer readable media for systems , and computer readable media for physiology 

physiology parameter - invariant meal detection are dis parameter - invariant meal detection . Type 1 diabetes ( T1D ) 
closed . According to one system , the system includes at least 50 affects approximately 1.25 million people in the United 
one processor and a meal detection module implemented States and 5 million Americans are expected to have T1D by 
using the at least one processor . The meal detection module 2050 [ 11 ] . TID patients depend on daily insulin therapy to 
is configured to receive insulin intake information and blood control glucose levels in order to avoid numerous long - term 
glucose level information for a user , to detect a meal event complications associated with hyperglycemia [ 19 ] . Meal 
using a physiology parameter - invariant meal detection algo- 55 carbohydrates cause significant disturbance to one's glucose 
rithm , and after detecting the meal event , to perform at least level and for T1D patients , it is critical to cautiously plan 
one control action associated with insulin management . insulin injections around meal times to avoid postprandial 
A method for physiology parameter - invariant meal detec hyperglycemia and subsequent post - correction hypoglyce 

tion is also disclosed . The method includes receiving insulin mia . Artificial Pancreas ( AP ) systems [ 2 , 7 , 25 ] aim to 
intake information and blood glucose level information for 60 regulate the glucose level by automatically delivering insu 
a user . The method also includes detecting a meal event lin and free TiD patients from the cognitive burden of 
using a physiology parameter - invariant meal detection algo frequent glucose monitoring , carb counting , and insulin 
rithm . The method further includes after detecting the meal dosing decision making . 
event , performing at least one control action associated with A significant challenge of meal - time glycemic control is 
insulin management . 65 the sensing and action delays : the glucose level starts to rise 

The subject matter described herein can be implemented a certain time after the onset of a meal and there is a delay 
in software in combination with hardware and / or firmware . between the injection of insulin and the action of insulin to 

45 
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dispose of glucose . To cope with this challenge , the AP achieving a CFAR [ 30 ] or near - CFAR is discussed . In many 
systems need meal information either by announcement [ 24 ] medical monitoring applications , including meal detection , 
or meal detection [ 3 , 5 , 6 , 9 , 16 , 23 , 31 ] . The subject matter unknown or uncertain patient physiology presents a funda 
described herein relates to accurate and timely meal detec mental challenge in generating mathematical models useful 
tion - i.e . , detecting if carbohydrates have been ingested in 5 for detector design . The PAIN approach utilizes physiologi 
the recent past . Accurate meal detection not only serves as cal models and trends to capture the effects of the unknown 
the first step towards meal estimation ( i.e. , estimating the nuisance parameters , then establishes invariance to the nui 
amount of carbohydrates ingested ) , but can also be sance parameters by projecting the measurements onto a 
employed by meal estimation algorithms as a safety back space which is unaffected by the unknown parameters , 
up , especially in situations where user input is erroneous [ 9 ] . 10 mathematically known as a null space projection . The ben 
The problems of carbohydrate estimation and insulin bolus efit of the PAIN approach is that the projected measurements 
calculation [ 31 ] are not considered herein and left as future will be the same , regardless of the patient's unknown 
work . physiology , allowing the design of powerful detectors that 
A meal detector aims to identify , in real - time , carbohy leverage this population - level consistency . PAIN design 

drate ingestion based on continuous glucose monitor ( CGM ) 15 approaches have been successfully applied to various engi 
readings . Several meal detection strategies already exist in neering applications with unknown parameters [ 32 , 33 , 34 ] 
the literature . Dassau et al . propose a voting - based meal and have recently been extended to medical monitor design 
detector that tracks the glucose rate - of - changes ( RoCs ) [ 18 , 28 , 29 , 35 ] . 
estimated by different methods including Kalman Filtering To present an example PAIN - based meal detector , this 
and announces a meal when three out of the four RoC 20 section utilizes FIG . 1 as a visual aid and discloses useful 
estimates cross pre - specified thresholds [ 9 ] . Using similar mathematics related to its formulation . In some embodi 
Kalman Filtering techniques , Lee and Bequette develop a ments , meal detection may be performed in two steps . First , 
meal detector that announces a meal based on RoCs crossing at time k in FIG . 1 , we use a time window of measurements 
thresholds and estimates the meal size by feeding the filtered ( denoted by w in FIG . 1 ) and comparatively test , using PAIN 
glucose RoCs into a finite response filter [ 22 ] . Harvey et al . 25 techniques [ 35 ] , two consecutive sub - windows of time end 
recently proposed a meal detection algorithm that announces ing d time steps before k ( represented by d , and d , in FIG . 
meals based on a two - stage CGM filtering process and RoC 1 ) for the presence of a meal . The time steps correspond to 
criteria [ 16 ] . Cameron et al . develop a meal detection the CGM sampling period and we use 1 - minute sampled 
algorithm that uses a simple glucose model to match the CGMs in the in silico study , which is consistent with the 
RoC of the CGM readings to temporal trajectories assuming 30 sampling rate of the clinical dataset [ 36 ] . Second , we 
both no - meal and meal scenarios [ 3 ] . All the aforementioned sequentially filter the test decisions generated at each time 
meal detectors require identifying patient - specific param step k to generate a threshold - based test for meal detection . 
eters ( e.g. , insulin sensitivity , insulin diffusion rate , etc. ) , The remainder of this section describes , in detail , various 
most of which vary with time . Due to the inherent physi components of the meal detector , namely , modeling glucose 
ological dependency , the RoC based detectors may suffer 35 insulin physiological trends , designing physiology - invariant 
from high false positives , considering that non - meal distur tests , and filtering test decisions . 
bance factors may also cause significant glucose fluctuations Modeling Glucose - Insulin Physiological Trends 
( e.g. exercising [ 13 ] , stress [ 4 ] , and depletion of insulin - on Many models exist for describing glucose - insulin physi 
board [ 27 ] ) . Additionally , the trajectory - matching meal ology , ranging from high - fidelity maximal models [ 8 , 21 ] to 
detector has a long average detection delay [ 15 ] . As an 40 an assortment of low - fidelity minimal models [ 1 ] . For the 
alternative , recent work by Turksoy et al . simultaneously PAIN technique to be useful , a chosen model should capture 
aims to estimate physiological variables and model param the general physiological trends that discriminate meal 
eters to provide accurate meal detection and estimation ; occurrence or absence . In some embodiments , to capture the 
however , no guarantees are provided that the physiological real - life scenario where the glucose level is measured at a 
parameter estimates converge to their true value [ 31 ] . Quick 45 subcutaneous site and carbohydrates enter plasma via a 
and reliable meal detection is critical for the AP systems : digestion pathway , a modified 5th - order linear Bergman 
false detections can lead to unnecessary insulin delivery that model [ 1 ] augmented with minimal compartmental models 
may trigger life - threatening hypoglycemia ; missed detec that describe the subcutaneous insulin pathway [ 20 , 26 ] and 
tions or significant detection delays can leave the patient meal carbohydrate digestion pathway [ 12 ] is utilized . The 
with marked postprandial hyperglycemia . 50 complete augmented physiological model is a five - state 

The subject matter described herein includes a novel meal linear system ( discussed further below with reference to 
detection algorithm that is based on a commonly accepted Equation 1 ) and contains several specific physiological 
minimal glucose physiological model and is “ invariant ” to parameters , e.g. , the insulin sensitivity [ 1 ] , the insulin dif 
individual physiological parameters — i.e . , it achieves a near fusion rate [ 26 ] , and the time of maximum glucose appear 
constant false alarm rate ( CFAR ) across the patient popula- 55 ance [ 12 ] . Identifying these parameters for each individual 
tion without needing individual tuning . We compare an patient requires time - consuming tests in strictly controlled 
example implementation of a parameter invariant ( PAIN ) clinical settings , which may be inaccurate outside the con 
meal detector with various aspects described herein with trolled setting . Thus , a core element of our meal detector is 
three published meal detection techniques [ 9 , 16 , 22 ] . Evalu the design of tests invariant to the unknown time - varying 
ations on an FDA - accepted TID simulator [ 21 ] and a real 60 physiological parameters . 
TID clinical dataset [ 36 ] show that our detector outperforms Designing Physiology - Invariant Tests 
( often significantly ) other detectors in multiple aspects : Applying standard time - series analysis techniques [ 30 ] , 
detection rate , false - positive rate , detection delays , and we can write the CGM measurement model at time step k ( as 
per - subject missed meals . shown in FIG . 1 ) , assuming meal window d ; for iE { 0,1 } , as 

Methods 65 Yx = Hx / 0 + on , where yk is a vector of the w CGM measure 
In this section , aspects related to meal detection using a ments , and Hki is a known matrix ( defined in Equation 2 

parameter invariant ( PAIN ) design approach [ 35 ] usable for discussed below ) which relates how the CGM measurements 
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are affected by the lumped - physiological parameters , 8. The resented by u and DG , respectively . All other variables 
value of 0 is a function of the unknown physiological represent unknown physiological parameters . For a com 
variables ( the specific mapping of physiological variables to plete discussion of the model in Equation 1 see [ 5 ; sec . 4.2 ] . 
the lumped - parameters is omitted as it is irrelevant in the Applying standard time - series discretization techniques , the 
design of PAIN detectors [ 30 ] , i.e. , designing tests invariant 5 model in Equation 1 can be written as a 5th - order discrete 
to the lumped - parameters is equivalent to designing invari time system , assuming piecewise constant insulin and meal 
ant to the underlying physiological variables ) . Additionally , inputs . 
a represents an unknown uncertainty associated with a Assuming a 1 minute sampling rate , we denote at time 
zero - mean noise , n . Utilizing the CGM measurement model , step k , the CGM measurement as Xx ( as sampled from G ) , the 
we can generate two invariant statistics , t . ( Yx ) and t? ( yk ) , as 10 injected insulin bolus as uz , and write 
defined in Equation 3 discussed below . 

In words , for t . ( yx ) , CGM measurements are projected 
onto the null space of H2,0 [ 17 ] , then to ( yk ) is generated using Vk = [ ... X - 
the ratio of the remaining measurement energy in the space 
of Hx , 1 to the measurement energy not remaining in Hk , 1 · 15 
The form of t . ( yx ) is commonly referred to as an F - ratio in 
the signal processing and statistics literature [ 30 ] , and has 
the useful feature that its value is invariant to the noise level 
o as well as the lumped - physiological parameters 8. In the where , we call yk the measurements ( representing a point in context of various aspects of the subject matter described 20 the measurement space ) and we say Fk spans the measure herein , tolyk ) represents the ratio of measurement energy ment space affected by the insulin bolus and physiological aligned with ( and only with ) the meal effects of d , to the dynamics . More importantly , each column of Fx corresponds measurement energy that cannot be explained exclusively by to the effect , on the measurements , of an unknown lumped meals within dj . Comparing t . ( yk ) to a threshold no , selected to achieve a specified probability of false alarm , generates a 25 physiological parameter . The mapping of the physiological 
decision . Similarly , t , ( yx ) is generated by first projecting the parameters in Equation 1 to the lumped - physiological 
measurements onto the null space of Hz , 1 , then generating an parameters is unimportant in implementing a PAIN - based 

meal detector and consequently omitted from discussion F - statistic using Hk , and comparing to a threshold ni : herein . The selection of PAIN - based meal detector parameters , While Fk spans the measurement space affected by insulin do , d ,, d , and w , can significantly affect its performance . In 30 
some embodiments , do , d ,, and d are selected to be 5 time bolus and physiological parameters , it does not necessarily ) 

span the effect of meals on the measurements . We capture steps and w to be 300 time steps . These values are chosen 
because they may provide a ' best ' detection rates among the the effect of meals within the hypothesized meal windows , 

do and d , in FIG . 1 , respectively , as range of values evaluated . A discussion of PAIN - based meal 
detector parameter effects is provided below with a detailed 35 
presentation of the test statistics . 

0 ( 6-4 ) x ( do +4 ) 0 ( 8 + do -4 ) x ( d1 +4 ) Mathematical details and supporting discussion for imple 
Go = mentation of parameter invariant detectors ( e.g. , a PAIN k ( do + 4 ) and Gi l ( d1 +4 

based meal detector ) are discussed herein . Deriving the 0 ( m - o - do ) x ( do + 4 ) Ofw - o - do - d? ) x ( d1 + 4 ) 
detector test statistics requires null space transformations , 40 
where the null space of an arbitrary matrix X is [ 17 ] where , 0 ( n ) x ( m ) denotes an n - by - m matrix of all zeros and 1 ( m ) ( x ) = { v \ Xv = 0 } corresponds to the m - dimensional identity matrix . We note 
and has an orthonormal basis transposed , X , satisfying [ 17 ] that G ; has d , + 4 columns ( as opposed to d , columns ) since 

the effect of the most recent hypothesized meal ( of unknown X'E { VIVE ( x ) + , Ix , V?x = va vvT = 1 } magnitude ) within the d ; window affects measurements up to 
where , VT denotes the transpose of matrix V [ 17 ] . The 4 time steps later . Thus , we say that G ; spans the measure 
following employs the above notation to present , math ment subspace affected by meals within d ; ( according to the 
ematically , the meal - detector test statistics implemented in Bergman model ) . 
various aspects of the subject matter described herein . We write 
For completeness , we begin by stating the augmented 

5th - order linear Bergman model employed in various aspects Hk , i = [ F_G } ] , [ E { 0,1 } [ 2 ] 
of the subject matter described herein , and say that Hki spans the measurement subspace affected 

by the combined effect of parameters corresponding to the 
physiological dynamics , insulin bolus , and the meals within 

[ 1 ] the d ; time window . Assuming a meal occurs exclusively G ( 1 ) 0 ta ta within the time window di , then yx = Hx , 10 + on as described m ( t ) m ( 1 ) in the text . 
g ( t ) g ( 1 ) + DG ( 1 ) To present the test statistics , we introduce intermediate ka ( ) variables 
10 1s ( 1 ) u ( t ) 

-ka Pk , o = Hk , o + y , Uk , o = H7,0 - G1 

) 

45 

50 

55 
Pi 1 0 P2 0 G ( 1 ) P2 0 0 

0 
0 -tal 0 0 

0 0 0 -ke 60 IG 
0 0 0 0 

where , G , m , g , 1 , and 1 , denote the physiological state for Pk1 = Hx , 1 + y , U2,1 = Hx , 1 + G . 
plasma glucose , plasma glucose appearance rate , digestive 65 where , rz , 0 and Uk , denote the projection of the measure 
compartment glucose , plasma insulin , and subcutaneous ments and projected meal effects for d , onto the nullspace of 
insulin , respectively . The insulin bolus and meals are rep Hã , 0 , respectively ( and vice - versa for rx , and Ux , 1 ) . In words , 
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?k , o and Uk , o denote the measurements and the effects of property that an increasingly positive ro ( yk ) implies an 
meals within d , which cannot be explained by physiological increasing likelihood that a meal has occurred in the window 
parameters , insulin bolus , and meals occurring within do . d ( and vice versa ) . Thus , the algorithm generates an 
Consequently , to quantify whether the projected measure S - score , S ( j ) , for each time stepj ( assuming S ( ) is initialized 
ments and projected meal effects are significantly aligned 5 to zero ) and accumulates S - scores according to the rules in 
[ 30 ] , we write test statistics , t ; :( yx ) for iE { 0,1 } , as Table 1 , where a larger S - score indicates a higher confidence 

in the occurrence of a meal . 
[ 3 ] Ti ( 1 - ( UK ) ( 0 ; ) ) ?k , i 

rLi ( Um ) " ( 02 , ; ) ' k , 
TABLE 1 t ; ( k ) = 10 

Score Accumulation Rules for S ( i ) at k 

No Meal 

20 

For t . ( y ) , the numerator denotes the magnitude of the ro ( Yx ) > 0 ro ( yx ) = 0 

projected measurements aligned with ( i.e. , in the subspace ri ( yz ) > 0 Meal in do or dy + Meal in do + 
of ) the projected meal effects of d ,, while the denominator 15 r? ( yk ) to j Edo 2 * r? ( yk ) to je do 
represents the energy of the projected measurements which rolyk ) to jedi 

rityk ) s 0 Meal in d? + cannot be explained exclusively by meals within d? . Thus , 2 * ro?yk ) to j Ed Do not change S ( ) 
large / small values of to ( yk ) implies that a meal within d , is 
likely / unlikely . Similarly , large / small values of t , ( yz ) indi 
cates that a meal within do is likely / unlikely . At every step , when the detector claims a meal occurs in 

In order for the test statistic in Equation 2 to be non window do , we add 2 * r? ( yx ) to S ( j ) for each time step j in the 
trivial , necessitates the selection of do , dj , d , and w in FIG . do window ; similarly , if the detector claims a meal occurs in 
1 such that all dimensions within in G. and G¡ are non d ] , we add 2 * r . ( yk ) to S ( ) for each time step in the di 
negative . In some embodiments , do , di , and 8 may be window . If it is likely that a meal was in both windows , then 
selected to be 5 time - steps and w to be 300 time steps for an 25 we add r? ( y ) to S ( ) for each time step in the do and 
example PAIN - based meal detector . In general , the perfor similarly , we add r . ( yz ) to S ( ) of each time step in the di . 
mance of a PAIN - based meal detector varies with the Note that we drop the factor of 2 in the increments when 
selected parameters . Qualitatively , increasing w improves both residual statistics , r . ( yk ) and rolyk ) , are positive , thus 
the detector performance as long as the Bergman model weakening the confidence of a meal happening in any 
remains accurate . At the same time , decreasing do , d ,, and 8 30 individual window . If both residual statistics are negative , 
improves detection accuracy ( and time - to - detection ) so long then neither do nor d , is likely to contain a meal ; thus , no 
as the statistics are non - trivial . Quantifying the detector score accumulation occurs . 
performance is a subject of future work . The score accumulation rules are shaded in FIG . 1 : each 

FIG . 1 illustrates how an example PAIN - based meal shaded region corresponds to the rule in Table 1 that applies 
detector works on simulated scenarios generated by the 35 in that region . In a typical positive meal detection scenario , 
FDA - accepted simulator [ 21 ] . Please note that for aesthetics one should first see the ' green ' region ( labeled with a ‘ G’in 
the values of do , d ) , and d , and w in FIG . 1 are not the same FIG . 1 and corresponding to the do window ) approaches the 
as the values used in the evaluation . The CGM measure meal event , followed by the ‘ yellow ' region ( labeled with a 
ments correspond to a one - minute sampling rate of the ' Y ' in FIG . 1 ) as the meal event transitions from do to dj , and 
interstitial glucose level shown in FIG . 1. The true meal 40 finally see the “ red ’ region ( labeled with a ' R ' in FIG . 1 ) , 
happens around time 22 minutes ( the pink upper triangle in after which a peak in the S ( t ) curve emerges , indicating that 
the top plot of FIG . 1 ) . The example PAIN - based meal the detector makes a series of decisions at sequential time 
detector works in a sliding - window fashion : at time k , the steps that all point to the same meal time region where the 
detector run tests on the d , and d , windows utilizing the past S ( t ) peak emerges . The magnitude of S ( t ) corresponds to our 
w CGM measurements ; the relevant time windows at time k 45 confidence in a meal occurring at time t . To trigger an alarm 
are scoped by the box labeled ‘ B1'in FIG . 1 ; the detector ( indicating a meal has occurred ) , we utilize two design 
generates a decision at each time and the time windows ( as parameters , a threshold S , and a minimum width Sw ; a peak 
highlighted in the box labeled ' B1 ' ) shift forward in time is characterized by at least Sw consecutive SG ) ' s that are 
with the detector to generate sequential statistics and ( whose above So. At each time step , the detector raises a meal alarm 
values are shown in the second and third sub - figures in FIG . 50 if a new S ( t ) peak emerges . The parameters S , and S. can be 
1 ) . In FIG . 1 , as the do window approaches the true meal tuned to achieve different detection performance : smaller S. 
event ( the detector never knows when a meal actually and Sw result in higher sensitivity but more false alarms . We 
happens and tests every time step ) , the statistic t? ( yr ) ( rep note that there is a few steps delay between the actual meal 
resented by a dotted line in the figure's middle graph ) starts time and the S ( t ) peak , as shown in FIG . 1. This delay 
rising and becomes separated from t.ly ) ( represented by a 55 phenomenon is consistently observed in the in silico studies 
dotted line in the figure's middle graph ) , indicating a meal and is related to the physiological fact that there is a delay 
is more likely to have occurred in d , than in d . Then as the from the onset of eating to when the CGM reading starts 
detector moves further ahead , the true meal enters the di changing : in the maximal model , meal carbohydrates have 
window , and t ( yk ) increases while t? ( yi ) decreases , indicat to pass several digestion compartments before affecting the 
ing that a meal is more likely in d , than in do . This sequential 60 plasma glucose . 
rise and fall of the statistics to ( yk ) and t? ( yz ) is leveraged to Results 
design a sequential test . This section presents the evaluation results of an example 

Filtering Sequential Test Decisions implementation of a PAIN - based meal detector with various 
To leverage the structured sequential rise and fall of the aspects described herein and three existing meal detection 

statistics , we design an algorithm that generates a cumula- 65 algorithms . We compare the performance of detectors in 
tive decision score based on the residual statistics r ; ( y ) = t? both an in silico clinical trial and on a real clinical dataset . 
( yk ) -n ; for iE { 0,1 } . The residual statistics have the useful In Silico Experimental Results 
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We compare the tested PAIN - based meal detector with within 40 minutes ( although the common meal detection 
three existing meal detectors : the Dassau et al.’s detector [ 9 ] , accounting rule counts any detection within 2 hours of the 
Harvey et al.’s detector [ 16 ] , and Lee and Bequette's detec true meal event as true positives [ 16 ] ) , with a mean detection 
tor [ 22 ] . We evaluate the detectors in an in silico clinical trial time of 24 minutes . The other three detectors have longer 
using the academic version of the FDA - accepted TIDMS 5 detection delays and lower maximum detection rates . 
simulator [ 14 , 8 ] . A “ virtual subject ” in the T1DMS simu FIG . 4 compares the per - subject misses of the four 
lator is a realization of the 32 physiological parameters . The detectors , which is a measure of the consistency of detection 
academic version of the T1DMS simulator contains 10 adult performance , i.e. , whether a detector can perform particu 
virtual subjects that are sampled from the same parameter larly bad on any subject . The tested PAIN - based meal 
distribution of the FDA - accepted population . 10 detector never misses more than 31 meal events ( i.e. , 3.5 % 

The simulation configuration mimics the daily glucose out of all 900 meals in 300 simulation days ) on any of the 
management scenario of a T1D patient . Each virtual subject 10 virtual subjects . In sharp contrast to the tested PAIN 
is fed three meals a day with randomized carb counts . based meal detector , all other three detectors miss a signifi 
Patient may check their glucose level every two hours and cant portion of the meals on certain subjects , e.g. , subject 
take correctional boluses if glucose levels are high . The 15 No. 2 and No. 6 . Validation of Detectors on a Clinical Dataset meal - time boluses and correctional boluses are calculated 
based on personalized meal ratio and insulin sensitivity To further validate the in silico evaluation results , we ran 
parameters , which are included in the T1DMS simulator . the four detectors on a retrospective clinical dataset col 
Those parameters are perturbed by a random variation at lected from a DirecNet pilot study [ 36 ] . The clinical dataset 
each meal time and glucose check - point , in order to simulate 20 includes one - minute CGM readings from 21 TID patients 
real - life variation factors such as time - varying meal and ( age 11 + 4 years , height 147 + 23 cm , body weight 45 + 20 kg , 
insulin responses . duration of diabetes 5 + 3 years , HbAlc 7.0 % + 0.5 % ) . The 
We run the tested PAIN - based meal detector , the Dassau patients receive a meal challenge test at a clinical research 

et al.'s detector , Harvey et al.'s detector , and Lee and center , during which the insulin bolus is withheld for one 
25 hour after the breakfast . Bequette's detector using the same glucose measurements 

from the 10 adult virtual subjects in a 300 - day in silico trial . We evaluate the four detectors on the testing - breakfast of 
Each of the four meal detectors has a set of configurable each patient . FIG . 5 shows the cumulative detection rate 
parameters , e.g. , the threshold S , of the tested PAIN - based curves of the four detectors running at their ' best ' operating 
meal detector and RoC thresholds of the RoC - based detec points identified in the in silico trial . The mean detection 
tors . We systematically explore the combinations of each 30 time of the tested PAIN - based meal detector , Dassau et al.'s 
detector's parameters and get its best detection performance . detector , and Harvey et al.'s detector is 21 minutes . The 
A receiver operating characteristic ( ROC ) curve represents mean detection time of Lee and Bequette's detector is 35 

minutes . All four detectors are able to detect all meals within the detection rate and false alarm rate of a detector under 
different configurations . FIG . 2 shows the ROC curves of the two hours . 

Discussion four detectors . Table 2 lists a ' best ' operating point of each 
detector . As used herein , a ' best ' operating point may be the The in silico trial results show that an example imple 
one that is closest to the theoretical perfect operating point mentation of a PAIN - based meal detector with various 
of 100 % sensitivity and 0 % false alarm rate ( 100 % speci aspects described herein significantly improves the detection 
ficity ) . The tested PAIN - based meal detector has a number performance when compared with the other three detectors . 
of near - perfect operating points , e.g. , the one reported in 40 For example , compared to Harvey et al.'s detector , the tested 
Table 2 is at the 99.1 % sensitivity ( meaning that the detector PAIN - based meal detector reduces the number of false 
correctly detects 99.1 % of meal events within 2 hours ) and alarms by 90 % and reduces the number of missed detections 
1.5 % false alarm rate , i.e. , on average , the tested PAIN by 88 % at the same time in the 10 - subjects in - silico study . 
based meal detector has one missed true meal event every 37 In terms of detection delay during the in silico trial , the 
days and one false alarm every 22 days . Here we follow the 45 tested PAIN - based meal detector has the shortest mean 
established convention [ 16 ] of using the false alarm rate , detection delay and achieves its near - perfect maximum 
instead of the classical notion of specificity , to quantify the detection rate ahead of all others . The per - subject miss 
meal detection performance . In the sequential time - series distribution result validates the unique strength of the tested 
meal detection , there is no clear definition of what counts as PAIN - based meal detector : it is “ invariant " to differences in 
one “ true negative ” ( no meal presence ) discrete event . 50 patients ' physiological parameters and thereby achieves 
Therefore the classical specificity definition cannot be highly consistent detection performance across the virtual 
applied . patient population . This unique feature of the tested PAIN 

based meal detector is critical to the safety of artificial 
TABLE 2 pancreas : A meal detector that frequently misses true meal 

55 events on some subjects could result in severe post - prandial 
Operating Points of the Four Detectors hyperglycemia and possibly subsequent hypoglycemia 

“ overshoots ” of large insulin boluses ( to correct the high 
False Alarm Rate glucose level ) . It is worth noting that although we do not 

implement Cameron et al.'s detector and explicitly compare 
60 it with the others in the in silico trial , their original paper also 

Lee and Bequette's uses the T1DMS for evaluation and reports average detec Harvey et al.'s 14.3 % tion delay of greater than 50 minutes [ 3 ] . In addition , 
Cameron et al.'s detector requires identifying patient - spe 

FIG . 3 shows the cumulative detection rate from the cific insulin sensitivity profiles . In theory , the performance 
onsets of meals when running the detectors at their best 65 of the RoC - based detectors may be further improved by 
operating points in the in silico trial . The tested PAIN - based carefully tuning the detector parameters for each individual 
meal detector dominates the others and detects 99.1 % meals patient . However , such tuning process may require frequent 

35 

Detector Detection Rate 

PAIN - based 
Dassau et al.'s 

99.1 % 
89.9 % 
87.8 % 
91.6 % 

1.5 % 
13.3 % 
11.0 % 
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clinic visits because patients ' physiological characteristics Antonio Tiengo , Chiara Dalla Man , Jerome Place , Andrea 
change over time . Moreover , even with parameter tuning , Facchinetti , Stefania Guerra , Lalo Magni , Giuseppe De 
the RoC - based meal detectors have their fundamental limi Nicolao , Claudio Cobelli , Eric Renard , and Alberto 
tation because the post - meal glucose rise rate depends on Maran . Closed - loop artificial pancreas using subcutane 
many other factors such as the nutrition composition of 5 ous glucose sensing and insulin delivery and a model 
meals [ 37 ] and insulin - on - board [ 10 ] , which can not be predictive control algorithm : preliminary studies in 
mitigated by simply tuning the threshold parameters . In padova and montpellier . Diabetes Sci Technol , 3 ( 5 ) , 2009 . 
contrast , the in silico trial demonstrates that the tested [ 3 ] Fraser Cameron , Günter Niemeyer , and Bruce A Buck 
PAIN - based meal detector is able to achieve consistent ingham . Probabilistic evolving meal detection and esti performance without any individual - level parameter tuning . 10 mation of meal total glucose appearance . Journal of Evaluation result on the DirecNet clinical dataset shows diabetes science and technology , 3 ( 5 ) : 1022-1030 , 2009 . that the tested PAIN - based meal detector detects all meals [ 4 ] Sarah E Capes , Dereck Hunt , Klas Malmberg , Parbeen within about 40 minutes and the mean detection delay is 21 
minutes , which is consistent with the in silico trial results . Pathak , and Hertzel C Gerstein . Stress hyperglycemia and 
Dassau et al.’s detector and Harvey et al.'s detector also 15 prognosis of stroke in nondiabetic and diabetic patients a 
exhibit consistent performance in the in silico trial and systematic overview . Stroke , 32 ( 10 ) : 2426-2432 , 2001 . 
retrospective test on the clinical dataset ( Dassau et al.'s [ 5 ] Sanjian Chen , James Weimer , Michael Rickels , Amy 
original paper uses the same DirecNet dataset for evaluation Peleckis , and Insup Lee . Towards a model - based meal 
[ 9 ] ) . Compared to the in silico trial results , Lee and detector for type 1 diabetics . In Medical Cyber - Physical 
Bequette's detector has a slightly longer mean detection 20 Systems Workshop 2015 , 2015. http : //repository.upenn 
delay . This may due to the relatively limited population size .edu / cis_papers / 782 / 
of the DirecNet dataset . [ 6 ] Claudio Cobelli , Chiara Dalla Man , Giovanni Sparacino , 

Comparing the results over the DirecNet clinical data Lalo Magni , Giuseppe De Nicolao , and Boris P. 
illustrates that the tested PAIN - based meal detector achieves Kovatchev . Diabetes : Models , signals , and control . Bio 
a similar performance as the detectors of Dassau et al . and 25 medical Engineering , IEEE Reviews in , 2 , 2009 . 
Harvey et al . This is due , in large part , to the fact that the [ 7 ] Claudio Cobelli , Eric Renard , and Boris Kovatchev . 
DirecNet clinical data was collected in a laboratory setting Artificial pancreas : past , present , future . Diabetes , 60 ( 11 ) : 
over the course of one breakfast test while withholding the 2672-2682 , 2011 . 
insulin bolus . Withholding insulin for the meal size in the [ 8 ] Chiara Dalla Man , Francesco Micheletto , Dayu Lv , Marc 
experiments results in a significant rise in blood glucose 30 Breton , Boris Kovatchev , and Claudio Cobelli . The uva / 
which is ( often ) detectable by RoC detectors . In scenarios padova type 1 diabetes simulator new features . Journal of where the meal size is reduced and / or an insulin bolus is diabetes science and technology , 8 ( 1 ) : 26-34 , 2014 . administered at meal time ( possibly via human request ) we [ 9 ] Eyal Dassau , B Wayne Bequette , Bruce A Buckingham , anticipate the clinical results would be similar to those in the and Francis J Doyle . Detection of a meal using continuous in silico trial . Regardless , the significance of the clinical data 35 
results is that the tested PAIN - based meal detector has glucose monitoring implications for an artificial B - cell . 
detection delays consistent with the in silico trial and is not Diabetes care , 31 ( 2 ) : 295-300 , 2008 . 
outperformed by the RoC detectors in the literature . [ 10 ] Christian Ellingsen , Eyal Dassau , Howard Zisser , 

Further Thoughts Benyamin Grosman , Matthew W Percival , Lois Jova 
The subject matter described herein includes various 40 novic , and Francis J Doyle . Safety constraints in an 

aspects , methods , systems , and / or techniques related to artificial pancreatic ß cell : an implementation of model 
PAIN - based meal detection , e.g. , a PAIN - based meal detec predictive control with insulin on board . Journal of dia 
tor that is based on a physiological model . The in silico trial betes science and technology , 3 ( 3 ) : 536-544 , 2009 . 
and evaluation on a clinical dataset demonstrate that an [ 11 ] Centers for Disease Control , Prevention , et al . National 
example implementation of a PAIN - based meal detector 45 diabetes statistics report : estimates of diabetes and its 
with various aspects described herein has significantly better burden in the united states , 2014. Atlanta , Ga .: US Depart 
detection performance than three existing meal detectors . In ment of Health and Human Services , 2014 . 
addition , the evaluation results validate that the tested PAIN [ 12 ] Rachel Gillis , Cesar C Palerm , Howard Zisser , Lois 
based meal detector has the unique strength of achieving Jovanovic , Dale E Seborg , and Francis J Doyle . Glucose 
highly consistent performance across a virtual patient popu estimation and prediction through meal responses using 
lation , with varying physiology , without any individual ambulatory subject data for advisory mode model predic 
level parameter tuning . The high detection rate , low false tive control . Journal of diabetes science and technology , 
alarm rate , and consistent inter - subject performance indicate 1 ( 6 ) : 825-833 , 2007 . 
that the tested PAIN - based meal detector and / or other meal [ 13 ] J Grimm . Exercise in type 1 diabetes . Exercise and 
detection with various aspects described herein can serve as 55 sport in diabetes , pages 25-43 , 2005 . 
a reliable meal detection component in artificial pancreases [ 14 ] The Epsilon Group . Uva / padova tldm metabolic simu 
to inform closed - loop controller or be the safety back up for lator . 
user - provided meal information or other meal detectors . [ 15 ] Kym J Guelfi , Timothy W Jones , and Paul A Fournier . 

The decline in blood glucose levels is less with intermit 
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qvist . The effect of long - term intensified insulin treatment FIG . 6 is a diagram illustrating an example insulin man 
on the development of microvascular complications of agement system 102 ( e.g. , an embedded chip or system , a 
diabetes mellitus . New England Journal of Medicine , 45 processor executing software in an artificial pancreas ( AP ) 
329 ( 5 ) : 304-309 , 1993 . system , or an insulin pump ) for performing meal detection . 

[ 28 ] Alexander Roederer , James Weimer , Joseph Dimartino , Insulin management system 102 may be any suitable entity , 
Jacob Gutsche , and Insup Lee . Towards non - invasive such as a computing device , node , or platform , for perform 
monitoring of hypovolemia in intensive care patients . In ing one or more aspects of the present subject matter 
Medical Cyber - Physical Systems Workshop 2015 , 2015. 50 described herein . In some embodiments , components , mod 

[ 29 ] Alexander Roederer , James Weimer , Joseph Dimartino , ules , and / or portions of insulin management system 102 may 
Jacob Gutsche , and Insup Lee . Robust monitoring of be implemented or distributed across multiple devices or 
hypovolemia in intensive care patients using photopl computing platforms . 
ethysmogram signals . In IEEE Engineering in Medicine Insulin management system 102 may include various 
and Biology Conference , EMBC ’15 , 2015 . 55 components and / or control modules , e.g. , one or more 

[ 30 ] Louis L Scharf . Statistical signal processing , volume communications interface ( s ) 104 , a memory 106 , one or 
98. Addison - Wesley Reading , M A , 1991 . more processors 108 , and a meal detection module 110 . 

[ 31 ] K. Turksoy , S. Samadi , J. Feng , E. Littlejohn , L. Quinn , Communications interface ( s ) 104 may be any suitable entity 
A. Cinar . Meal - Detection in Patients with Type 1 Diabe or entities ( e.g. , a communications card or controller ) for 
tes : A New Module for The Multivariable Adaptive Arti- 60 receiving and / or sending communications . For example , 
ficial Pancreas Control System . In Biomedical and Health communications interface ( s ) 104 may allow a meal detec 
Informatics , IEEE Journal of , PP ( 99 ) : 1-8 , 2015 . tion module 110 to interact with various devices and / or 

[ 32 ] J. Weimer , S. A. Ahmadi , J. Araujo , et al . Active components ( e.g. , a continuous glucose monitor ( CGM ) , an 
actuator fault detection and diagnostics in hvac systems . insulin pump , and / or a related component or device of an AP 
In Proceedings of the Fourth Workshop on Embedded 65 system ) . In another example , communications interface ( s ) 
Sensing Systems for Energy - Efficiency in Buildings , 104 may be associated with a user interface or other entity 
pages 107-114 , 2012 . ( e.g. , a configuration tool or device ) and may be usable for 

like parts . 
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receiving configuration settings and / or other information into a single entity . In a second example , a node and / or 
associated with insulin management or meal detection . function may be located at or implemented by two or more 

In some embodiments , communications interface ( s ) 104 nodes . Further , it will appreciated that insulin management 
or another component may be configured to interact with a system 102 may include various components , control mod 
CGM or another device for receiving insulin intake data 5 ules ( e.g. , insulin dose titration , glucose prediction , etc. ) , 
and / or blood glucose level readings for a user ( e.g. , a person and / or functions not shown in FIG . 6 or described herein . 
with Type 1 Diabetes ) . For example , a CGM may be FIG . 7 is a diagram illustrating an example process 700 
configured to provide readings and / or other information to for meal detection . In some embodiments , example process 
insulin management system 102 via communications inter 700 may include an algorithm or related logic for physiology 
face ( s ) 104 after every reading ( e.g. , every 5 minutes ) , 10 parameter - invariant meal detection . In some embodiments , 
periodically , and / or on - demand . exemplary process 700 , or portions thereof , may be per 

In some embodiments , communications interface ( s ) 104 formed by or at insulin management system 102 , meal 
or another component may be configured to interact with an detection module 110 , a CGM , an AP system , and / or another 
insulin pump or other device for triggering one or more node or module . 
insulin management related actions . For example , insulin 15 Referring to FIG . 7 , in step 702 , insulin intake informa 
management system 102 may send , via communications tion and blood glucose level information may be received 
interface ( s ) 104 , commands , messages , other communica for a user . 
tions to an insulin pump for triggering the insulin pump to In some embodiments , insulin intake information and 
release insulin into a user's body or for triggering the insulin blood glucose level information may be provided by a user , 
pump to stop or cancel a scheduled insulin release . In 20 a CGM , an insulin pump , an AP system , or insulin control 
another example , insulin management system 102 may send , system 102 . 
via communications interface ( s ) 104 , commands , messages , In step 704 , a meal event may be detected , using a 
or communications to an alarm or other component for physiology parameter - invariant meal detection algorithm . 
notifying a user about a detected meal event . In some embodiments , a physiology parameter - invariant 
Memory 106 may be any suitable entity ( e.g. , random 25 meal detection algorithm may use a null space projection to 

access memory or flash memory ) for storing software , logic , detect a meal event regardless of a user's physiology . 
and / or information associated with meal detection and / or In some embodiments , a physiology parameter - invariant 
insulin management . For example , memory 106 112 may meal detection algorithm may use a sliding window of time 
store software and / or logic associated with one or more corresponding to a number of historical blood glucose level 
algorithms associated with various aspects or functionality 30 readings and historical insulin intake events . 
described herein . In some embodiments , a physiology parameter - invariant 

In some embodiments , components , such as communica meal detection algorithm may analyze consecutive sub 
tions interface ( s ) 10 meal detection module 110 and soft windows of a sliding window of time associated with 
ware executing on processor ( s ) 108 , of insulin management historical blood glucose level readings and historical insulin 
system 102 may utilize ( e.g. , read from and / or write to ) 35 intake events to identify sequential test decisions , e.g. , a test 
memory 106. For example , memory 106 may be usable to decision may indicate that for a given sub - window a meal 
store historical blood glucose level readings and / or insulin event is likely or unlikely . In such embodiments , each of the 
intake data . In another example , memory 106 may be usable sub - windows may correspond to one or more sampling 
to store various scores , detection statistics , test decisions , periods ( e.g. , blood glucose level readings every five min 
and / or other information related to meal detection module 40 utes ) associated with a CGM . 
110 . In some embodiments , a physiology parameter - invariant 

Processor ( s ) 108 represents any suitable entity or entities meal detection algorithm may filter sequential test decisions 
( e.g. , a physical processor , a field - programmable gateway by generating a cumulative decision score indicative of the 
array ( FPGA ) , and / or an application - specific integrated cir likelihood that a meal event occurred . 
cuit ( ASIC ) ) for performing one or more functions associ- 45 In some embodiments , a physiology parameter - invariant 
ated with meal detection . Processor ( s ) 108 may be associ meal detection algorithm may determine that a meal event 
ated with meal detection module 110. For example , meal occurred when a cumulative decision score exceeds a thresh 
detection module 110 , e.g. , software or algorithms therein , old value for a predetermined amount of time . 
may be implemented using ( e.g. , executed by ) processor ( s ) In step 706 , at least one control action associated with 
108 . 50 insulin management may be performed after detecting the 

Meal detection module 110 may be any suitable entity or meal event . 
entities ( e.g. , software executing on at least one processor ) In some embodiments , a control action ( e.g. , meal detec 
for meal detection . In some embodiments , meal detection tion decisions initiated , triggered or performed by meal 
module 110 may be configured to use one or more tech detection module 110 or insulin management system 102 ) 
niques , methods , and / or algorithms for detecting a meal 55 may include generating meal event detection decisions , meal 
event . For example , meal detection module 110 may utilize event detection scores , meal event alarms , or other output 
a physiology parameter - invariant meal detection algorithm . indicating a meal event has occurred . In some embodiments , 
In this example , the physiology parameter - invariant meal various outputs from meal detection module 110 may facili 
detection algorithm may detect a meal event ( e.g. , when a tate or include triggering a release of insulin , preventing the 
user ingested a certain number of carbohydrates ) based on a 60 release of insulin , and / or triggering a notification or alarm . 
minimal glucose / insulin metabolism model and using his For example , a control action may include a meal detection 
torical blood glucose level readings ( e.g. , from a CGM ) and decision that is used by an insulin pump or other entity to 
historical insulin intake information . trigger a release of insulin or adjust an insulin release 

It will be appreciated that FIG . 6 is for illustrative schedule . In another example , where meal detection module 
purposes and that various nodes , their locations , and / or their 65 110 is implemented as a backup meal detection system in a 
functions may be changed , altered , added , or removed . For user - inputted meal detection system , meal detection module 
example , some nodes and / or functions may be combined 110 may notify the user about a detected meal event ( e.g. , 
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when a meal is detected but no meal was user inputted ) such 5. A system for physiology parameter - invariant meal 
that the user can confirm or deny the detected meal event . detection , the system comprising : 

It will be understood that various details of the subject at least one processor ; and 
matter described herein may be changed without departing a meal detection device implemented using the at least 
from the scope of the subject matter described herein . 5 one processor , the meal detection device configured to 
Furthermore , the foregoing description is for the purpose of receive insulin intake information and glucose level 
illustration only , and not for the purpose of limitation , as the information for a user , wherein the glucose level infor 
subject matter described herein is defined by the claims as mation is obtained from a number of historical glucose 
set forth hereinafter . level readings taken before or after one or more meal 

events involving the user and the insulin intake infor 
What is claimed is : mation is obtained from a number of historical insulin 
1. A method for physiology parameter - invariant meal intake events including one or more insulin bolus 

detection , the method comprising : events occurring at or during the one or more meal 
receiving insulin intake information and glucose level events , to detect a meal event using a physiology 

information for a user , wherein the glucose level infor- 15 parameter - invariant meal detection algorithm , wherein 
mation is obtained from a number of historical glucose the physiology parameter - invariant meal detection 
level readings taken before or after one or more meal algorithm uses a null space projection to detect the 
events involving the user and the insulin intake infor meal event regardless of the user's insulin sensitivity 
mation is obtained from a number of historical insulin and insulin diffusion rate , wherein the physiology 
intake events including one or more insulin bolus 20 parameter - invariant meal detection algorithm uses a 
events occurring at or during the one or more meal sliding window of time corresponding to the historical 
events ; glucose level readings and historical insulin intake 

detecting a meal event using a physiology parameter events , wherein the physiological parameter - invariant 
invariant meal detection algorithm , wherein the physi meal detection algorithm includes generating an F - sta 
ology parameter - invariant meal detection algorithm 25 tistic for indicating a ratio of measurement energy 
uses a null space projection to detect the meal event aligned with meal effects in a sub - window of the sliding 
regardless of the user's insulin sensitivity and insulin window of time to other measurement energy in the 
diffusion rate , wherein the physiology parameter - in sub - window , wherein the F - statistic indicates a test 
variant meal detection algorithm uses a sliding window decision for the sub - window , wherein the physiology 
of time corresponding to the historical glucose level 30 parameter - invariant meal detection algorithm analyzes 
readings and historical insulin intake events , wherein consecutive sub - windows of the sliding window to 
the physiological parameter - invariant meal detection identify sequential test decisions , wherein the physiol 
algorithm includes generating an F - statistic for indicat ogy parameter - invariant meal detection algorithm fil 
ing a ratio of measurement energy aligned with meal ters the sequential test decisions by generating a cumu 
effects in a sub - window of the sliding window of time 35 lative decision score indicative of the likelihood that 
to other measurement energy in the sub - window , the meal event occurred , wherein the physiology 
wherein the F - statistic indicates a test decision for the parameter - invariant meal detection algorithm deter 
sub - window , wherein the physiology parameter - invari mines that the meal event occurred when the cumula 
ant meal detection algorithm analyzes consecutive sub tive decision score exceeds a threshold value for a 
windows of the sliding window to identify sequential 40 predetermined amount of time , and after detecting the 
test decisions , wherein the physiology parameter - in meal event , to perform at least one control action 
variant meal detection algorithm filters the sequential associated with insulin management , wherein the at 
test decisions by generating a cumulative decision least one control action includes triggering a release of 
score indicative of the likelihood that the meal event insulin or preventing the release of insulin by an insulin 
occurred , wherein the physiology parameter - invariant 45 pump . 
meal detection algorithm determines that the meal 6. The system of claim 5 wherein the insulin intake 
event occurred when the cumulative decision score information and the glucose level information is provided by 
exceeds a threshold value for a predetermined amount the user , a CGM , the insulin pump , an artificial pancreas 
of time ; and ( AP ) system , or an insulin control system . 

after detecting the meal event , performing at least one 50 7. The system of claim 5 wherein the at least one control 
control action associated with insulin management , action includes generating a meal detection decision , gen 
wherein the at least one control action includes trig erating a meal detection score , generating a meal detection 
gering a release of insulin or preventing the release of alarm , generating an alarm indicating the meal event has 
insulin by an insulin pump . occurred , or triggering a notification or alarm . 

2. The method of claim 1 wherein the insulin intake 55 8. The system of claim 5 wherein the physiology param 
information and the glucose level information is provided by eter - invariant meal detection algorithm analyzes consecu 
the user , a continuous glucose monitor ( CGM ) , the insulin tive sub - windows of the sliding window to identify sequen 
pump , an artificial pancreas ( AP ) system , or an insulin tial test decisions , wherein each of the sub - windows 
control system . corresponds to one or more sampling periods associated 

3. The method of claim 1 wherein the at least one control 60 with a continuous glucose monitor ( CGM ) . 
action includes generating a meal detection decision , gen 9. A non - transitory computer readable medium having 
erating a meal detection score , generating a meal detection stored thereon executable instructions that when executed by 
alarm , generating an alarm indicating the meal event has at least one processor of a computer cause the computer to 
occurred , or triggering a notification or alarm . perform steps comprising : 

4. The method of claim 1 wherein each of the sub- 65 receiving insulin intake information and glucose level 
windows corresponds to one or more sampling periods information for a user , wherein the glucose level infor 
associated with a continuous glucose monitor ( CGM ) . mation is obtained from a number of historical glucose 



US 10,792,423 B2 
19 20 

level readings taken before or after one or more meal wherein the F - statistic indicates a test decision for the 
events involving the user and the insulin intake infor sub - window , wherein the physiology parameter - invari 
mation is obtained from a number of historical insulin ant meal detection algorithm analyzes consecutive sub 
intake events including one or more insulin bolus windows of the sliding window to identify sequential 
events occurring at or during the one or more meal 5 test decisions , wherein the physiology parameter - in 
events ; variant meal detection algorithm filters the sequential detecting , using a physiology parameter - invariant meal test decisions by generating a cumulative decision detection algorithm , a meal event , wherein the physi score indicative of the likelihood that the meal event ology parameter - invariant meal detection algorithm occurred , wherein the physiology parameter - invariant uses a null space projection to detect the meal event 10 meal detection algorithm determines that the meal regardless of the user's insulin sensitivity and insulin event occurred when the cumulative decision score diffusion rate , wherein the physiology parameter - in exceeds a threshold value for a predetermined amount variant meal detection algorithm uses a sliding window 
of time corresponding to the historical glucose level of time ; and 
readings and historical insulin intake events , wherein 15 after detecting the meal event , performing at least one 

control action associated with insulin management , the physiological parameter - invariant meal detection 
algorithm includes generating an F - statistic for indicat wherein the at least one control action includes trig 
ing a ratio of measurement energy aligned with meal gering a release of insulin or preventing the release of 

insulin by an insulin pump . effects in a sub - window of the sliding window of time 
to other measurement energy in the sub - window , 


